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the component is failure. The results of importance measures could 
facilitate the reliability design, component assignment problem, re-
dundancy allocation, system upgrading, fault diagnosis, and mainte-
nance. Nowadays, importance measures have been widely applied in 
the fields of engineering, such as oil and gas transmission, railway 
systems, nuclear power production, manufacturing systems, and com-
puter systems, and so on [17].

In 1968, Birnbaum first put forward the calculation method of im-
portance measures for binary systems [4], and Birnbaum importance 
is classified into three categories as follows. The first category is the 
structure importance measure, which represents the role of the posi-
tions in the system that the components occupy; The second category 
is the reliability importance measure, which considered the component 

1. Introduction

The protection and security of components should be considered 
in the implementation of risk management, and the interdependencies 
within the components are a significant challenge for risk manage-
ment. The common cause failure (CCF), which can cause the failure 
of multiple components with the common reason, is a typical rea-
son of the interdependence between components in series systems. 
The importance analysis of components plays a vital role in the risk 
management of series systems. Importance measure is one of the sig-
nificant branches of reliability theory and has a significant advance 
with the development of reliability engineering. It can evaluate the 
impact of the individual component on the system reliability when 
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Series systems, whose structures are simple, are widely discovered in practical engineering, but the interdependency between the 
components is complex, such as common cause failure. With the consideration of the components’ strength, this paper focuses on 
ranking the importance measure of components considering the common cause failure based on the stress-strength interference 
(SSI) model. The weakest component can be identified by integrating the SSI model with the importance measure when the strength 
mean and variance of the component under the load stress is known. Firstly, the analytic methods are proposed to calculate the 
SSI-based importance of components in the series systems. Then, the monotonicity of SSI-based importance is analyzed by chang-
ing the strength mean or strength variance of one component. The results show that the SSI-based importance of components, 
whose parameters are changed, will reduce monotonically with the increase of strength mean or increase monotonically with the 
increase of strength variance. Finally, a component replacement method is developed based on the rules that both the importance 
of replaced component and the importance ranks should be unchanged after the replacement. SSI-based importance can help 
engineers to make maintenance decisions, and the component replacement method can increase the diversity of spare parts by 
finding the equivalent components.
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Systemy szeregowe, które są szeroko stosowane w praktyce inżynieryjnej, charakteryzują się prostą strukturą, jednak współzależ-
ności między ich elementami są złożone, czego przykładem są uszkodzenia wywołane wspólną przyczyną. Rozważając wytrzymało-
ści składowych systemu, opracowano metodę szeregowania miar ważności składowych z uwzględnieniem uszkodzeń wywołanych 
wspólną przyczyną. Metoda ta pozwala zidentyfikować najsłabsze ogniwo systemu. Miarę istotności zintegrowano z modelem 
obciążeniowo-wytrzymałościowym (SSI), biorąc pod uwagę średnią i wariancję wytrzymałości elementu pod obciążeniem. W 
pierwszym kroku opracowano metody analityczne pozwalające na obliczanie opartej na SSI ważności elementów w systemach 
szeregowych. Następnie analizowano monotoniczność opartej na SSI ważności zmieniając średnią lub wariancję wytrzymałości 
jednego z elementów. Wyniki pokazują, że mierzona w oparciu o SSI ważność elementów, których parametry są zmieniane, maleje 
monotonicznie wraz ze wzrostem średniej wytrzymałości lub rośnie monotonicznie wraz ze wzrostem wariancji wytrzymałości. Na 
podstawie przeprowadzonych badań, opracowano metodę wymiany części, opartą na zasadzie polegającej na tym, że zarówno 
ważność zastąpionego elementu, jak i rangi ważności powinny pozostać niezmienione po wymianie. Możliwość określania ważno-
ści opartej na modelu SSI może pomóc inżynierom w podejmowaniu decyzji dotyczących konserwacji, zaś proponowana metoda 
wymiany elementów systemu pozwala zwiększyć różnorodność części zamiennych poprzez znalezienie równoważnych elementów.

