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A simulAtion ApproAch on reliAbility Assessment of complex system 
subject to stochAstic degrAdAtion And rAndom shock 

metodA symulAcyjnA oceny niezAwodności złożonego systemu 
podlegAjącego procesom degrAdAcji stochAstycznej 

i nArAżonego nA obciążeniA losowe
Many systems are affected by different random factors and stochastic processes, significantly complicating their reliability analy-
sis. In general, the performance of complicated systems may gradually, suddenly, or continuously be downgraded over times from 
perfect functioning to breakdown states or may be affected by unexpected shocks. In the literature, analytic reliability assessment 
examined for especial cases is restricted to applying the Exponential, Gamma, compound Poisson, and Wiener degradation proc-
esses. Consideration of the effect of non-fatal soft shock makes such assessment more challenging which has remained a research 
gap for general degraded stochastic processes.  Through the current article, for preventing complexity of analytic calculations, we 
have focused on applying a simulating approach for generalization. The proposed model embeds both the stochastic degradation 
process as well randomly occurred shocks for two states, multi-state, and continuous degradation. Here, the user can arbitrarily 
set the time to failure distribution, stochastic degradation, and time to occurrence shock density function as well its severity. In 
order to present the validity and applicability, two case studies in a sugar plant alongside an example derived from the literature 
are examined. In the first case study, the simulation overestimated the system reliability by less than 5%. Also, the comparison 
revealed no significant difference between the analytic and the simulation result in an example taken from an article. Finally, the 
reliability of a complicated crystallizer system embedding both degradation and soft shock occurrence was examined in a three-
component standby system.  

Keywords: system reliability; multi-state system; competing failures; stochastic degradation; random shocks; 
discrete event simulation.

Prawidłowe działanie wielu systemów zależy od różnych czynników losowych i procesów stochastycznych, co znacznie kompli-
kuje analizę niezawodności tych układów. Parametry pracy skomplikowanych systemów mogą ulegać stopniowemu, nagłemu 
lub stałemu obniżeniu ze stanu doskonałego funkcjonowania do stanu awaryjnego. Wpływ na nie mogą też mieć niespodziewane 
obciążenia. W literaturze przedmiotu, analityczną ocenę niezawodności stosuje się do badania przypadków szczególnych i ogra-
nicza do badania degradacji w oparciu o proces wykładniczy, proces gamma, złożony proces Poissona i proces Wienera. Ocena 
niezawodności z uwzględnieniem wpływu obciążeń miękkich, nieprowadzących do całkowitej awarii, stanowi większe wyzwanie 
tworząc lukę w badaniach nad ogólnymi stochastycznymi procesami degradacji. Aby uniknąć złożonych obliczeń analitycznych, 
w niniejszej pracy skupiliśmy się na zastosowaniu podejścia symulacyjnego w celu uzyskania generalizacji. Proponowany model 
obejmuje zarówno stochastyczny proces degradacji, jak i losowo występujące obciążenia i uwzględnia przypadki degradacji sys-
temów dwustanowych, wielostanowych oraz degradacji ciągłej. Posługując się tym modelem, użytkownik może dowolnie ustawiać 
rozkład czasu do uszkodzenia, degradację stochastyczną, czas do wystąpienia obciążenia, funkcję gęstości prawdopodobieństwa 
wystąpienia obciążenia, a także jego nasilenie. Trafność oraz możliwości zastosowania przedstawionego modelu zilustrowano na 
podstawie dwóch studiów przypadków dotyczących cukrowni oraz przykładu zaczerpniętego z literatury. W pierwszym studium 
przypadku, poziom niezawodności systemu obliczony na podstawie symulacji różnił się o mniej niż 5% od wyniku otrzymanego 
na drodze analitycznej. Porównanie nie ujawniło również żadnej istotnej różnicy między wynikiem analitycznym a symulacyjnym 
w przykładzie pochodzącym z literatury. Artykuł wieńczy analiza niezawodności złożonego układu krystalizatora, obejmująca 
zarówno degradację, jak i występowanie miękkich obciążeń w trójelementowym systemie krystalizatora z rezerwą. 

Słowa kluczowe: niezawodność systemu; system wielostanowy; uszkodzenia konkurujące; degradacja stocha-
styczna; obciążenia losowe; symulacja zdarzeń dyskretnych.

1. Introduction

Reliability is common scientific characteristic of a system with 
commutability, operability, or usability upon any request to accom-
plish the relevant nominated tasks over time to finally evaluate the 
system potential or performance. In this regard, their assessment is a 

crucial analytic task given the huge complexity and solving the many 
states equation especially in the presence of stochastic degradation 
process and random arrival shock with unknown severity. This con-
text has remained a research gap, which has attracted much attention 
in the literature by Patelli et al. [17]
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In general, the system reliability is analyzed in three ways: binary 
or two states, multi-state, and degradation process which present sys-
tem state continuously over time. Commonly, to avoid heavy calcula-
tions, reliability assessment is carried out for a few states. Such an 
approach employs an oversimplification in many real-life situations 
where the system is accomplished based on assuming a comprehen-
sive range of states, varying from perfect functioning to complete 
breakdown.

