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The practical application of time-variant reliability analysis is limited by its computationally 
expensive models which describe the structural system behavior. This paper presents a new 
adaptive PC-Kriging (APCK) approach to accurately and efficiently assess the time-variant 
reliabilities. Time interval is firstly discretized with a series of time instants and then the 
stochastic process is reconstructed by standard normal random variables and deterministic 
function of time. PC-Kriging (PCK) models are built at each time instant to predict the in-
stantaneous responses of performance function. To improve the accuracy and efficiency, a 
new update strategy based on the integration of U- and H- learning functions is developed to 
refine the PCK models of instantaneous responses. One or two best samples are identified by 
the proposed learning criterion for updating the PCK models. Finally, Monte Carlo simula-
tion (MCS) is used to estimate the time-variant reliability based on the updated PCK models. 
Four examples are used to validate the accuracy and efficiency of the proposed method.
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1. Introduction
Structural performance fluctuates since the existence of various 

uncertainties in realistic engineering. Reliability, as a significant en-
gineering requirement, aims at calculating the probability that a struc-
ture fulfills its intended function within a specified period of time and 
under specified conditions by considering the input randomness [41]. 
Many structural reliability methods were developed in the past dec-
ades. The most probable point (MPP)-based methods are one of the 
classic reliability analysis techniques, including the first order reliabil-
ity method (FORM) [38, 39] and the second order reliability method 
(SORM) [2]. Expect for the MPP-based methods, the moment-based 
methods [34] and the surrogate-based methods [16] are also utilized to 
evaluate the time-invariant reliability. In fact, the degradation of ma-
terial properties, stochastic loadings, and etc. indicate that uncertain-
ties have time-variant characteristics, which result in the decrease of 
reliability over time. For this case, time-invariant reliability methods 
are not applicable and extensive attention is concerned on the time-
variant reliability analysis. The introduction of time factor greatly in-
crease the computational cost and difficulty of time-variant reliability 
problem. It is a great challenge to obtain the time-variant reliability in 
an accurate and efficient way.

Outcrossing rate based method first developed by Rice [29] is one 
of the dominant approaches for time-variant reliability analysis. The 
core content of this type of methods is to approximate the failure 
rate by the outcrossing rate. Based on this theory, many improved 
methods were developed in the past decades. Kanjilal and Manohar 
[14] estimated the conditional probability with respect to the random 
system parameters based on the outcrossing rate, and then computed 
its expectation to obtain the time-variant reliability. Zhang et al. [43] 
combined the Gauss-Legendre quadrature and outcrossing rate to ef-
ficiently estimate the time-variant reliability. Breitung [3] derived the 
analytical expression of outcrossing rate for stationary Gaussian proc-
esses by asymptotic approximations for integrals. For nonstationary 
non-Gaussian performance functions, Cai et al. [4] proposed a new 
analytical formula to obtain the mean outcrossing rate by transforming 
the performance functions into a standard Gaussian process. Andrieu-
Renaud et al. [1] developed the PHI2 method which applies FORM 
to the parallel system time-invariant reliability analysis to computes 
the outcrossing rate. The accuracy of the PHI2 method greatly de-
pends on the time step size, thus Sudret [33] proposed the improved 
PHI2 method to reduce the impact of time step size. Ebrahimian et al. 
[7] developed a PHI2 based algorithm for evaluating the time-variant 
reliability of the passive heat removal system. Instead of using the 
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outcrossing rate, Quezada del Villar et al. [28] estimated the distri-
bution of the first passage time in the outcrossing events to obtain 
the time-variant reliability. All the above-mentioned outcrossing rate 
based methods may successfully obtain the time-variant reliability. 
However, most approaches in this category are based on linear ap-
proximation and may result in large error and limited their applica-
tions, which lead to the worse accuracy for nonlinear cases.

The extreme value based methods are another tools for time-var-
iant reliability analysis, which employ the information of response 
extreme value of structural performance function during service 
time. Chen and Li [6] used the probability density evolution method 
(PDEM) to evaluate the probability distribution of extreme value for 
obtaining time-variant reliability. A sampling approach was combined 
with saddlepoint approximation to estimate the extreme value distri-
bution for time-variant reliability problem with one input stochastic 
process [10]. Xu [37] derived the equivalent extreme value distribu-
tion of structural response based on the maximum entropy principle 
to assess the dynamic reliability of structural systems. In general, the 
extreme value of structural response is highly nonlinear, therefore it 
is difficult to obtain an accurate estimation for the tail of its probabil-
ity distribution which is the key domain for reliability analysis. For 
this reason, constructing a surrogate model for the response extreme 
value is a promising approaches. Wang and Wang [36] developed a 
nested extreme value surface (NERS) method, which combines the 
efficient global optimization (EGO) [21] and Kriging to construct a 
nested time prediction model for converting time-variant reliability 
problem into a time-invariant one. Hu and Du [11] proposed a mixed 
EGO algorithm to improve the efficiency of building up surrogate 
model for the extreme response by sampling random variables and 
time simultaneously. The above-mentioned surrogate model methods 
with double-loop process has the drawback of low efficiency. There-
fore, Hu and Mahadevan [12] developed a single-loop Kriging sur-
rogate model approach based on the elimination of the optimization 
loop. Qian et al. [26, 27] provided a decoupling strategy to avoid the 
inner optimization loop in the double-loop procedure by establishing 
the kriging model of extreme value response. Hu et al. [9] focused on 
the concept of first failure instant to efficiently construct a single-loop 
Kriging model for time-variant reliability analysis. 

Except for the aforementioned two categories of classic methods, 
some different approaches for time-variant reliability analysis are also 
reported. Composite limit state methods (CLS) [23] discretize the time 
interval of interest to obtain the instantaneous limit state function as 
the components of a series system, and then the time-variant reliabili-
ty is assessed by time-invariant series system reliability methods. Li et 
al. [19] proposed an improved composite limit state method, Kriging 
models of all time nodes and one CLS are constructed to estimate the 
time-variant reliability. Zhang et al. [42] also inspired by the transfor-
mation of a time-variant reliability problem into time-invariant reli-
ability problem, and presented a kriging-assisted stochastic process 
discretization method to obtain the time-variant reliability. On the ba-
sis of the concept of the composite limit state, Li et al. [18] presented a 
sampling-based method for high-dimensional time-variant reliability 
analysis by using the generalized subset simulation (GSS). Straub et 
al. [32] computed the interval failure probability by subset simulation, 
and then used FORM to evaluate the cumulative failure probability. 
Chakraborty and Tesfamariam [5] developed a subset simulation-
based method for reliability problem with space-time variant. Re-
gardless of the outcrossing rate based methods, extreme value based 
methods or composite limit state random methods, most of them are 
based on analytical approximation, surrogate models or sampling. It is 
still a thorny issue to balance the accuracy and efficiency for estimat-
ing the time-variant reliability.