Słowa kluczowe: miara ważności; uszkodzenia wywołane wspólną przyczyną; model obciążeniowo-wytrzyma-
łościowy; analiza monotoniczności; wymiana części.
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reliability to evaluate the effect of a component on the system reli-
ability; The third category is the lifetime importance measure, which 
considered the component reliability in the life cycle to evaluate the 
influence of components on the system reliability. Based on the Birn-
baum importance, researchers have evaluated the influence of compo-
nent’s reliability on the system reliability from different perspectives. 
So many new kinds of importance measures are proposed, such as 
F-V importance measure [13, 31], BP structure importance measure 
[1], critical importance measure [19], risk achievement worth (RAW), 
risk reduction worth (RRW) [32], improvement potential importance 
[38], and differential importance measure [5]. In recent years, some 
researchers have been extended importance measures to by considering 
the maintenance policy [9, 10], the transition rate increases over time 
[8], or the constraints on cost for improving the system reliability [24].

A binary system assumes that the state of the system and com-
ponent only has two states: functioning and failure. However, there 
are a large number of multi-state systems (MSS) with more than two 
states in practice [22]. Barlow and Wu [2] summarized the analysis 
methods of MSS, where the system state was defined to be the worst 
state when the component is in the best minimal path set, or equiva-
lently, the best state when the component is in the worst minimal cut 
set. Many of the results for the binary cases can be computed for MSS 
by using the binary structure and reliability function. Griffith [16] 
proposed the MSS performance, which described that the perform-
ance level is corresponding to different system states, and studied the 
effect of component improvement on the system performance. Wu 
and Chan [35] defined a new unity function based on the component 
state of MSS for measuring which component has the maximum con-
tribution to improving the system performance. Zio and Podofillini 
[46] proposed the approach to evaluate the importance of all the com-
ponents concerning a given performance level and expanded some 
binary importance measures to MSS, such as RAW, RRW, F-V, and 
Birnbaum importance. Ramirez-Marquez and Coit [25, 26] put for-
ward the composite importance measures to evaluate the effect of 
all the states of components on the system reliability, which could 
break through the limitations of only considering the effect of a single 
state of the component on the system reliability. Levitin et al. [20] 
evaluated the importance measures for MSS based on the universal 
generating function technique and verified the effectiveness of the 
approach. Shrestha et al. [28] presented an analytical method based 
on multi-state multi-valued decision diagrams for multistate compo-
nent importance analysis. Zhao et al. [42, 43] presented the mission 
success importance for multi-state repairable k-out-of-n systems. Do 
Van et al. [6, 7] put forward the multi-directional sensitivity measure 
within the framework of Markovian systems, which calculated the 
differential importance measure of risk-informed decision-making 
in the context of Markov reliability models. Natvig [23] raised the 
dynamic and stationary importance measures in repairable and non-
reparable multistate coherent systems. Zhao et al. [45] introduced the 
redundancy importance measure into the multi-objective optimization 
of reliability-redundancy allocation problems for serial parallel-series 
systems. Si et al. [29] proposed the concept of integrated importance 
measure, which concerned the probability distributions and transition 
intensities of the component states simultaneously. Wang et al. [33] 
considered the improvement of system reliability based on Birnbaum 
importance by increasing the maintenance cost. Zhang et al. [41] pro-
posed the Birnbaum importance-based quantum genetic algorithm for 
solving the component assignment problems. 

However, no single type of importance measure can fit for all 
systems and conditions. Various importance measures for the same 
system may get the different ranks of components and lead to making 
different decisions. With the development of science and technology, 
engineering systems become more complicated, such as higher order 
systems, multi-loop control systems, nonlinear systems, hierarchy sys-
tems, and uncertain systems. For the design and optimization of such 

complex systems, some new importance measures are needed to judge 
the relative strength of a component in a system for different criteria 
[18]. At present, the importance measures are always calculated based 
on the independent reliabilities by assuming the component failure in 
a system is statistical independent, such as references [44] and [30]. 
This assumption is accordant with the possible working conditions for 
electronic systems, while it could not apply to the mechanical systems 
with complicated failure modes and failure mechanisms.