Conventionally, system reliability assessment should follow tedi-
ous computations for simultaneously solving a large number of dif-
ferential equations to calculate the probability of the system being in 
each state. Then system reliability is computed based on summation 
of probability of all states where the system functions well. In many 
real cases, a system may become degraded when being subject to ran-
dom shocks with different degrees of severity. This may predispose 
the system to fail suddenly or accelerate their degradation process. 
Hence, applying analytic methods for reliability assessment is com-
plicated especially for multi-state systems. Accordingly, in the present 
study, we have developed an appropriate and efficient simulation ap-
proach for this issue to develop the professional capabilities required 
by analysts.

Degradation refers to either performance degradation (e.g. power 
output of a generator) or some measure of actual degradation (e.g., 
toxic concentration in a chemical process or fatigue crack in a gear). 
Commonly, the degradation process reveals a continuous alteration 
of the system state over time. Once a proper degradation variable is 
selected, degradation data, when properly measured, could provide 
substantial information as there are quantitative measurements (not 
just at discrete points of time or their failure). Indeed, it is possible 
to make powerful reliability inferences from degradation data even 
when there are no failures.

The degradation process could be modeled using the experimental 
data through degradation path modeling method. Stochastic degrada-
tion process tends to model the degradation variable over time while 
considering the measurement error. This kind of modeling consists of 
two terms to present the deterministic behavior of the variable level 
through a linear, quadratic, exponential and other terms alongside the 
error term which is described by a given random term; e.g. Gamma, 
Logistic or Weibull distribution (Nikulin et al. [16]).

Additionally, most engineering systems suffer from catastrophic 
events occurring randomly and they could cause sudden breakdown 
or initiate other mechanisms which accelerate the failure process. 
Hence, the time of shock occurrences and their severity are presented 
by two random variables. A sophisticated review on shock modeling 
methods in reliability engineering has been presented by Finkelstein 
Maxim and Cha Ji Hwan [7].

Through current research, we focused on answering to the follow-
ing research questions.

How to estimate reliability of a multi-component multi-state 1. 
system on the based on simulation modeling?
What is the consequence of randomly occurred shocks? 2. 
How to estimate reliability of a gradually stochastic degraded 3. 
system?

The rest of this paper is organized as follows. Section 2 reviews 
the literature on reliability assessments of binary, multi-state, and de-
graded processes using analytic methods and simulation models. Due 
to complex calculations of the analytic method, essential basis as well 
the proposed simulation model are presented in section 3. The valida-
tion method for the proposed simulation model presented on section 
4. Section 5 discusses a real case study to clarify the proposed method 
in details. Finally, section 6 closes the paper with concluding remarks, 
advantages, and drawbacks to be covered by future research.

2. Literature review

Many research efforts have been made to assess reliability of 
systems. So far, a great deal of attention has been paid to system 
reliability analysis which deals with a binary state system describ-
ing system states using functioning or failure states via a specified 
random variable. Over the past few decades, reliability practitioners 
have been working on analyzing system reliability using more data 
collected during the system life time. In this way, the system state has 
been evaluated over time discretely or continuously through multi-
state or degraded level. Some reliability experts have also focused on 
other sources accelerating failure process such as shock or hazardous 
events.

An analytic model to evaluate a degrading binary system during 
a fatal shock has been presented in Riascos-Ochoa et al. [19]. They 
fitted a phase-type distribution to inter-arrival time in case of shock 
occurrence. This approach helps users evaluate one single component 
reliability. Another research Caballé and Castro [3] proposed a model 
with internal degradation under a gamma process and random shocks 
with non-homogeneous Poisson process. In addition, they analyzed 
the robustness of the solution by changing the input parameters. Also, 
binomial shock process was evaluated in Eryilmaz [5]. They extended 
their model to the presence of shock dependent processes using the 
Markov chain. An analytic model for a single component on the pres-
ence of hard failure (shocks) and soft failures (degradation) for fault-
tolerant systems was prosed in Liu et al. [14]. They also implemented 
a proposed model on an example to show the applicability to many 
systems via a model with cumulative shocks based on batch Marko-
vian arrival process Montoro-Cazorla and Pérez-Ocón [15]. In their 
model, shock processes are interdependent and the system failure 
occurs when the number of cumulative shocks exceeds the defined 
threshold. A Stress-Strength model was developed in Hao et al. [9] 
for soft and hard failures and their interactions. The results revealed a 
positive correlation between shock process and degradation perform-
ance and the mutually dependent processes had direct effects on the 
system reliability. In Rafiee et al. [18] , a generalized mixed shock 
model involving fatal and non-fatal shocks was presented analytical-
ly. In this paper, three types of shock patterns were taken into account. 
A sensitivity analysis was applied on an example of micro-electro-
mechanical system to show the application of the proposed model. 

For analyzing system reliability in shock-degradation models, 
some methodologies have been presented. For example, Huang et al. 
[10] offered an analytic method for reliability assessment for a system 
affected by smooth degradation with the gamma process and traumat-
ic failure caused by Poisson shock process. In their proposed method, 
given the two processes in that, with increase in the degradation level, 
the probability of traumatic failure caused by a random shock in-
creased. A degradation model for in civil structures was presented by 
Wang  et al. [22]. This model had two main components: non-increas-
ing stochastics parameters and existing correlation between load proc-
esses and degradation. They also developed this model on a numerical 
example to analyze sensitivity of reliability on degradation and shock 
processes as well as the load-deterioration correlation. They found 
that the system reliability was very sensitive to variations of cumula-
tive deterioration and shock. Further, two different types of dependent 
competing failure processes were modeled in An and Sun [1]. 