In this work, an adaptive PC-Kriging method is developed for 
time-variant reliability analysis. It uses the PC-Kriging with better 
accuracy and efficiency [31] to model the instantaneous responses in-
stead of the traditional Kriging. A new updating strategy combining 
the U- and H- learning functions is proposed to refine the PCK models 

of instantaneous responses. One or two best samples are identified for 
updating the PCK models in each updating process until the new stop-
ping criterion is satisfied.

This paper is organized as follows. The definition of time-variant 
reliability problem is provided in Section 2. Section 3 describes the 
proposed adaptive PC-Kriging method in detail. In Section 4, four 
examples are employed to illustrate the performance of the APCK 
method. Conclusions are drawn in Section 5.

2. Time-variant reliability problem
The performance of a structure is dynamic since the existence of 

time-variant uncertainties such as the loading condition characterized 
by stochastic process. Therefore, the probability that a structure per-
formance satisfies the design requirement varies with time. In other 
words, reliability is a function of time. The time-variant reliability in 
a time period of interest 0, ft    is defined as:

 ( ) ( )( ){ }0, Pr , , 0, 0,f fR t G g t t t t = = > ∀ ∈ X Y     (1)

where ∀  means “for all”. G  is the structural response, and 0G >  
indicates the structure is in safe state; otherwise a failure occurs. 
Here, ( )g   represents the limit state function (LSF) of the struc-
ture, [ ]1 2, , nX X X  is the input random vector with n-dimensions, 
( ) ( ) ( ) ( )1 2, , , mt Y t Y t Y t=   Y  is the m-dimensional stochastic proc-

ess vector, and t  is time factor.
Correspondingly, the cumulative failure probability is given by:

 ( ) ( ) ( )( ){ }0, 1 0, Pr , , 0, 0,f f f fP t R t G g t t t t = − = = < ∃ ∈  X Y   (2)

where ∃  stands for “there exists at least one”. In this study, we calcu-
lated the cumulative failure probabilities with respect to time to com-
plete the time-variant reliability analysis.

3. Proposed method

3.1. Overview
Four main modules are involved in the proposed APCK method 

which are designed to assess the time-variant reliability problem with 
random process. Discretization of stochastic process is the first mod-
ule of the APCK method, which aims to compute the probabilistic 
characteristics of input stochastic process in a time-variant reliability 
analysis problem. This module makes it possible to obtain the time-
dependent response for estimating the time-variant reliability. The 
next module is the construction of PCK models for the instantaneous 
responses of a LSF. Based on the constructed PCK models, the time-
dependent responses can be predicted to obtain the failure samples 
for calculating the cumulative failure probabilities. In order to im-
prove the efficiency of PCK models construction and reduce the error 
of time-variant reliability, the module of a new updating strategy is 
developed. In this module, the U- and H- learning functions are com-
bined to search the best updating samples to refine the constructed 
PCK models, and a stopping criterion is used to determine whether 
the PCK models meet the given required tolerance. The last module 
employs MCS to calculate the cumulative failure probabilities based 
on the time-dependent responses predicted by the final PCK models. 
The modules of the APCK method as shown in Fig. 1.

One new contribution to the APCK method is to estimate the time-
variant reliability by employing the PCK models to approximate the 
instantaneous responses directly instead of modeling the response ex-
treme values. The high-precision of the PCK models of the instanta-
neous responses is easy to implement since the response itself is less 
nonlinear than its response extreme value. In addition, the repeated 
process of obtaining the response extreme values is avoided and then 
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the computational cost is reduced. A new update strategy is proposed 
to refine the PCK models in terms of the sign misjudgment probability 
and the uncertainty of model prediction. Both U- and H- learning func-
tions are integrated to identify one or two best samples to improve the 
accuracy and updating efficiency of PCK models. Correspondingly, a 
new stopping criterion based on the combination of U- and H- learn-
ing criteria is also presented to terminate the updating process.

3.2. Discretization of stochastic process
Generally, the LSF of a time-variant reliability problem is a com-

plex stochastic process due to the propagation of the input random 
variables X  and random processes ( )tY . The samples of time-de-
pendent random response of the LSF are the basis for assessing the 
cumulative failure probability in a time interval. Therefore, generating 
samples of random variables X  and realizations of stochastic process 
( )tY  is the first step for time-variant reliability analysis. Discreti-

zation strategy is an effective way to deal with stochastic processes 
( )tY . The commonly used discretization methods mainly include 

the orthogonal series expansion (OSE) method [25], the Karhunen-
Loüve (KL) method [13] and the expansion optimal linear estimation 
(EOLE) method [17]. In this work, the EOLE is utilized to discrete the 
stochastic processes ( )tY .

The EOLE method uses a set of random variables and time to 
represents a Gaussian process characterized by its mean function 

( )Y tµ , standard deviation function ( )Y tσ  and autocorrelation func-
tion ( )Y tρ . The time interval 0, ft    is firstly discretized into s  
time instants , 1,2, ,it i s=   with a step size t∆ , and / 1fs t t= ∆ +

 
. 

Then the correlation matrix C  of time instants it  can be described 
as:

 

 

 (3)

After the Eigen decomposition of correlation matrix C , the sto-
chastic processes ( )Y t  is reconstructed by:

 ( ) ( ) ( ) ( )T

1

l
i

Y Y i Y
i i

ZY t t t C tµ σ ξ
η=

= + ∑  (4)

where iη  and iξ  are the eigenvalues and eigenvectors of the cor-
relation matrix C , respectively. iZ  are independent standard normal 
random variables. ( )YC t  is a time-dependent function vector whose 
components are ( ), , 1,2, ,Y it t i sρ =  . l  is the number of major ei-
genvalues of C  used to construct the random process. 