CCF was firstly proposed by Fleming in 1975 to represent the 
multiple components failures caused by the common reason [12]. 
CCF exists widely in most kinds of complex industrial systems, espe-
cially for nuclear facilities, weapon systems, and aerospace systems. 
Since the 1970s, researchers have put forward many analysis models 
for the CCF problems, where explicit analysis and implicit substitu-
tion were two typical modelling methods [40]. The precise analysis 
method denotes the system reliability based on the component state 
directly with the large scale of computation, which is generally ap-
plicable to all kinds of CCF.

The stress-strength interference (SSI) model has been common-
ly used in the reliability modelling of mechanical systems [11, 47]. 
Bhattacharyya and Johnson [3] established the interference reliability 
model for k out of n system by assuming that the system component 
was independent and identically distributed. For the 1 out of 2: G 
system, Lewis [21] disposed the Poisson distributed load (stress) by 
Markov model and evaluated the reliability of the system with CCF. 
Moreover, Xie et al. [36] introduced the concept of order statistics 
into the SSI model and calculated the equivalent strength of series, 
parallel, and k out of n systems for evaluating the system reliabil-
ity. With the assumption of strength degradation, Xue and Yang [39] 
put forward the deterministic strength degradation model and random 
strength degradation model based on the interference analysis meth-
ods. Wang and Xie [34] structured the equivalent load according to 
the probability of order statistics when the load was applied at mul-
tiple times under a Poisson process. Shen et al. [27] evaluated the 
structure reliability when the load was under a Poisson process, and 
the degradation of structural strength was under a Gamma process. 
Gao et al. [15] established the dynamic reliability model based on the 
equivalent strength degradation paths to analyze the mechanical com-
ponents with uncertain strength caused by material parameters. Fur-
thermore, Gao and Xie [14] extended the dynamic reliability models 
for mechanical load-sharing parallel systems with strength degrada-
tion path dependence. Generally, current importance measures cannot 
assist effective decision making for the complex systems with CCF or 
dependent components [37]. So, taking advantage of the SSI model, 
this paper will propose the importance measure for systems with CCF 
to fit for the features of complex systems.

In practice, the component reliability is hard to observe and record, 
but the strength information of components can be observed easily. 
Therefore, the SSI model can be used to simplify the analysis of CCF 
in the system. Considering the advantages of the importance measure 
and the SSI, SSI-based importance measure is developed to evaluate 
the importance ranking of components. The significance of SSI-based 
importance can be summarized as follows. (1) The evaluation method 
of SSI-based importance can identify the weakest link in the system, 
which can help engineers to make decisions for maintenance activi-
ties. (2) The component replacement method can find more equivalent 
components, which can increase the diversity of spare parts.

The remaining of this paper is organized as follows. Section 2 de-
scribes the ideas of SSI-based importance considering CCF in general 
and gives the analytic expression of component importance in series 
systems. Section 3 analyzes the monotonicity of SSI-based impor-
tance for series systems. Section 4 introduces two numerical experi-
ments to verify the monotonicity of SSI-based importance. Section 5 
introduces a new component replacement method based on the ideas 
that both the SSI-based importance of the replaced component and the 
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where 1( )sR t  and 2( )sR t  denote the system reliability before (at the 
time 1t ) and after (at the time 2t ) the change of component strength, 
respectively; 1( )jR t  and 2( )jR t  denote the component reliability be-
fore and after the change of component strength; js∆  is the change of 
the strength for component i.

2.2. Analytic evaluation of SSI-based importance in series 
systems considering CCF

The structures of some systems are the series system, which will 
fail if any component fails, and the reliability block diagram of the 
series system is shown in Fig. 1.

Fig. 1. Reliability block diagram of the series system

Assume the probability density function (PDF) of the strength for 
component i is ( )sif s , 1, ,i n=  . All components in the system bear 
the same load stress, and the corresponding PDF is ( )lf l . The reli-
ability of series system can be expressed based on SSI in Equation 3:
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where the initial strength PDF of component j is 1( )sjf s , and the after-
change PDF is 2( )sjf s , 1 2( ) ( ) ( )j sj sjs f s f s∆ = −  denotes the strength 
change of component j.