At first, a shock and a degradation process were considered si-
multaneously along with the existing interdependency between them. 
Secondly, multiple degradation processes with their correlation were 
added to the model. Finally, by extending a numerical example, sen-
sitivity analysis was made to evaluate the effects of parameter models 
on the system reliability. The reliability of a system based on the pres-
ence of fatigue degradation and shock processes was evaluated by 
Zhang et al. [26]. They considered retardation event in their model, 
i.e. fatigue procedures were retarded when the shock occurred in the 
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system. They evaluated the reliability in two case studies: in the first 
one, they considered shock processes as a fixed time period, while in 
the second, shock occurred at various time periods. The reliability of 
load-sharing systems with dependent shock and degradation process-
es was investigated by Che  et al.  [4]  . In their assumed system, the 
failure time of components, the time between arrival of shocks, and 
their interaction were stochastic, so they used an analytical method to 
analyze the reliability of the system. Experimental results indicated 
that the reliability in load-sharing systems was lower than in simple 
parallel systems. 

Some authors used a simulation model to model and analyze the 
reliability of systems. Monte Carlo simulation was applied to analyze 
the system reliability of a degradation-shock process model in Fan et 
al. [6] . In their simulation model, the shock process was influenced 
by the soft failures (degradation) and random shocks were categorized 
into three zones based on their magnitudes. In Warrington and Jones 
[23], a discrete event simulation with path-sets methodology was 
presented to generate a dynamic model for analyzing the reliability 
of system. Another simulation model for reliability of a self-healing 
network for scalable and fault-tolerant, parallel runtime environments 
was evaluated by Angskun et al. [2]. They used a simulation method 
to calculate the system under failure conditions. Gola [8]  focused on 
the way to estimate system  reliability  with changing machine due to 
maintain the production process stability using Enterprise Dynamics 
software.

In Vaisi et al. [21], an availability reliability model for a two-ma-
chine robotic cell was presented for different sources of uncertainty. 
They implemented this structure on a multi-state transmission system. 
Further Juan et al. [12]  presented a simulation methodology in a time-
dependent building for civil engineering structures. They discovered 
that the simulation method could offer more advantages over other 
approaches, since it could measure details such as multi-state systems 
and discover critical components in a structure.  Many researchers 
such as Kosicka  et al. [13], Jasiulewicz-Kaczmarek and Gola [11], 
Zaim et al. [25] and Sobaszek et al. [20] focused on the way to in-
crease system reliability in different aspects. Interested readers may 
follow some beneficial methods in   

In the case of reliability assessment for a multi-state system, ana-
lytic calculation is highly complex. Most cases have focused on the 
exponential time to failure and time to repair distribution. Wenjie et al. 
[24] proposed a reliability index for a repairable multi-state compo-
nent using homogenous continuous time Markov chain process. Their 
method was limited to a shirt time repair process. Further, they tried to 
balance the maintenance cost and lifetime of multi-state components 
in an illustrated example. The complexity of computation of analytic 
methods encourages researchers to use efficient simulation techniques 
especially for reliability assessment of multi-component multi-state 
systems.

As the literature suggests, almost all existing methods have been 
conducted based on restricted assumptions. The reliability assessment 
of a multi-state system which degrades randomly and suffers from 
competing random shock effects when all random variables could 
not be modeled in any free given process has been research gap so 
far. This paper proposes an efficient computer simulation approach 
in reliability assessment of a multi-state system subject to stochastic 
degradation process and randomly occurring non-fatal shocks. The 
proposed method has no restriction on applying Markov or semi-
Markov process. It has also the capability to be applied for any time 
of occurrence of shocks, and for their relevant consequences and any 
random degradation process. 

3. Computer simulation model basis 

Basically, the reliability analysis of a multi-state system depends 
its component features, states and the system RBD. Suppose a multi-
state system consisting of N  components where each component j 
could have kj different states corresponding to its performance rates, 
represented by Eq. 1:

 g g g g gj j j jl jk j
= … …{ }1 2, , , , ,  (1)

where,  jig is the performance rate of component j  in the state i 
{ }1,2,...,  jk∈ . Suppose that the performance rates are arranged in a 

descending order at different states of each component. For example, 
in state 1jg , the performance rate of component j is perfect and com-
plete. When the state transfers from 1jg  to 2jg , the performance 
rate will decrease for example to 90%. This descending status will 
continue until the state of the component reaches  jlg . In the remain-
ing states { }1, 2,...,  l l k∈ + + , the system does not have an adequate 
performance level which could be called complete breakdown. So, the 
element j  may be functioning well in the state  q ∈{1,2,...,l }. Figure 
1 displays typical performance rates for a system at 12 different states 
which could be considered during the last four states.