Once the random process is discretized, the LSF with both ran-
dom variables and stochastic process is converted into one that only 

involving random variables and explicit time parameter, which is de-
scribed as:

 ( )( ) ( ), , ,g Y t t g ,t=X X Z   (5)

Thus, the time-dependent responses can be calculated by generat-
ing the samples of random variables X  and Z  based on their prob-
ability distributions. Then, the cumulative failure probability can is 
rewritten as follow:

 ( ) ( ){ }0, Pr , , 0, 0,f f fP t G g t t t = = < ∈  X Z   (6)

Although the discretization method tackle the issue of input ran-
dom samples generation, the acquisition of responses as a stochastic 
process still cannot be directly realized. For this reason, the time-de-
pendent response G  within the time period 0, ft    is represented 
by its instantaneous responses ( ), ,

itG g t= X Z  at all time instant 
( )1,2, ,it i s=   in this work.

3.3. PC-Kriging model construction for instantaneous re-
sponse

It is very time-consuming to perform direct MCS with the original 
LSF for evaluating the time-variant reliability. In order to reduce the 
computational cost, constructing a surrogate model for the original 
LSF is a popular and efficient strategy to predict the true instantane-
ous response 

itG .
Kriging model is widely applied in reliability analysis due to its ad-

vantages of unbiased minimum variance estimation. A Kriging model 
includes two parts: a deterministic regression part and a random proc-
ess, which are used to provide global and local approximation for the 
response of computational model, respectively. Let W  denotes the 
input random variables [ ],X Z  for simplification. The time-variant 
LSF for a given time instant ( )1,2, ,it i s=   is only the function of 
input random variables W , so it can be replaced by Kriging model 
as follows:

 ( ) ( ) ( )T
itg z= +w f w wβ   (7)

where ( ) ( ) ( ) ( )1 2[ , , , ];bf f f= f w w w w  is the vector of basis func-
tion and b  is the number of basis function. [ ]1 2, , , bβ β β= β  rep-
resents the b-dimensional basis function coefficient vector. ( )z w  is a 
stationary Gaussian process with zero mean. The covariance function 
of ( )z w  is:

 ( ) ( )( ) ( )2, ,i j i jcov z z Rσ=w w w w   (8)

in which 2σ is the variance of ( )z w , ( ),i jR w w  is the correlation 
function between two samples iw  and jw . Gaussian correlation 
function is the most widely used correlation function, and its formula 
is given by:

 ( ) ( )2
1

, exp
n

k k
i j k i j

k
R w wθ

=

 = − − 
 

∏w w   (9)

where n  is the number of variables in W , k
iw  is the kth component 

of iw , kθ  is the kth correlation parameters, respectively.
Obviously, the solutions of parameters β , 2σ  and kθ  are 

the  basis for building a Kriging model. Given N  samples 
[ ]1 2, , , NW = w w w  and their corresponding instantaneous respons-

es 1 2, , ,
i i i i

N
t t t t =  G G G G , and the generalized least squares regres-

Fig. 1. Modules of the APCK method
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sion is employed, then the basis function coefficient vector and the 
variance of ( )z w  can be estimated respectively by:

 ( )T 1 T 1ˆ
it

− −= F R F F R Gβ     (10)

 ( ) ( )T2 11 ˆ ˆˆ
i it tN

σ −= − −G F R G Fβ β     (11)

where ( )j i N b
f

×
 =  F w , ( ),i j N N

R
×

 =  R w w  is the correlation 

matrix. However, the correlation parameters kθ  in Eq. (10) and (11) 
are still to be determined, it can be obtained by the maximum likeli-
hood estimation:

 ( ) ( )2 1arg min ln ln det
2 2
N σ = +     

R
θ

θ   (12)

As a result, the prediction of instantaneous response at an arbitrary 
sample w  is given by:

 ( ) ( ) ( ) ( ) ( )T T 1
ˆ

ˆ ˆˆ Ki iti

K
t tg

g µ −= = + −w w f w r w R G Fβ β     (13)

in which ( ) ( ) ( ) ( ) T
1 2, , , , , , NR R R =  r w w w w w w w  is the vector 

of correlation between the sample w  and all the given samples. The 
Kriging variance can be expressed as:

( ) ( )( ) ( ) ( ) ( )
12 2 T T 1 T 1

ˆ
ˆ ˆ 1K

ti
g

σ σ
−− − = + −  

w u w F R F u w r w R r w    (14)

where ( ) ( ) ( )T 1−= −u w F R r w f w .

PC-Kriging (PCK) is an improved meta-modeling technique which 
takes advantages of polynomial chaos expansion (PCE) and Kriging 
model. In PCK, PCE is utilized to replace the regression basis func-
tion part of the original Kriging to enhance the global approximation 
accuracy since its capability to capture the global behavior of compu-
tational model, and the local variability is still approximated by the 
Gaussian process of original Kriging [30]. 

In PCE theory, a random response G  with n-dimensional input 
independent random variables [ ]1 2, , , nw w w= w  can be approxi-
mated by an infinite series of polynomials:

 ( ) ( )
0

i i
i

G c
∞

=
= ψ∑w w     (15)

in which ic  are the PCE coefficients. ( )iψ w  are multivariable PCE 
basis and it can be expressed as the tensor product of univariate poly-
nomials:

 ( ) ( )j

n
i i j

j
wϕψ =∏w     (16)

where ( )ji jwϕ  is the polynomial of degree ji  in the j th variable 
jw , and it satisfies the following orthogonality:

 ( ) ( ) ( ) ( ) ( )
0,

,
1,j k j k ii i i i W w

j k
w w w w f w d

j k
ϕ ϕ ϕ ϕ

≠
= =  =
∫     (17)

Note that ( )iWf w  is the i th marginal probability density function 
of w .

To make PCE feasible, the series in Eq. (15) can be truncated after 
p  terms. The most commonly used strategy is to retain polynomi-

als whose total degree not exceeding a given order p , which cor-
responds to a multi-indices set: 

 
1

,
n

n
j j

j
A i N i p

=

  = ∈ ≤ 
  

∑   (18)

The cardinality of the multi-indices set A  is the number of polyno-
mials retained in the truncation, it can be calculated by:

 
! !

p nP
p n
+

=     (19)

Thus, the truncated PCE is given by:

 ( ) ( )
1

0

P
i i

i
G c

−

=
= ψ∑w w   (20)

Finally, the PCK prediction of instantaneous response can be built 
by replacing the regression part in Eq. (7) with Eq. (20):

 ( ) ( ) ( )
1

0
ˆ

i

P
PCK
t i i

i
g c z

−

=
= ψ +∑w w w   (21)

The set of polynomials in Eq.  can be determined by the least angle 
regression selection (LARS), and then the PCK model is calibrated as 
a usual Kriging model for construction [15, 40]. 