In order to analyze the SSI-based importance clearly, we have 
discussed the three forms of SSI-based importance of component j 
in series systems as follows. If the strength of component j follows 
a continuous univariate distribution, Equation 4 can be simplified as 
follows:
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importance ranks of all components should be unchanged after replac-
ing. Section 6 concludes the research work.

2. SSI-based importance considering CCF

The performance of components is always related to the load stress 
and the strength parameters (mean and variance) of components. The 
traditional reliability importance measure considers the effect of in-
herent component reliability on the system reliability instead of con-
sidering the effect of the load stress and the strength parameters of 
the components. For series systems, each component has independent 
strength. If the system is under one shock, this shock will act on all the 
components simultaneously, as the same load stress. Supposing the 
component will not bear any other individual stress, the component’s 
reliability is the interference of the same load stress and component 
strength, and the failure of component occurs when the stress exceeds 
strength. Sometimes, the components failed because of the occurrence 
of CCF, and the CCF can be equitant to the same stress load acting on 
all the components. Therefore, SSI-based importance is developed to 
analyze the importance of components in the system under the same 
load stress.

2.1. SSI-based importance in series systems considering CCF

For a system with n components, the reliability of component
(1 )j j n≤ ≤  can be written as ( , )j j jR R l s= , which is the function 

of the same load stress l and component strength js . The system reli-
ability is the function of system structure and components’ reliabili-
ties, which can be noted as R R R l s s ss n n= =φ φ( ,..., ) ( , , , , )1 1 2  , in 
which φ  is the system structure function; l is common load stress and 

( 1,2, , )js j n=   is the strength of component j.
According to the idea of Birnbaum importance, the SSI-based im-

portance of component j can also be expressed by the system struc-
ture function, load stress, and component strength, as shown in Equa-
tion 1:

 I l s s s
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Since it is difficult to directly obtain the derivative of system reli-
ability on component reliability in the form of SSI model, we will 
explore the relationship between importance measure and component 
strength. The component reliability will be improved with the im-
provement of component strength when the load stress is fixed. That 
is to say, and component reliability ( , )j jR l s  is monotonic for the 
variable js  when stress l remains unchanged. The inverse function 

( , )j jR l s  can be obtained as ( , )j j js s R l= , so the SSI-based impor-
tance can be expressed as the following formula in Equation 1. Then 
the partial derivative of js  on ( , )j jR l s  can be written as reciprocal 
of the partial derivative of ( , )j jR l s  on js . Therefore, the ultimate 
expression of SSI-based importance is shown as the ratio of two de-
rivatives on js  in Equation 1. The numerator of the final expression 
represents the influence of component strength on the system reli-
ability, and the denominator represents the influence of component 
strength on the reliability of itself. The real significance of SSI-based 
importance represents the relative change rate caused by the change 
of the component strength.

SSI-based importance extends the connotations of Birnbaum im-
portance from component reliability to component strength. It is easy 
to obtain the specific value of SSI-based importance, but it is hard to 
determine the derivative of the system reliability. Therefore, Equation 
1 can be transformed as the limit format based on the definition of the 
derivative as
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Generally, the variable PDF tends to be ‘0’ when the variable 
tends to be endless. So the SSI-based importance for the series system 
can be written as:

 I
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Supposing that the failure of components in the system is inde-
pendent, the importance measure for independent components can be 
expressed as:
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where iR  is the reliability of component Ci.

According to Equation 6, it is clear that the strength distribution 
of all components is taken into consideration for calculating the SSI-
based importance. However, the importance of component is inde-
pendent with its strength in Equation 7. In production practice, the 
distribution of component strength is the statistical result of test data, 
which may be different because of different quality levels and dif-
ferent processes. Therefore, the proposed importance measure can 
describe the influence of strength change on system reliability well 
for engineering applications. The SSI-based importance can be evalu-
ated by solving the complex analytic geometry integration for series 
system.

3. Monotonicity analysis of SSI-based importance for 
series system

The degradation of components is related to the inherent reliabil-
ity, the strength mean, and the strength variance. For the traditional 
Birnbaum importance, the component importance has no concern 
with its inherent reliability, which is related to the reliabilities of other 
components. For the SSI-based importance of component i, its impor-
tance measure also has nothing to do with the inherent reliability of 
component i, but its importance measure has a close relationship with 
the strength mean and the strength variance. The reduction of strength 
mean or the increment of strength variance appears in component, 
which means the component begins to degrade. Therefore, the mo-
notonicity analysis of SSI-based importance is discussed based on the 
changes of strength mean and the strength variance.