Fig. 1. A typical degrading system performance over time

The probabilities related to the different states of the component 
j  at any instant time t  can be displayed by the Eq. 2:

 p t p t p t p t p tj j j jl jk j( ) = ( ) ( ) … ( ) … ( ){ }1 2, , , , ,  (2) 

where ( ) Pr{jip t = Gj (t)= }jig  and ( )
1

1 .
jk

ji
i

p t
=

=∑

So the reliability of each component presents by Eq. 3:

 
( ) ( ) ( ) ( ) ( )1 2

1

l
j j j jl ji

i
R t p t p t p t p t

=
= + +…+ = ∑  (3)

Finally, in a multi-state system with N  series components, the reli-
ability is equal to Eq. 4:

 ( ) ( )
1

N
s j

j
R t R t

=
= ∏  (4)



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 22, No. 2, 2020 373

sciENcE aNd tEchNology

Also, for a multi-state system with N  parallel component, the 
system reliability is calculated by Eq. 5:

 ( ) ( )
1

1 (1 )
N

s j
j

R t R t
=

= − −∏  (5)

Degradation processes act as a failure mode and are often defined 
by a smoothing continuous damage accumulated over time. In addi-
tion, temporal variability should be taken into account during the sys-
tem degradation process. It usually may be modeled by a given deter-
ministic curve beside an error terms follows from a given statistically 
density function such as Exponential, Gamma, Logistic, Weibull, or 
etc. In a multi-state system with N  elements, the performance rate 
of component j  in the state i  may be reduced or updated due to its 
relevant deterioration process or shock occurrence as Eq. 6:

 g t t g tji ji ji( ) = ( ) ( )α .  (6)

where, 0 1< ( ) <α ji t  is the degradation rate of performance of ele-
ment  j in the state i  at time t , and the prime accent on g  denotes 
the updated values for the performance rate.

Suppose ( ) jX t  represents the degradation level of component 
j  at time t . For a continuous or discrete degraded process, each 

component fails if the relevant level exceeds its threshold jl . Let djT  
be the failure time of degradation process; thus, the reliability of the 
system while only considering with degradation process can be then 
estimated by the fraction of the time when the system performance 
level is greater than the threshold level l . Equivalently, in mathemati-
cal terms for each component, the reliability is given by Eq. (7):

 R t t T X t L g t lj dj j j j j( ) = <( ) = ( ) >( ) = ( ) >Pr Pr ( )�Pr  (7)

Consequently, the simulation model extracts the component reli-
ability output through the counting ratio of the desired condition over 
the total runs. Note that after running the simulation model over given 
period of time, this equation is applied for individual estimation of 
only single component reliability not the system reliability. Formerly, 
system reliability could be calculated using reliability block diagram 
indicating how component reliability contributes to the success or 
failure of a complex system.  After a few repetitions of the process 
for different simulated observation periods, reliability curve can be 
illustrated.   

Shock is another common competing cause in system failures 
which accelerates the component degradation rate or random failure 
processes. The literature has pointed to two kinds of shock; fatal and 
non-fatal shock. The first type causes rapid disruption while the sec-
ond accelerates the degradation process. Thus, the transition rate be-
tween consecutive states grows progressively.

The proposed simulation method need to following inputs. 
The system configuration in terms of  System Reliability 1. 
Block Diagram (RBD). For each component, time to failure 
density function needed to defined necessary. Also specify the 
component’s repair time density function if needed to calcu-
late availability. 
State transition matrix for each component just for multi-state 2. 
system.  This modulus has no need to be defined for continu-
ous degraded systems.  
Degradation modulus. For each component just one time de-3. 
pendent degradation model should be described as well a time 
to failure density function.

Random shock occurrence modulus which embeds time to 4. 
shock occurrence density function and its random  effects in 
terms of a constant or random density function.
System reliability/availability  estimation modulus. 5. 

The first four moduli need some inferences on the system and 
which are commonly used for reliability analyzers and should be set 
as simulation model inputs.  These moduli are designed individually 
and some of them are not necessary in all problems. Figure 2 illus-
trates the proposed simulation method schematically.

Fig. 2. A schematic view of the proposed computer simulation method 

The basic output modulus accounts the system reliability through 
summation of the probability of existence of a system in a given set of 
desired states after running the system for a given replications. Here, 
the system configuration should be defined via the system RBD and 
breakdown features of some components. They are: 1) failure pat-
terns; hence time to failure (TTF) and time to repair (TTR) density 
function for each component should be acknowledged experimen-
tally. Degradation process which may be presented by a deterministic 
curve and randomly distributed residuals/error terms (ET). Random 
shocks through defining the time between occurrence/arrival (TBA) 
alongside its severity statistical distribution (S). Here, S represents 
the substitution of extremely high hazard rate models of a fatal shock; 
otherwise it is a repeated non-fatal shock which accelerates the degra-
dation process. An alternative approach to apply the soft shock conse-
quences surveyed in the 2nd case study report.