3.4. A new updating strategy for PCK model of instantane-
ous response

In the case of small sample data, the accuracy of time-variant re-
liability analysis highly depends on the fidelity of the PCK models 
of the instantaneous responses. In view of the characteristic of PCK 
prediction obeying the normal distribution, a new adaptive update 
strategy based on the U-learning function [8] and H-learning function 
[22] is developed for improving the accuracy and efficiency of PCK 
model construction. 

The U-learning function chooses a best sample to refine the model 
from the perspective of probabilistic theory. For the PCK model of 
instantaneous responses at any time instant ( )1,2, ,it i s=  , the U-
learning function is expressed as:

 ( )
( )

( )
ˆ

ˆ

PCK
ti

i
PCK
ti

g
t

g

U
µ

σ
=

w
w

w
  (22)

where ( )ˆ PCK
ti

g
µ w  and ( )ˆ PCK

ti
g

σ w  represent the mean value and 

standard deviation of  instantaneous response PCK model ( )ˆ
i
PCK
tg w  

at the sample w , respectively. ( ) 2
itU ≥w  means that the wrong-

signed probability of sample w  is less than 0.0228. The accuracy 
of PCK model is considered to be accurate when all the samples in 
the sample pool meet this condition. Thus, the stopping criterion is 
given by:

 ( )min 2
itU

∈
≥

Dw
w   (23)
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where D  is a sample pool. And then the best sample used to refine the 
PCK model is determined by:

 ( )arg min
i i

Unew
t tU

∈
=

Dw
w w   (24)

The H-learning function refines the model based on the informa-
tion entropy theory. The H-learning function for PCK model of in-
stantaneous responses is expressed as:

( ) ( )( )( )
( ) ( )( ) ( )

( )
( ) ( )

( )

( )
( ) ( )

( )

( )

ˆ ˆ ˆ

ˆ ˆ

ˆ
ˆ

ˆ ˆ

ˆ
ˆ

ˆ ˆ

ˆ ˆln

2
1ln 2
2

2
1ln 2
2

2

PCK PCK PCKi i it t ti i i

PCK PCK
t ti i

PCK
t PCKi

ti

PCK PCK
t ti i

PCK
t PCKi

ti

PCK
t ti i

g PCK PCK
t t tg g gg

g g

g
g

g g

g
g

g g

H f g f g d

σ µ
πσ

σ

σ µ
πσ

σ

σ µ

+

−= −

 −
   

+ Φ   
   

 
 − −

   
− + Φ   

   
 =

−
−

∫
w
w

w w w w

w w
w

w

w w
w

w

w ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

ˆ ˆ

ˆ

ˆ ˆ ˆ ˆ

ˆ

2

2

2 2

2

PCK PCK PCK
t ti i

PCK
ti

PCK PCK PCK PCK
t t t ti i i i

PCK
ti

g g

g

g g g g

g

σ µ
φ

σ

σ µ σ µ
φ

σ

 −
 
 
 
 
 + − −
 

−  
 
 

w w w

w

w w w w

w

(25)

where ( ) ( )2 PCK
ti

g
g σ+ =w w  and ( ) ( )2 PCK

ti
g

g σ− = −w w . ( )Φ   and 

( )φ   are the cumulative distribution function (CDF) and probability 
density function (PDF) of standard normal variable, respectively. The 
value of ( )itH w  represents the information entropy of the sample w
, which can be used to measure the uncertainty degree of PCK model 
prediction for this sample. Therefore, the sample with maximum un-
certainty is chosen as the best sample to update the PCK model:

 ( )arg max
i i
Hnew
t tH

∈
=

Dw
w w     (26)

Then, the stopping criterion of H-learning function is defined by:

 ( )max
it HH ε

∈
≤

Dw
w     (27)

in which Hε  is set to 0.3 in this work as suggested in [8].

In reliability analysis, the basis of samples selection that contrib-
utes to the improvement of the surrogate model is divided into two 
aspects: the probability of sign misjudgment and the uncertainty of 
model prediction. The U-learning function identifies the sample with 
the highest probability of sign misjudgment to update the surrogate 
model and the H-learning function selects the one with the maximum 
prediction uncertainty to refine the model. Therefore, the proposed 
update strategy integrates the U- and H- learning functions to improve 
the accuracy and updating efficiency of PCK model from both aspects 
of sign misjudgment and prediction uncertainty. The correctness of 
sign predicted by the PCK model of instantaneous response has big 
influence on the final result of time-variant reliability analysis, which 
results in the dominate position of the U-learning function in the pro-
posed updating strategy. While the H-learning function is a comple-
ment to the U-learning function.

The first step is to determine whether the signs of samples in the 
sample pool D  are all correct based on Eq. (23). If the stopping cri-
terion of U-learning function in Eq.  is satisfied, it is considered that 
the sign predicted by PCK model ( )ˆ

i
PCK
tg w  is accurate, and then the 

H-learning function is used to refine the PCK model ( )ˆ
i
PCK
tg w . In 

this case, if the convergence condition in Eq.  is not satisfied, then the 
new sample 

i i
new Hnew
t t=w w  and its corresponding true instantaneous 

responses ( ),
i i i
new Hnew Hnew
t t t iG G g t= = w  are added into the training 

sample set T  to update the PCK model ( )ˆ
i
PCK
tg w ; otherwise, the 

PCK model ( )ˆ
i
PCK
tg w  is considered to be accurate enough to termi-

nate the updating process.
When Eq. (23) is not satisfied, which indicates that the sign of pre-

diction of PCK model ( )ˆ
i
PCK
tg w  is not credible. At this point, both 

the U- and H- learning functions are employed to improve the PCK 
model ( )ˆ

i
PCK
tg w . For that, a new stopping criterion is developed as 

follows:

 ( )
( )
( )

max i
i

i

t
t K

t

H
K

U
ε

∈
= ≤

Dw

w
w

w
  (28)

where Kε  is obtained according to the thresholds of the stopping cri-
teria for the U- and H- learning criteria, and its value is 0.15. If Eq. 
(28) holds, the accuracy of PCK model ( )ˆ

i
PCK
tg w  meets the require-

ment without a subsequently updating process. Conversely, the new 
samples ;

i i i
new Unew Hnew
t t t =  w w w  are chosen based on Eq. (24) and 

Eq. (26), respectively, and their corresponding true instantaneous re-
sponses ( ) ( ), ; ,

i i i i i
new Unew Unew Hnew Hnew
t t t i t t iG g t G g t = = =  

G w w  are 
added into the initial training sample set T  to update the PCK model 

( )ˆ
i
PCK
tg w . It is worth to point out that the new sample 

i
Hnew
tw  at this 

moment is selected by the H-learning function in the sample pool 1D  
where ( ){ }1 2,

itU= ≥ ∈D Dw w w . The detailed update procedure is 
presented in section 3.4. 