3.1. Monotonicity of SSI-based importance about strength 
mean

When component strength and stress distributions are a normal 
distribution, Equation 6 can be simplified base on the PDF of the nor-
mal distribution as Equation 8:
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In order to analyze the monotonicity of SSI-based importance, we 
can conduct the partial derivation of Equation 8 about µ j  when σ j  
is constant. The result is represented by Equation 9:
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where g l
f lj j

j
( )

( , )
=
∂

∂

µ

µ
, f lj j( , )µ  represents f lj j j( ; , )µ σ  when  

σ j  is a constant.

Since the integral operation in Equation 9 is complex, a unique 
series system with four components is introduced to illustrate the 
monotonicity of SSI-based importance. The strength of components 
follows the normal distribution of s N1 1 50~ ( , )µ , 2 ~ (420,50)s N , 

3 ~ (440,50)s N , 4 ~ (460,50)s N , and the same load stress on these 
four components follows ~ (300,60)l N . When µ1  varies in the in-
terval [350, 700], the SSI-based importance and the partial derivation 
of importance measure can be evaluated by Equations 8 and 9. 

In order to analyze the changes of the SSI-based importance and 
its rate, the strength variances of components in the series systems are 
the same. The evaluation results are shown in Fig. 2. From the top fig-
ure, the importance value decreases when the strength mean increases, 
which indicates that the better the component quality is, the lower its 
importance value is. The bottom figure presents the partial derivative 
of importance, which means the change rate of importance. It is note-
worthy that when the strength mean of component 1 reaches 462, the 
change rate is the highest at the point. The parameters of components 
1 are almost the same as that of component 4 at this moment. Both 
of them have similar reliability because they have the same strength 
mean and strength variance.

3.2. Monotonicity of SSI-based importance about strength 
variance

In order to analyze the monotonicity of SSI-based importance, 
we can assume µ j  as a constant and conduct the partial derivation of 
Equation 8 about σ j . The result is represented by Equation 10.
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where h l
f lj j

j
( )

( , )
=
∂

∂

σ

σ
, f lj j( , )σ  represents 

f lj j j( ; , )µ σ  when µ j  is constant.

Similarly, a unique series system with four com-
ponents is adopted to analyze the monotonicity of SSI-
based importance with strength variance. The compo-
nent follows the normal distributions as 1 1~ (400, )s N σ  , 

2 ~ (440,50)s N , 3 ~ (460,50)s N , 4 ~ (480,50)s N  . 
The same load stress follows ~ (300,60)l N . In order 
to analyze the changes in the SSI-based importance and 
its rate with the increase of component variance, the 
strength mean of components in the series systems is 
unchanged. If σ1  varies in the interval [10, 110], the 
SSI-based importance and its rate can be evaluated by Equations 8 
and 9, which are shown in Fig. 3. Since the increase of strength vari-
ance indicates the component quality decreases, the SSI-based impor-

tance of component will increases, which is the top one 
in Fig. 3. In the bottom of Fig. 3, the change rate reaches 
the highest value when the variance of component 1 is 
22. The corresponding reliabilities of 4 components are 
RC1=0.9698, RC2=0.9635, RC3=0.9797, RC4=0.9894, re-
spectively. This phenomenon illustrates that SSI-based 
importance increases fast when its inherent reliability is 
equal to the lowest reliable component.

4.  Numerical experiments

In this section, we applied two numerical experi-
ments to illustrate the methods in Sections 2 and 3 
clearly. Experiment I shows the SSI-based importance 
ranking of 5 series systems with different component 
strength distributions, whose parameters are unchanged. 
Experiment II illustrates the changes of SSI-based im-
portance of each component in series systems when the 
parameters of component 1 change, but the parameters 
of other components remain unchanged.