In order to simulate such a system, we applied an object-oriented 
approach where all components are represented by an individual ob-
ject using the Enterprise Dynamics Incontrol simulation software; 
EDTM. In this simulation, the package of almost all well-known densi-
ty functions is ready to use at its library. So, TTF, TTR, TBA, ET and 
S could be easily interpreted via a well-known statistical density func-
tion. We applied a “Server” to model each component. Accordingly, 
the number of atoms in the model should be related to the number 
of components. Here, their relevant cycle time could be adjusted to 
any constant or random value. So, we set them to zero for immediate 
processing. In order to estimate the system reliability, it is necessary 
to eliminate TTR effects. In other words, the repair time should be 
considered as a very large value to prevent completion of the repairing 
process. Each simulation run takes a long period of time. When the 
simulation model is run, a continuous flow of “Product” entity is cre-
ated. The entity flow simulates the desired component performance 
and may change the system state over time until one of the failure 
modes occurs.

At the beginning of simulation, all components are set on their 
first state with its maximum performance until any significant discrete 
event occurs over time where the entrance of any entity affects them 
through degradation process or shock occurrence modulus. These two 
individual moduli have their own network. In the basic network, the 
entity is allowed to go to the next Server based on the system RBD. 
This sequence will continue to meet the last server. Figure 2 typically 
presents a sample layout for the simulation of only one component 
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which has four states. Note that this sample network does not reveal 
the degradation process and shock occurrence and it could cover only 
random breakdowns. So, no triggers from other modulus affect the 
basic network. Consequently, the probability of the system being on 
each state could be calculated by counting the number of entities tran-
sitioning into the respective states. For example, consider after a two-
hour simulation, the number of entities reaching states 1, 2 and 3 is 
equal to 200, 150 and 80 respectively.

Fig. 3. An Enterprise Dynamic layout for a four-states system

Suppose the component is working both in the first two states, 

consequently the reliability calculated through 
200 150 81%

200 150 80
+

=
+ +   

for a period of 430 hours. After replicating the model, the relevant 
curve could as plotted as shown by Figure 4. More replication con-
ducts to the more smooth curve. 

Fig. 4. A typical reliability curve

As a parallel of the basic network, two individual networks could 
influence each component failure by sending triggers. The first simu-
lates the degradation process while the second models the shock oc-
currence. If fatal shock occurs, the relevant component immediately 
fails; otherwise the time to failure time drops by a constant adjustable 
parameter. This trick enabled us to model the accelerated breakdown 
process by a constant percentage. The shock 
network need two inputs: 1) Inter-arrival shock 
process TBA which could be set by any ran-
dom distribution (e.g. Exponential,  Gamma, 
Weibull, …), and 2) The shock consequence 
table which embeds the updated degradation 
rates; ( )ji tα . For a fatal shock, the practitioner 
may set the rates to large value to immediately 
reveal the failure of the component.

4. Validation of the proposed simula-
tion model 

In order to examine the computer simula-
tion model capability, we followed a two-step 
process. First, the validity of the simulation 
model was examined and compared with an an-
alytic method. Once the validity of the simula-

tion model was verified, it was used to estimate the system reliability 
in the desired complex systems. Hence, applying an analytic model is 
a very difficult technical task. 

In order to validate the simulation model, a crystalizing shaft 
crack grow model was considered on a sugarloaf plant in Shahroud, 
Iran. A research team consisting of five skilled persons from the Uni-
versity studied 10 shaft samples of one type crystallizer machine for 
100 consecutive days in terms of crack growth using an X-ray ma-
chine. Here, the crack initiation time was uncertain and should have 
been estimated. Experts believed that since the shaft under study was 
not a critical component and could not withstand high mechanical 
loads, the maximum crack length should have been less than 100 mm. 
Table 1 reports the values of the experimental data for the measured 
crack length. . 

In order to examine the degradation models, we overviewed the 
crack length of samples over time. Figure 1 displays such actual deg-
radation. Rottenly linear, exponential and power models act as a prop-
er candidate for the fitness function. Since the linear and exponential 
models did not have an adequate fitting index in terms sum of squared 
error, the best fit was obtained based on the power model. The general 
form of such fitness function is presented by the function below:

 ( )0
a

tD b t t= −  (8)

where, tD  denotes the crack length in time. Hence 0t  begins for 
the crack initiation time and like a  and b  parameters they should 
be estimated using maximum likelihood estimation method from ex-
perimental data. Table 2 presents an estimation of the power model 
parameters. In this table, the failure time was calculated based on the 

100MaxD mm=  and the growth time was calculated according to the 
period of time between the failure time and crack initiation time.

Fitting a different probability distribution function to the calcu-
lated crack growth time reveals that the Weibull has a good candidate 
to estimate crack growth time density function.  Figure 5 presents the 
relevant probability plot justification. Low amount of the Anderson 
Darling statistic; 1.657 beside high p-value; greater than 0.1  reveals 
that we has not any evidence to reject the Weibull distribution in the 
goodness of fit hypothesis testing. 

Using the Minitab statistical package, the reliability plot of the 
shaft growth time using 95% confidence interval is illustrated in Fig-
ure 6. According to the results, the newly received shafts do not have 
good quality and their cracking started within the interval of 8 to 24 
days reaching their maximum permissible average over a period of 
110 days. Also, the reliability of these shafts has been only 51.57% 

Table 1. Crack length (mm) of 10 samples of crystallizer machine shaft

Time 
(days)

Sample No.