Let ( )ˆ
i
APCK
tg w  denote the predicted instantaneous response by the 

final PCK model, then an indicator function is defined as:

 ( )
( )

0
0,

ˆ1, min 0

0,otherwise

i
i j

f

APCK
t

t t
t

g
I ≤ ≤

  

 <= 


w
w   (29)

where ( ) 0, jtI   
w  is the indicator function in the time interval of inter-

est 0, jt   . Based on Eq. (29), the cumulative failure probability in 

the time interval 0, jt    is estimated by MCS as follows:

 ( ) ( ) 0,
1

10,
MCS

j

N

f j i t
MCS i

P t I
N   =

= ∑ w   (30)

when jt  changes from 0 to ft , one can obtain a cumulative failure 
probability curve with respect to time, which is much more meaning-
ful than a point estimation for reliability discussion.

3.5. Implementation procedure
The implementation procedure of the APCK method for time-

variant reliability analysis is shown in Fig. 2. The detailed steps are 
presented as follows:

Parameter setting. Set the time step size 1. t∆ , the highest order 
p  of PCK model, the number of initial samples N  for con-

structing the initial PCK model.
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Discretization of stochastic process. Time interval is 2. 0, ft    
firstly discretized into / 1fs t t= ∆ +  time nodes , 1,2,...,it i s=  
with time step size t∆ . Then, the stochastic process ( )Y t  is 
converted into a function of the standard normal variables Z  
by EOLE method.
Generation of initial training sample set. Generate sample pool 3. 
D . Then, select N  samples W  from D  and evaluate their 
corresponding performance function instantaneous responses 

( ), , 1,2, ,
it ig t i s= = G W . W  and 

itG  constitute the initial 
training sample set ,

it
 =  T W G .

PCK model construction. Build the PCK models based on 4. T  
by using the MATLAB toolbox UQLAB [24]. The Gaussian 
correlation function is used here as mentioned in section 3.2.
Judgment of the correctness of samples signs. Check whether 5. 
the prediction signs of samples in D  are all credible based on 
the stopping criterion of U-learning function expressed in Eq. 
(23). If Eq. (23) is satisfied, then go to step 6. Otherwise, the 
samples in D  that satisfy Eq. (23) are composed into the sam-
ple pool ( ){ }1 2,

itU= ≥ ∈D Dw w w , then go to step 9.
Identification of the best sample by the H-learning criterion. 6. 
Search the best sample =

i i
new Hnew
t tw w  in D  based on the H-

learning criterion described in Eq. (26).
Stopping criterion of the H-learning function. Check whether 7. 
the stopping criterion of H-learning function expressed in Eq. 
(27) is satisfied. If not, go to step 8, otherwise go to step 12.
Evaluation of the true instantaneous response at the best sam-8. 
ple. Calculate the true instantaneous response of performance 
function ( )= ,

i i
new new
t t iG g tw  at sample 

i
new
tw . Add 

i
new
tw  and 

i
new
tG  into the training set W  and 

itG , respectively, denoted 
as ;

i
new
t =  W W w  and ;

i i i
new

t t tG =  G G . Then, back to step 3.
Identification of the two best samples by the U- and H- learning 9. 
criteria. Search the two best samples = ;

i i i
new Unew Hnew
t t t 

 w w w  

based on the U- and H- learning criteria. It is note that 
i

Unew
tw  

is searched in D  and 
i
Hnew
tw  is searched in 1D .

The proposed stopping criterion. Check whether the proposed 10. 
stopping criterion expressed in Eq. (28) is satisfied. If not, go 
to step 11, otherwise go to step 12.
Evaluation of the true instantaneous responses at the two best 11. 
samples. Calculate the true instantaneous responses of per-
formance function ( ) ( ), ; ,

i i i
new Unew Hnew
t t i t ig t g t =   

G w w  at 

samples 
i

Unew
tw  and 

i
Hnew
tw . Add 

i
new
tw  and 

i
new
tG  into the in-

itial set W  and itG , respectively, denoted as = ;
i
new
t 

 W W w  
and ;

i i i
new

t t t =  G G G . Then, back to step 3.
Estimation of the cumulative failure probabilities. Perform 12. 
MCS on the final PCK model to predict instantaneous re-
sponses and then the cumulative failure probability curve can 
be obtained by Eq. (30).

4. Illustrative examples
Four examples are used to demonstrate the performance of the 

APCK method in this section. MCS, PHI2 and independent EGO 
[11] are also employed to solve these examples for the comparison of 
APCK method. To make sure that the results from MCS has a small 
coefficient of variance, 106 samples were used in the first three illus-
trative examples.

4.1. A mathematical example
A mathematical example [35] is adopted to demonstrate the per-

formance of the APCK method. The time-variant performance func-
tion is given by:

 ( )( ) ( )( ) ( )2 2
1 2 1 2, , 5 1 1 20g t t X X X Y t t X t= − + + + −X Y    (31)

where [ ]1 2,X X=X  are the input normal random variables, ( )Y t  
is a Gaussian process with zero mean and unit variance, [ ]0,1t∈ . 
The detailed distribution information of input random parameters are 
listed in Table 1.