4.1. Experimental design

Experiment I: There are 5 series systems with dif-
ferent numbers of components, and the parameters of 
components are shown in Table 1. The experiment is 
established to illustrate the evaluation of SSI-based im-
portance according to Equation 6, which also can deter-
mine the importance ranking of components in the series 
systems. The same load stress follows ~ (200,30)l N .

Experiment II: A four-component series system is introduced to 
illustrate the changes of SSI-based importance if the parameters of 
component 1 change and the parameters of other components are un-

Fig. 2. The tendency of importance on the strength mean of component

Fig. 3. The tendency of importance on strength variance of component
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changed. The purposes of this experiment are to illustrate the changes 
of SSI-based importance for component 1 and analyze the changes of 
importance for other components except for the component 1. There 
are 6 cases that depend on the variance of components 2-4 comparing 
with the variance of stress. All the parameters of components are list-
ed in Table 2 because the variance of component is 30 or 50, which 
means the strength variance of component is lower or higher than that 
of load stress. This experiment is introduced to analyze the changes of 
importance ranking for this specific series system. The same load 
stress follows ~ (150,40)l N , and the strength of component 1 fol-
lows s N1 1 1~ ( , )µ σ . Let σ1  vary in the interval [20, 50], and let µ1  
vary in the interval [180, 400].

4.2. Results analysis of experiments

4.2.1 Results of Experiment I

The SSI-based importance of all components in the series systems 
can be evaluated based on Equation 6, and the importance ranks of all 
components also can be obtained by comparing the importance values 
of all components. The results of Experiment I are shown in Table 3, 

which lists the importance value and importance ranks of all compo-
nents in 5 series systems.

From Table 3, the strength of components with lower mean and 
higher variance has a higher importance measure, such as compo-
nent 1 is more important than components 2 and 3 in System 2. If the 
strength mean of component is the same, the strength of component 
with higher variance has higher importance, such as component 2  
( 2 ~ (310,50)s N  ) is more important than component 7  
( 7 ~ (310,15)s N ) in System 4. Similarly, if the strength variance of 
component is the same, the higher the strength mean of component 
is, the less important the component is, such as the component 10  
( 10 ~ (275,10)s N ) is less important than compo- 
nent 2 ( 2 ~ (255,10)s N ) in System 5. If the variance and mean of 
component strength has a similar percentage increase (or decrease), 
the importance will decrease (or increase), which means the mean 
of component strength has more effect on the changes of component 
importance. For example, the strength mean of component 6 decreas-
es 27.5% compared with that of component 1 in System 3, and the 
strength variance increases 57.1% from component 1 to component 7; 
but the SSI-importance of component increases with the decrease of 
strength mean. Therefore, the SSI-based importance of components is 

Table 1. The parameters of components in Experiment I

Component # System 1 System 2 System 3 System 4 System 5

1 (270,35)N (290,30)N (400,35)N (315,45)N (350,45)N

2 (370,60)N (350,15)N (300,45)N (310,50)N (255,10)N

3 / (350,20)N (335,55)N (365,25)N (380,25)N

4 / (360,55)N (280,60)N (370,45)N (390,10)N

5 / / (360,40)N (280,40)N (350,15)N

6 / / (290,15)N (320,20)N (360,50)N

7 / / / (310,15)N (360,45)N

8 / / / (350,35)N (300,25)N

9 / / / / (350,60)N

10 / / / / (275,10)N

Table 2. The parameters of components in Experiment II

Case # Component 2 Component 3 Component 4

1 (200,30)N (250,30)N (300,30)N

2 (200,30)N (250,30)N (300,50)N

3 (200,30)N (250,50)N (300,30)N

4 (200,50)N (250,30)N (300,30)N

5 (200,30)N (250,50)N (300,50)N

6 (200,50)N (250,50)N (300,30)N

7 (200,50)N (250,30)N (300,50)N

8 (200,50)N (250,50)N (300,50)N
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higher when the strength mean of component is lower, or the strength 
variance of component is higher, and the mean has a higher effect on 
the SSI-based importance than that of variance.