1 2 3 4 5 6 7 8 9 10

10 13 11 13 24 8 22 16 18 12 14

20 34 46 32 71 38 60 33 48 31 35

30 45 69 40 108 54 90 42 67 40 45

40 55 88 45 139 65 120 50 84 48 50

50 63 103 52 165 75 143 55 100 53 60

60 71 118 54 195 85 165 60 112 58 63

70 77 130 60 216 92 187 61 124 60 68

80 84 144 65 243 100 210 64 135 65 70

90 89 153 67 264 106 225 70 145 70 75

100 93 165 70 285 111 245 72 158 75 80
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for 90 days of operation after cracking initiation; so, this type of shaft 
should be replaced with higher quality types.

As mentioned earlier, applying a technical method for reliability 
of a case study needs many sequential statistical methods. Since the 
shaft breakdown tends to fail the crystallizer machine and there are a 
set of different machines in this department, so the reliability analy-
sis of such departments is very time-consuming especially when the 
system has a complicated reliability block diagram of multiple multi-
component machines engaged with different stochastic degradation 
processes and random soft/hard shocks. A feasible efficient solution 
method could be applied using a computer simulation model.

Let us now examine the system reliability estimation through 
simulation model for the first case study report. This case embeds one 
degradation process alongside a soft shock occurrence. In that case 

at any given time, the crack length develop from a Weibull distribu-
tion with 1.412 and 120.509 respectively for the shape and the scale 
parameters. Hence the mean of the degradation process is assumed 
to develop a power function based on the mean estimates of samples 
for a , b , 0  t parameters as function ( )0.52111.34 8.33tD t= − . Defin-
ing  one block showing the crystallizer in the first modulus and set-
ting a two-state system transition diagram with time to failure density 
function based on the Weibull (1.412,120.504) in the second modulus 
while recognizing  the degradation function in the fourth modulus are 
necessary to estimate system reliability at a given time, say 90 days. 
Running the simulation model under 5 runs reported the values of 
system reliability as: 45.1 %, 64.9%, 57.1%, 54.4%, and 49.2%. Thus, 
the simulation model estimated the mean shaft reliability as 54.14%, 
only 4.7% overestimation in relation to the analytic method. 

In order to further examine the simulation model validity, we run 
the sample model using a two-parameter gamma degradation process. 
According to Huang et al. [10], the reliability of such a process is 
given by Eq. (9):

 R t f x dx
t L

td
L

( ) = − ( ) = −
( )
( )∫1 1

∞

α ,β
α β
αt

Γ
Γ

,
 (9)

Here, α  denotes the shape parameter β  stands for the scale param-
eter. Also, the threshold degradation is represented by L. By substitut-
ing the mentioned parameters by 60, 10, and 14.5 respectively, the 
system reliability will be 0.97, 0.53, 0.31, and 0.22 for 4, 8, 12, and 
16 weeks respectively. In order to compare the simulation model un-
der the same circumstances as with the analytic model, we set the 
simulation model based on the gamma random TTF while the another 
feature of the model was relaxed. Running the simulation model for 
25 replications, the Mann-Whitney non-parametric statistical testing 
was applied using the SPSS statistical package. The results of this 
hypothesis testing are summarized below:

Point estimate for ETA1-ETA2 is 0.044
95.0 Percent CI for ETA1-ETA2 is (0.032,1)
W = 10285.0
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is signifi-
cant at 0.9432

The report reveals that the mean differences between the simu-
lated and analytic values of reliability is too small (0.044). The calcu-
lated p-value for the W-statistic is 0.9432 greater than the significant 
level. Consequently we could conclude the there is no reason to reject 
the null hypothesis. Hence the validation of the proposed simulation 
method is acceptable. 

Once again it is emphasized that the simulation output illustrates 
reliability instead of availability when repair time sets to a very large 
amount to prevent the system from returning to the working state. 

Table 2. Degradation parameters and time to failure estimation for crack process 

Parameters
Sample No.

1 2 c 4 5 6 7 8 9 10

0t 13 11 13 24 8 22 16 18 12 14

a 34 46 32 71 38 60 33 48 31 35

b 45 69 40 108 54 90 42 67 40 45

Failure time 111.15 48.00 231.47 27.78 81.42 33.02 204.45 51.288 213.91 176.01

Growth time 63 103 52 165 75 143 55 100 53 60

Fig. 5. The crack growth time probability plot based on the two parameter 
Weibull distribution

Fig. 6. Fig. 6.  The 95% confidence interval for reliability of the growth time
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5. Case study 

In order to fully reveal the applicability of the proposed simula-
tion model, we focused on a more complicated system in the same 
crystalizing process in the Shahroud sugarloaf. Here, this production 
department was equipped with three crystallizer units. Units A and B 
worked serially while another one (unit C) acted as a cold standby unit 
and could be activated instantly. The desired performance requires 
proper operation of two out of three units carrying out their duties 
successfully. Progressively, the state of each crystalizing unit changes 
over working time through the state space of “Good” to “Faulty”, 
“Imperfect” and finally “Fail”. The nomenclature of this crystalizing 
modulus is shown in Table 3.

The state transition sequence for crystalizing unit of X is shown in 
Figure 7. Here ( ) , , .X A B C∈

Fig. 7. State diagram for each crystalizing unit in the sugarloaf plant

Each unit is said to be working if it is in states 0, 1, or 2 and the 
units is said to be failed if it is in state 3. Among of all of system states, 
there are 54 working system states that have been listed in table 4. 