In this example, t∆  was set to 0.05 and then the time interval 
[ ]0,1  was discretized into 21s =  time instants. Thus, the 21 eigen-
values of the correlation matrix for stochastic process ( )Y t  were 

Table 1. Distribution information of the mathematical example

Variables Distribution Mean Std Autocorrelation function

1X Normal 3.5 0.25 N/A

2X Normal 3.5 0.25 N/A

( )Y t Gaussian 
process 0 1 ( ) ( )( )21 2 2 1, expt t t tρ = − −

  

Fig. 2. Flowchart of the APCK method
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achieved, as shown in Fig. 3. It can be seen that the first two eigen-
values dominate the Gaussian process. As a result, two standard nor-
mal random variables [ ]1 2,Z ZZ =  are utilized to represent ( )Y t . 
Then, the input random variables of this mathematical example is 

[ ]1 2 1 2, , ,X X Z Z=W .
MCS was employed as the benchmark approach in this work. 106 

samples of W  were used by MCS to calculate the instantaneous re-
sponses of LSF at each time instants for obtaining the time-variant 
probabilities of failure. In the APCK method, the highest order p  is 
set to 3 according to experience in the open literature and the initial 
PCK models for instantaneous responses at 21 time nodes were built 
by 25N =  initial samples of W . Then, the updating strategy pro-
posed in section 3.3 were utilized to refine the 21 initial PCK models 
until the convergence condition is satisfied. After the 21 updated PCK 
models of instantaneous responses at 21 time instants were obtained, 
the time-variant probabilities of failure was estimated by performing 
MCS on Eq. (30). 

The results from direct MCS, APCK, PHI2 and independent EGO 
methods are presented in Table 2 and Fig. 5. It can be seen from the 
results that the time-variant probabilities of failure obtained by APCK 
is very close to those estimated by direct MCS within the whole time 
interval. The overall accuracy of PHI2 is low, while the independent 
EGO has a large error in the time period with small failure probabil-
ity. The term of NOF in Table 2 represents the number of function 
evaluations. In Fig. 4, the orange solid lines are the 25 initial sample 
functions of the LSF response used in APCK to construct the initial 
PCK models and the purple dashed lines are the 36 updating sample 
functions for updating the PCK models. One sample function means 
that one function evaluation so that the total NOF of APCK is 61. In 
terms of efficiency, a total of 640 and 7977 function evaluations were 
needed by the PHI2 and independent EGO to achieve the results of 
time-variant probabilities of failure. Therefore, APCK can obtain an 
accurate results of time-variant reliability analysis with less compu-
tational cost. 

Fig. 5. Time-variant failure probability curves of the mathematical 
example

4.2. A corroded beam structure
In this section, the corrosion problem in a steel bending 

beam is used to demonstrate the performance of APCK. The 
corroded beam structure [20] is shown in Fig. 6, and it has 
a length of 5 mL =  and a rectangular cross section with 
width 0b  and height 0h . The beam is uniformly loaded by 
its own weight, which is expressed as ( )0 0 N/std b h mρ= . 

3=78.5 kN/mstρ  is the steel density. In addition, a dynamic 
concentrated load ( )F t  is also applied at the mid span si-
multaneously. 

The corrosion phenomenon is a process which depends on 
time. Assuming that the stiffness has been lost in the corroded 

area of beam, the remained cross section with intact stiffness after a 
period of time t  is given by:

 ( ) ( ) ( )S t b t h t=   (32)

where ( ) 0 2b t b kt= −  and ( ) 0 2h t h kt= −  is the parameter indicat-
ing the rate of corrosion. Then, the bending moment of beam at the 
midpoint is derived as:

 ( ) ( ) 2
0 0

4 8
stF t L b h LM t ρ

= +   (33)

The ultimate bending moment for the beam is given by:

Fig. 3. Eigenvalues of Y(t)

Fig. 4. Sample functions of the LSF used in the mathematical example

Table 2. Time-variant probabilities of failure for the mathematical example

Time
interval MCS APCK (Error %) PHI2 (Error %) Independent EGO 

(Error %)

[0, 0.2] 0.00132 0.00128 (3.03) 0.00120 (9.09) 0.00086 (34.85)

[0, 0.4] 0.03080 0.03104 (0.78) 0.02930 (4.87) 0.03034 (1.49)

[0, 0.6] 0.11910 0.119 (0.08) 0.11043 (7.28) 0.11880 (0.25)

[0, 0.8] 0.22052 0.22077 (0.11) 0.19620 (11.03) 0.22128 (0.34)

[0, 1.0] 0.29946 0.30012 (0.22) 0.25757 (13.99) 0.29871 (0.25)

NOF 106 25 + 36 640 7977
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 ( ) ( ) ( )2

4u y
b t h t

M t f=   (34)

As a result, the time-variant LSF of the beam is expressed as:

( )( ) ( ) ( ) ( ) ( ) ( )2 2
0 0, ,

4 4 8
st

u y
b t h t F t L b h Lg t t M t M t f ρ 

= − = − +  
 

X Y
  

(35)

where yf  is the steel yield stress. yf , 0b  and 0h  are all random 
variables with lognormal distribution. ( )F t  is a Gaussian process and 
[ ]0,20t∈  years. The distribution parameters are gathered in Table 3.

The time interval [ ]0,20  was discretized into 21s =  time in-
stants with a step 1t∆ =  year. Then, the stochastic process load-
ing ( )F t  was reconstructed by the first six maximum eigenvalue 
of its correlation matrix and six standard normal random variables 

[ ]1 2 6, ,...,Z Z Z=Z . Then, there are 9 input random parameters 

0 0 1 2 6, , , ,...,yf b h ,Z Z Z =  W  for the corroded beam example. 
The reference result were provided by the direct MCS using 106 

samples of W . The highest order 3p =  was adopted for the PCK 
model generation in the APCK method. 80N =  initial samples of 
W  were used to build the initial PCK models of the instantaneous 
responses at 21 time nodes in sequence. Then, 95 updating samples 
were chosen to refine the 21 PCK models by using the developed 
updating strategy. The cumulative failure probabilities of the corroded 
beam over five sub-intervals are presented in Table 4. The time-var-
iant probability of failure curves for direct MCS, APCK, PHI2 and 
independent EGO are shown in Fig. 7.

It can be observed from Table 4 that the computational results of 
PHI2 and independent EGO are very inaccurate, while the maximum 
error of APCK in the whole time interval is 1.98%. This shows the 
good performance of APCK in accuracy, and it also can be verified 
in Fig. 7. Compared with PHI2 and independent EGO, the proposed 
APCK has a good computational efficiency. 80 initial evaluations of 
LSF were employed to build the 21 initial PCK models and 95 evalu-
ations for updating stage. In other words, the total computational cost 
of APCK is only 175 evaluations of LSF. This is about the 12% of the 
computational cost of PHI2 and much less than the 21044 evaluations 
of independent EGO. It demonstrates that APCK is efficient and ac-
curate in solving the time-variant reliability problem.