4.2.2 Results of Experiment II

If the strength mean or strength variance of component 1 changes, 
then the changing tendency of SSI-based importance for all compo-
nents can be recorded by Experiment II. From the results of Experi-
ment II, we can find the SSI-based importance of any components in 8 
cases has a similar change tendency. For component 1, the SSI-based 
importance decreases with the increase of strength mean of compo-
nent 1, while the importance increases with the increase of strength 
variance. However, for components 2, 3, and 4, the SSI-based impor-

tance increases with the increase of strength mean of component 1, 
and the importance almost remains unchanged with the increase of 
variance when the strength mean is determined. In order to illustrate 
the detailed changes of importance, the results of cases 1 and 8 are 
shown in Fig. 4 and Fig. 5, respectively. 

From Fig. 4, the SSI-based importance of component is close to 
0 when strength mean is 25 and strength variance is 400. When the 
strength mean is fixed, the importance decreases with the decrease of the 
strength variance. Such as the importance is almost 0.2 when strength 
mean is 400 and strength variance is 56. However, the importance of the 
other three components increases with the increase of the strength mean 
for component 1, such as the importance of component 2 is 0.96 when 
strength mean is 390 while the importance becomes 0.47 when strength 

Table 3. The SSI-based importance ranks of 5 series systems in Experiment I

System # SSI-based importance value SSI-based importance ranks

1 [0.9856, 0.7928] 1 2I I>

2 [0.9743, 0.0001, 0.2981, 0.9091] 1 4 3 2I I I I> > >

3 [0.2067, 0.7378, 0.7033, 0.9178, 0.4603, 0.3545] 4 2 3 5 6 1I I I I I I> > > > >

4 [0.7586, 0.8192, 0.1328, 0.5754, 0.8847, 0.2520, 0.1996, 0.4634] 5 2 1 4 8 6 7 3I I I I I I I I> > > > > > >

5 [0.5918, 0.8648, 0.0063, 2.36E-40, 1.04E-07, 0.6412, 0.5460, 0.3893, 
0.7914, 0.1527] 2 9 6 1 7 8 10 3 5 4I I I I I I I I I I> > > > > > > > >

Fig. 4. The changes of SSI-based importance for case 1 in Experiment II
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mean is 180. When the strength mean is known, the importance of these 
three components is almost unchanged. Component 1 has the lowest 
importance value, and component 2 has the highest importance when 
the strength mean of component 1 is higher.

From Fig. 5, we can find that the results of case 8 are similar to 
that of case 1 while the importance values are different. Because the 
strength variance of components 2, 3, and 4 becomes higher, the im-
portance value of these three components is higher than that of case 1, 
but the change tendency is also the same with case 1.

Because the strength variance has little effect on the importance 
ranks, the importance ranks should be discussed with the increase of 
strength mean when the strength variance is determined. For each 
case, the strength variance is determined randomly, and the change 
of importance ranks is shown in Fig. 6. From Fig. 6, the SSI-based 
importance of component 1 decreases with the increase of the strength 
mean of component 1, but the importance of other components in-
creases with the increase of the strength mean of component 1. The 
importance ranks of components 2, 3, and 4 are fixed no matter the 
parameters of component 1 are, and the importance of component 1 
decreases from the highest to the lowest with the increase of strength 
mean. From example, the SSI-based importance of component ranks 
as the highest one when the strength mean is less than 205 in case 3, 
and the importance ranks of components is 1 2 3 4I I I I> > > ; the im-
portance ranks of components is 2 1 3 4I I I I> > > when the strength 
mean of component is in the interval [205, 225]; the importance ranks 
of components is 2 3 1 4I I I I> > >  when the strength mean of compo-

nent is in the interval [225, 331]; the importance ranks of components 
is 2 3 4 1I I I I> > >  when the strength mean of component is larger 
than 331.

Therefore, these two experiments illustrated the contributions of 
the proposed importance. Experiment I described how to determine 
the importance ranks once the parameters of components are known; 
Experiments II verified the monotonicity of SSI-based importance 
about strength mean or strength variance, and the changes of impor-
tance ranks in series systems are illustrated.