The reliability becomes the probabilities that the system is in the 
working states and is given by:

 ( ) ( )
1 54,

i
i i N

R t P t
≤ ≤ ∈

= ∑  (10)

Based on the historical data and expert judgments, the parameters 
of the model estimated and presented in Table 5.

Figure 8 illustrated the model layout in the ED software. This 
model verified conceptually through examining logical entity flow 
within the networks. 

As the layout presents the sugar plant has four state, Hence a 
Server atom is considered to model each state. Also, time to failure 
and time to repair for such atom has capability to define transition rate 
or density function. We have considered each unit A, B, and C act as a 
Server atom with their relevant states. Every Server has three inputs. 
meanwhile, in the degradation state in the sub model, one entity enters 
the system. Based on a given randomly distributed failure, an entity 
activates one of the servers A, B, or C, and accelerate its failure rate. 

In the case of presenting a random shock, such as the Gamma dis-
tributed occurrence, for example after 100 min, a hard shock strikes 
the system and a unit state will change into the fail mode causing the 
failure of the server. Note that here the time to repair should be set to a 
large value to prevent system condition to return to working state after 
finishing the repair time.  In the case of considering a small amount, 
the long term system availability may be calculated. 

Table 3. Nomenclature

Nomenclature Description

A, B,C Crystalizing units

0, 1, 2, 3 States of each crystalizing unit, respectively stands as Good, Faulty, Imperfect and Fail

S, W, R, O Condition of each crystalizing unit,  respectively stands for Standby, Working, Repair, and Operable 

( ), ,  i mS mW nWS A B C
The thi  state of the system, in which elements A, B, and C are in state m  and standby, state m  and working, and state n  
and working, respectively.  (m,n ∈ (0,1,2,3) and i ∈ N is the size of system state space, For example state S7:(A0S,B1W,C2W) 

means the system is working, the unit B and C are in faulty and imperfect respectively and working while unit A is in good 
state and standby. 

30Xγ Repair rate (transition from state 3  to 0  for crystalizing unit of element ;X  ( ) , ,X A B C∈

mnXλ Rate of transition from state m  to n  for crystalizing unit of element X  ; ( ),   0,1,2,3m n∈ , ( ) , ,X A B C∈

Table 4. The states in which the system acts as working

Unit A in repair or standby Unit B in repair or standby Unit C in repair or standby

S1:(A0S,B0W,C0W) S10:(A3R,B0W,C0W) S19:(A0W,B0S,C0W) S28:(A0W,B3R,C0W) S37:(A0W,B0W,C0S) S46:(A0W,B0W,C3R)

S2:(A0S,B1W,C0W) S11:(A3R,B1W,C0W) S20:(A1W,B0S,C0W) S29:(A1W,B3R,C0W) S38:(A1W,B0W,C0S) S47:(A1W,B0W,C3R)

S3:(A0S,B2W,C0W) S12:(A3R,B2W,C0W) S21:(A2W,B0S,C0W) S30:(A2W,B3R,C0W) S39:(A2W,B0W,C0S) S48:(A2W,B0W,C3R)

S4:(A0S,B0W,C1W) S13:(A3R,B0W,C1W) S22:(A0W,B0S,C1W) S31:(A0W,B3R,C1W) S40:(A0W,B1W,C0S) S49:(A0W,B1W,C3R)

S5:(A0S,B0W,C2W) S14:(A3R,B0W,C2W) S23:(A0W,B0S,C2W) S32:(A0W,B3R,C2W) S41:(A0W,B2W,C0S) S50:(A0W,B2W,C3R)

S6:(A0S,B1W,C1W) S15:(A3R,B1W,C1W) S24:(A1W,B0S,C1W) S33:(A1W,B3R,C1W) S42:(A1W,B1W,C0S) S51:(A1W,B1W,C3R)

S7:(A0S,B1W,C2W) S16:(A3R,B1W,C2W) S25:(A1W,B0S,C2W) S34:(A1W,B3R,C2W) S43:(A1W,B2W,C0S) S52:(A1W,B2W,C3R)

S8:(A0S,B2W,C1W) S17:(A3R,B2W,C1W) S26:(A2W,B0S,C1W) S35:(A2W,B3R,C1W) S44:(A2W,B1W,C0S) S53:(A2W,B1W,C3R)

S9:(A0S,B2W,C2W) S18:(A3R,B2W,C2W) S27:(A2W,B0S,C2W) S36:(A2W,B3R,C2W) S45:(A2W,B2W,C0S) S54:(A2W,B2W,C3R)

Fig. 8. The ED layout for the two four-states serially crystallization equip-
ment with one standby
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Using the Experimental wizard, simulation running parameters 
established and the system availability chart achieved and is shown 
in Figure 9. 

Fig. 9. Crystalizing system reliability curve 

In order to look at the simulation model capability, we focused 
on the most critical degradation process on the crystallizations.  Here 
their bearing displacement considered as deterioration variable and 
called hereinafter by tD . Based on the historical data for a period 
of one cycle replacement ended to April 2018 displacement values 
recorded on Figure 10. As shown in the figure, 3 missing data at week 
3, 19 and 31 observed. Here the maximum allowed displacement con-
sidered as 0.02 mm.