4.3. Hydrokinetic turbine blade
Hydrokinetic turbine is a mechanism that realizes the conversion of 

the kinetic energy of water through its blades rotation driven by flow-
ing water. The time-variant reliability analysis of its blade is used to 
demonstrate the performance of the APCK method. The cross section 
of a hydrokinetic turbine blade [35] determined by three geometry 
parameters 1d , 2d  and 3d  are shown in Fig. 8. The monthly velocity 
of river loaded on the blade is characterized by a stochastic process 
( )v t  with mean ( )v tµ , standard deviation ( )v tσ  and autocorrela-

tion function ( )1 2,v t tρ . ( )v tµ , ( )v tσ  and ( )1 2,v t tρ  are given by:

 ( ) ( )
4

1
sinm m m

v i i i
i

t a b t cµ
=

= +∑   (36)

 ( ) ( )
4 2

1
exp /s s s

v j j j
j

t a t b cσ
=

  = − −    
∑   (37)

 ( ) ( )( )1 2 2 1, cos 2v t t t tρ π= −   (38)

where the constant parameters a , b  and c  can be found in 
[35]. Then, the bending moment at the root of blade is calcu-
lated by:

 ( )21
2b mM v t Cρ=   (39)

Note that 3 310 kg/mρ =  is the water density, and 
0.3422mC =  is the coefficient of moment. Thus, the LSF of 

hydrokinetic turbine blade is defined by:

Table 3. Distribution information of the corroded beam structure

Variables Distribution Mean Std Autocorrelation 
function

 (MPa) Lognormal 240 24 N/A

 (m) Lognormal 0.2 0.01 N/A

 (m) Lognormal 0.03 0.003 N/A

 (N) Gaussian process 3500 700  

Fig. 6. A corroded beam structure

Fig. 7. Time-variant failure probability curves of the corroded beam structure

Table 4. Time-variant probabilities of failure for the corroded beam structure

Time 
interval MCS APCK (Error %) PHI2 (Error %) Independent EGO 

(Error %)

[0, 4] 0.01416 0.01388 (1.98) 0.04574 (223.02) 0.00687 (51.48)

[0, 8] 0.02137 0.02146 (0.42) 0.09029 (322.51) 0.01409 (34.07)

[0, 12] 0.02930 0.02923 (0.23) 0.14238 (385.94) 0.02346 (19.93)

[0, 16] 0.03787 0.03812 (0.66) 0.20214 (433.77) 0.03188 (15.82)

[0, 20] 0.04702 0.04735 (0.71) 0.26910 (472.31) 0.04202 (10.63)

NOF 106 80 + 95 1441 21044
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 ( )( ) 2, , b
allow

a

d Mg t t
EI

ε= −X Y   (40)

where allowε  is the allowable strain of the material. 14 GPaE =  is 
the Young’s modulus, and aI  is the moment of inertia at the root of 
the blade, which is expressed as:

 ( )3 3
1 2 3

2
3aI d d d= −   (41)

The detailed statistical information of the inputs are listed in Table 5.

A time step 0.2t∆ =  month was used to 
discretize the time interval [ ]0,12  months into 

61s =  time instants. Then, the eigen analysis 
was performed on the correlation matrix of 
the random process ( )v t  for obtaining the 
eigenvalues and eigenvectors. Finally, two 
largest eigenvalues and two standard normal 
random variables [ ]1 2,Z Z=Z  are utilized 
to represent the stochastic process ( )v t . Let 

[ ]1 2 3 1 2, , , , ,allowd d d Z Zε=W  denotes the ran-
dom inputs of the hydrokinetic turbine blade, 
and then the dimension of turbine blade prob-
lem is 6.

The direct MCS was performed on the LSF 
of the hydrokinetic turbine blade with 106 sam-
ples for achieving the time-variant probability of failure. Fig. 9 shows 
ten realizations of the LSF, which indicates that the LSF is highly 
nonlinear. p  is set to 2 in the APCK method, and then the 61 initial 
PCK models of instantaneous responses were constructed by 50N =  
initial samples of W . The results are provided in Table 6 and Fig. 10, 
and the values in brackets of Table 6 are errors.

Table 6 and Fig. 10 show that the APCK method can achieve suf-
ficient accuracy over the whole time interval with low computational 
cost. Bothe PHI2 and independent EGO methods have large com-
putational errors, and the PHI2 method is much more efficient than 
the independent EGO method within the entire time period. It can 
be observed that the independent EGO method loses the local trend 

characteristic of the cumulative failure probability curve, and its cal-
culation results are all 0 in the time period [ ]0,6 . This indicates that 
the accuracy of independent EGO method is significantly limited in 
the case of LSF with strong nonlinearity. In comparison, the errors of 
APCK are all acceptable and the minimum error is 1.29%. In the same 
time period, the errors of APCK are all less than those of PHI2 and 
independent EGO methods. In addition, APCK is much more efficient 
than the PHI2 and independent EGO methods. A total of 145 function 
evaluations were required for APCK, it is far less than 3398 function 
evaluations used in the PHI2 method and 282015 function evaluations 
used in the independent EGO method. It is noted that the computa-
tional cost of the updating state is only 95 function evaluations in case 
of the strong nonlinearity of this example. This illustrates the high 
efficiency of the learning strategy of the proposed method.

4.4. Turbo engine
The turbo engine is a kind of powerplant with extremely complex 

structure, which is widely used in various flight vehicles. A failure of 
turbo engine may lead to a catastrophic event. In this application, the 

proposed APCK method is employed for the time-variant reliability 
analysis of a turbo engine.