5. Component replacement method considering SSI-
based importance

From the results in Section 4, the components with different com-
binations of strength mean and strength variance may have different 
SSI-based importance. For the component whose parameters can be 
adjusted, the SSI-based importance of this component increases with 
the increment of the strength mean but decreases with the increment 
of strength variance, There are different combinations of strength 
mean and variance for the component to remain the importance un-
changed. However, sometimes although the importance of compo-
nents with different combinations of strength mean and variance are 
the same while the combination may change the importance ranks of 
components. The SSI-based importance and the importance ranks of 
this component after replacing should be the same as before replacing. 
Therefore, a new component replacement method is developed where 

Fig. 5. The changes of SSI-based importance for case 8 in Experiment II
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both the importance value and the importance ranks should remain 
unchanged after replacing the component.

5.1. The component replacement search algorithm

In order to find the general solutions, assuming component strength 
and stress distributions are normal distribution in a series system, and 
all parameters of distributions are known. If the component k can be 
replaced by the component j, the SSI-based importance of these two 
components should be the same. If  kI  is equal to jI , the relationship 
of strength mean and strength variance between components kC  and 

jC  based on Equation 11, which is shown as follows:
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π σ  is a constant, µ j  and σ j  are un-

known parameters.
Considering that the difficulty of solving µ j  with σ j  

explicitly, 
a component replacement search algorithm is proposed to determine 
the parameters of component after replacing, the process of compo-

Fig. 6. The changes of SSI-based importance for case 8 in Experiment II
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nent replacement considering SSI-based importance can be summa-
rized in Fig. 7.

Fig. 7. The component replacement search algorithm

5.2. An example to illustrate the search process

A simple series system contains four infrastructures {C1, C2, 

C3, C4} with 1 ~ (800,45)s N , 2 ~ (850,60)s N , 3 ~ (850,50)s N , 

4 ~ (870,55)s N , and the stress follows ~ (600,40)l N . The initial 
importance measure of component 1 is 0.9877, which can be calcu-
lated by Equation 6.

If we select  

1=[801,803,805,807,809,811,813,815,817,819,821,823,825,827,829]µ  
respectively, the strength variance σ1  of component 1 can be obtained 
based on the component replacement search algorithm. The strength 
variance of component 1 and the importance ranks of components are 
listed in Table 4.

From Table 4, the solutions are listed with the increase of the 
strength mean of component 1, and the importance ranks of compo-
nents are changed when the strength mean is larger than 817. Accord-
ing to the previous analysis, the solution that changes the importance 
ranking should be excluded from the available set, because the im-
portance ranks of all components in the system should be unchanged 
after replacement. Sometimes, the available solution may not exist; 
we need to narrow the interval of strength mean. Actually, for en-
gineering practice, other factors, such as the constraints of cost and 
resources should be considered to determine the available replace-
ment solution.

6. Conclusions

Some conclusions of SSI-based importance can be summarized as 
follows. (1) SSI-based importance of components, whose parameter 
changes, reduces monotonically with the increase of strength mean 
or increases monotonically with the increase of strength variance. 
(2) The strength mean has more impact on the SSI-based importance 
change, while the strength variance has less effect on the change of 
SSI-based importance. (3) The components with different combina-
tions of strength mean and strength variance can be replaced when 
the importance ranks of components are unchanged after replacement. 
In future, the complex interdependency of components and systems 
should be considered, and the SSI model also can be applied to the 
system with more complicated structure.
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Table 4. The result of the component replacement search algorithm

µ1 σ1 Importance ranks Available solution

800 45.00 1 2 4 3I I I I> > > 

801 45.24 1 2 4 3I I I I> > > 

803 45.70 1 2 4 3I I I I> > > 

805 46.19 1 2 4 3I I I I> > > 

807 46.65 1 2 4 3I I I I> > > 

809 47.11 1 2 4 3I I I I> > > 

811 47.56 1 2 4 3I I I I> > > 

813 48.01 1 2 4 3I I I I> > > 

815 48.45 1 2 4 3I I I I> > > 

817 48.89 1 2 4 3I I I I> > > 

819 49.33 2 1 4 3I I I I> > > 

821 49.77 2 1 4 3I I I I> > > 

823 50.21 2 1 4 3I I I I> > > 

825 50.63 2 1 4 3I I I I> > > 

827 51.04 2 1 4 3I I I I> > > 

829 51.46 2 1 4 3I I I I> > > 
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