Applying curve fitting process over different alternatives patterns 
reveals that the crystalizing main bearing displacement sets up a para-
bolic curve as Eq. 11:

 20.1 0.2 2.1i iD t t e= + + +  (11)

where the error terms of ie  depicts model residuals that deploys 
from a Weibull distribution with 1 and 0.7 for its shape and scale pa-
rameters respectively. This fact shows that degradation process has 
Weibull distributed random process.

In order to simulate the system under such circumstance proc-
ess, an extra network extended to the main simulation model, whereas 
entity flow in that sub-model acts as the main bearing displacement. 
Hence, any  over amounts (displacement greater than or equal to nom-
inated threshold) signals a breakdown event and a complete set of 
bearing parts including bushings, sleeve, two ended caps and four ball 
bearings should be replaced and after greasing calibration is required. 
This process simulated again 1000 times and reliability of crystalizing 
modulus illustrated by Figure 11.  The figure also compares the reli-
ability curves before and after considering the degradation process 
and reveals significant difference.

Fig. 11. Reliability comparison between before and after considering  sto-
chastic degradation

In order to examine the system reliability in the presence of ran-
dom shock events due to welding operations and unusual voltage fluc-
tuation, we applied random non-fatal shocks which would accelerate 
the failure process. In the simulation model, the system works as pre-
vious models up to the occurrence of a non-fatal shock; based on the 
expert’s judgment, their mean time for arrival is on the range of  [0.5 
- 4] weeks with a mean of 2. Consequently, we modeled such shock 
arrivals by a Gamma distribution with parameters of 10 and 0.2 for 
the relevant shape and scale parameters, respectively. When a shock 
occurs, the deterioration process will rapidly be accelerated.  Due to 
lack of reported data and by considering the experts judgment, we 
supposed that the failure process would accelerate by 3 times. Thus, in 
the simulation, we modeled the new deterioration process via Eq. 12:

Table 5. Parameters setting of the model

Notation Transition of States Rate 

01Aλ 0 1 →  for unit A 0.001

12Aλ 1  2→  for unit A 0.002

23Aλ 2  3→  for unit A 0.003

01Bλ 0 1 →  for unit B 0.002

12Bλ 1  2→  for unit B 0.004

23Bλ 2  3→  for unit B 0.009

01Cλ 0 1 →  for unit C 0.003

12Cλ 1  2→  for unit C 0.006

23Cλ 2  3→  for unit C 0.009

30Aγ 3  0→  repair rates for A 0.01

30Bγ 3  0→  repair rates for B 0.01

30Cγ 3  0→  repair rates for C 0.01

Fig. 10. Main bearing displacement in crystalizing unit (Degradation curve)
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 * 20.9 0.6 2.1t iD t t e= + + +  (12)

where, the residual keeps the previous value without any changes. 
Figure 12 compares the reliability of the system with the non-fatal 
shock, and degradation process with their absence. 

Fig. 12. Reliability comparison for crystalizing system at different failure 
modes

As reliability figures reveal, when the real degradation process 
is neglected, the system reliability will be overestimated.  A similar 
argument can be considered when shock is also present. 

6. Conclusion

The literature survey shows that system  reliability estimation 
always accompanied by complexity in analytic methods especially 
when there is a great deal of uncertainties the system analysis. These 
uncertainties arises complicated effects and interactions in the esti-
mations. Some usual source of uncertainty related to random time to 
failure, time to repair, degradation process and shock occurrences.

There is a lot of system reliability assessment methods in the lit-
erature. But almost all of them restricted to apply in the especial cases 
due to their relevant assumptions. For example system reliability as-

sessment under the degradation process is a common task and sparse 
studies have reported on the presence of just only the Gamma con-
tinuous degradation process alongside non-fatal shock occurrences. 
Rottenly real cases may cover a wide variety of systems consisted of 
multi-component, multi-state,  different type of time to failure, time to 
repair density function for each component, vast amount of continu-
ous degradation functions, and their severities. Although many arti-
cles have discussed the necessity of simulating complex systems and 
some of its applications in specific cases  have been delivered at yet, 
there is still a need to more address this issue. 

The proposed object-oriented simulation model has a couple of 
advantages in comparison to the analytic and previous methods. The 
major advantages are as follows:

The method may be justified for any kind of system with 1- 
complicated configurations.
It consists of a few individual moduli where each of them 2- 
may be relaxed for more simplified cases.
It supports both continuous or discrete degradation deter-3- 
ministic or stochastic processes. Thus, it could be applied 
for multi-state multi-component systems. 
The model has no dependence on special random variables 4- 
such as exponential or gamma degradation. Any practition-
er could set them to any other well-known density functions 
(e.g. Weibull, Logistic, Beta). 
It covers the effects of all types of random fatal and non-5- 
fatal shocks with any severities.
The simulation model reports the system availability as well 6- 
as reliability. 

The proposed model has been established using ED simulation 
software capabilities which may be accounted as a disadvantage. 
Nevertheless, non-familiar simulation experts could follow a specific 
logic for implementation via other software applications. Modeling 
some auto-correlated degradation processes in this context will be re-
main as future research for interested researchers. 
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