As shown in Fig. 11, the turbo engine is mainly composed of turbo 
fan, turbo compressor, turbo disk and casing. The support stiffness (

1K , 2K ) and support damping ( 1C , 2C ) are considered as random 
variables and obey normal distribution. A time-variant loading ( )F t  
described as stochastic process is acted on the turbo fan shaft, which 
will lead to the displacement of the turbo fan. In this case, it is as-
sumed the displacement of the turbo fan is greater than the allowable 
gap as a failure event. The implicit limit state function of turbo engine 
is described as follow:

Table 5. Distribution information of the hydrokinetic turbine blade

Variables Distribution Mean Std Autocorrelation 
function

 (m) Normal 0.22 2.2×10-3 N/A

 (m) Normal 0.025 2.5×10-4 N/A

 (m) Normal 0.019 1.9×10-4 N/A

 (m) Normal 0.025 2.5×10-4 N/A

 (m/s) Gaussian process

Fig. 8. Cross section of the turbine blade

Fig. 9. Ten realizations of LSF for the turbine blade

Table 6. Time-variant probabilities of failure for the hydrokinetic turbine blade

Time interval MCS (10-4) APCK (10-4) PHI2 (10-4) Independent EGO (10-4)

[0, 2] 0.10 0.07 (30.00%) 0.07 (30.00%) 0 (100%)

[0, 3] 0.40 0.37 (7.50%) 0.48 (20.00%) 0 (100%)

[0, 4] 5.00 5.16 (3.20%) 5.24 (4.80%) 0 (100%)

[0, 5] 6.40 6.57 (2.66%) 9.46 (47.81%) 0 (100%)

[0, 6] 6.70 7.05 (5.22%) 13.83 (106.42%) 0 (100%)

[0, 7] 16.30 16.09 (1.29%) 29.15 (78.83%) 22.76 (39.63%)

[0, 8] 16.30 16.09 (1.29%) 29.95 (83.74%) 22.76 (39.63%)

NOF 106 50 + 95 3398 282015
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 ( )( ) ( )( )1 2 1 2, , , , , ,allowg t t K K C C F tδ δ= −X Y   (42)

where 0.9mmallowδ =  is the allowable gap between the turbo fan and 
casing. ( )δ   is the turbo fan displacement which can be obtained by 
the finite element method (FEM). All the parameters information are 
summarized in Table 7.

The FE model of turbo engine is presented in Fig. 12, in which 6800 
nodes and 7426 elements are employed in this FE model. The stochas-
tic loading ( )F t  is represented by 4 standard normally distributed 
variables [ ]1 2 3 4, , ,Z Z Z Z=Z , and the random inputs of turbo engine 
FE model are [ ]1 2 1 2 1 2 3 4, , , , , , ,K K C C Z Z Z Z=W . The turbo engine 
FE model is solved in [ ]0,1  hour with a time step 0.05t∆ =  hour for 
a dynamic analysis.

Fig. 12. The FE model for the turbo engine

In this example, 70N =  runs of FE model of the turbo en-
gine were used to obtain the displacement samples of the turbo 
fan for constructing the 21 initial PCK models at 21 time nodes. 
The 21 initial PCK models of the turbo fan displacement were 
refined by the 15 FE updating computations. The time-variant 
reliability results of the turbo engine obtained by APCK method 
is presented in Table 8 and Fig. 13.

It can be seen from Fig. 13 that the failure probability of turbo en-
gine increases rapidly from 33.01 10−×  to 34.71 10−×  over the time 
period [ ]0,0.4  hour, then gently reaches the peak value 35.07 10−×  
for the remaining 0.6 hour. The final failure probability at the ending 
time is 1.68 times of the initial failure probability, which indicates that 
the time-variant reliability analysis is critical significant for the safety 

Fig. 10. Time-variant failure probability curves of the hydrokinetic turbine 
blade

Fig. 11. Simplified model of a turbo engin

Table 7. Distribution information of the turbo engine

Variables Distribution Mean Std Autocorrelation function

1K  (N/m) Normal 3.28×107 3.28×106 N/A

2K  (N/m) Normal 1.08×107 1.08×106 N/A

1C  (N·s/m) Normal 1000 100 N/A

2C  (N·s/m) Normal 1000 100 N/A

( )F t  (N) Gaussian process 10000 1000 ( ) ( )( )( )21 2 2 1, exp / 0.5t t t tρ = − −

Table 8. Time-variant probabilities of failure for the turbo engine

Time APCK (10-3) Time APCK (10-3)

0 3.01 0.55 4.71

0.05 3.29 0.6 4.71

0.1 3.50 0.65 4.72

0.15 3.51 0.7 4.72

0.2 4.00 0.75 4.98

0.25 4.00 0.8 4.98

0.3 4.56 0.85 5.06

0.35 4.56 0.9 5.06

0.4 4.71 0.95 5.07

0.45 4.71 1 5.07

0.5 4.71 NOF 70 + 15
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of turbo engine. In terms of computational efficiency, a total of 85 FE 
computations were needed by the proposed APCK. If the direct MCS 
are used to calculate the time-variant reliability for the implicit prob-
lems with FE model, the computational cost would be unacceptable.

5. Conclusions
This work presents an adaptive PC-Kriging method (APCK) that 

provides an estimation of cumulative failure probability curve for 
time-variant structural reliability analysis. The basic idea is to em-
ploy multiple PCK models to reconstruct the structural responses at 

different time instants with an adaptive updating strategy. EOLE is 
employed to represent the input random process with a set of func-
tions of random variables and time. Then, the PCK models at each 
time instants are constructed with a few initial samples and their cor-
responding instantaneous responses. In order to make the updating 
process adaptively, the characteristics of U- and H- learning functions 
are integrated to compose a new update strategy for the refinement of 
PCK models. PCK models are updated by one or two best samples in 
each updating stage to improve the accuracy and efficiency. In this 
update strategy, a new stopping criterion for the two best samples up-
date is also presented. The time-variant failure probabilities can be 
achieved by performing MCS based on the final APCK models. The 
accuracy and efficiency of APCK are demonstrated by four examples. 
It can be seen from the results that the errors of APCK are acceptable 
in the whole time interval, which indicates that its accuracy is sta-
ble. In addition, the accuracy of APCK can be maintained even in the 
cases of strong nonlinearity and small probability of failure. In terms 
of efficiency, the number of function evaluations for APCK is close 
to the PHI2 and far less than the independent EGO. This shows that 
the computational cost can be greatly reduced by the APCK method. 
Furthermore, the APCK method is also efficient in solving the time-
variant reliability problem with implicit limit state function. In future 
work, the APCK method will be extended to reliability-based design 
optimization and robust design optimization.
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Fig. 13. Time-variant failure probability curves of the turbo engine
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