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1. Introduction

Water mains are an important part of the country critical infra-
structure. The level of their dependability, safety and security is very 
much required and it must be high. Because of different structural 
designs, materials used, running failures and repairs, the technical 
condition of mains varies. Moreover, the system is subject to extreme 
stress owing to weather conditions. Monitoring the condition of this 
device is therefore very difficult. Both direct and indirect diagnostics 
is very problematic and does not provide satisfactory results. The ac-
cess to the field data of this device is also difficult, and is not that 
common. Despite all these limitations mentioned, we are able to ex-
amine and predict the water mains reliability. For this purpose we use 
the sparse data set, and in order to model the data, we apply novel 
single and multiple error state space models.

1.1. State of the art

This part is devoted to the literature research focusing mainly on 
technical applications containing i) irregular sparse data, ii) single and 
multiple error state space models, iii) ways of predicting reliability. 

Current publications may contain the results which deal with ir-
regular sparse data. As examples, we introduce a few selected works 
which we found interesting, for different reasons explained later. An-
tholzer et al [2] propose a solution for accurate image reconstruction 
in the form of algorithms. They investigate this issue for the sparse 
data problem in photoacoustic tomography (PAT). They develop a 
direct and highly efficient reconstruction algorithm based on deep 
learning. In their approach, image reconstruction is performed with 
a deep convolutional neural network (CNN), whose weights are ad-
justed prior to the actual image reconstruction based on a set of train-
ing data. The proposed reconstruction approach can be interpreted as 
a network that uses the PAT filtered back projection algorithm for the 
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first layer, followed by the U-net architecture for the remaining layers. 
This work is inspirational but data set analyzed is not very large. Guo 
et al [17] bear in mind that fault diagnosis bearings in wind turbine 
and the drivetrain is very important to reduce the maintenance cost of 
the wind turbine and improve economic efficiency. However, the tra-
ditional diagnosis methods have difficulty in extracting the impulsive 
components from the vibration signal of the wind turbine because of 
heavy background noise and harmonic interference. In their paper, 
they propose a novel method based on data-driven multiscale diction-
ary construction. Firstly, they achieve the useful atom through train-
ing the K-means singular value decomposition (K-SVD) model with a 
standard signal. Secondly, they deform the chosen atom into different 
shapes and construct the final dictionary. Thirdly, the constructed dic-
tionary is used to sparsely represent the vibration signal, and orthog-
onal matching pursuit (OMP) is performed to extract the impulsive 
component. The proposed method is robust to harmonic interference 
and heavy background noise. Moreover, the effectiveness of the pro-
posed method is validated by numerical simulation and two experi-
mental cases including the bearing fault of the wind turbine generator 
in the field test. This approach is interesting but the analyzed diagnos-
tic signal is vibration, which includes some noise and is deformed by 
imperfection in terms of signal transfer. Wang and Lu [39] understand 
that incomplete modal data is mostly measured for experimental and 
engineering structures. However, its application into structural dam-
age identification suffers from the drawback that the amount of the 
incomplete modal data is often insufficient, rendering the identifica-
tion very sensitive to the measurement noise. Aiming to overcome this 
drawback, this paper proposes a new damage identification approach 
that combines the incomplete modal data with the sparse regulariza-
tion. The realization of the proposed damage identification approach 
is mainly threefold: (a) The first is the establishment of a new goal 
function which is decoupled with respect to the damage parameters. 
To this end, the decomposition of the stiffness matrix so that the dam-
age parameters are contained in a diagonal matrix must be introduced. 
(b) The second is the application of the alternating minimization ap-
proach to get the solution of the new goal function. (c) The third is 
the development of a novel and simple threshold setting method to 
properly determine the sparse regularization parameter. The feature of 
the proposed damage identification approach lies in that the sensitiv-
ity analysis is not involved and the exact orders of the modal data are 
not demanded. Numerical and experimental examples are conducted 
to verify the proposed damage identification approach. This outcome 
is also interesting, however we miss practical implementation of the 
proposed method. Experimental data are even more sparse. Sousa and 
Wang [35] present an application on bridges monitoring system. It 
uses on-structure sensors that are able to acquire signals sensitive to 
traffic load events, which can be used as an indirect indicator of the 
load magnitude. In this paper, sparse representation algorithms have 
been innovatively applied to the bridge weight in motion monitoring 
system data compression. A comparative study is performed based 
on measurements collected from a real bridge, by exploring differ-
ent methods including Discrete Fourier Transform (DFT), Discrete 
Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and 
two dictionary learning methods, i.e. Compressive Sensing (CS) and 
K-means Singular Value Decomposition (K-SVD). This outcome is 
interesting but again, vibration assessment causes some noise in the 
final system state determination. Inspirational examples on specific 
diagnostic data forms analysis can be found in [9, 13, 14, 25, 28, 32].

In the next part of our literature review we focus on applying 
state-space time series models related to technical systems and reli-
ability. The state-space models have been used by numerous applica-
tions based on the data analysis. In the text below there are examples 
of the outputs we found particularly inspiring. Dos Santos et al [10] 
propose new reliability models whose likelihood consists of decom-
position of data information in stages or times, thus leading to latent 

state parameters. Alternative versions of some well-known models 
such as piecewise exponential, proportional hazards, and software re-
liability models are shown to be included in our unifying framework. 
In general, latent parameters of many reliability models are high di-
mensional, and their inference requires approximating methods such 
as Markov chain Monte Carlo (MCMC) or Laplace. Latent states in 
their models are related across stages through a non-Gaussian state-
space framework. This feature makes the models mathematically trac-
table and allows for the exact computation of the marginal likelihood 
function, despite the non-Gaussianity of the state. The proposed non-
Gaussian evolution models circumvent the need for approximations, 
which are required in similar likelihood-based approaches. This mod-
el however, has limited practical applicability. Li et al [29] present 
method of reliability prediction based on state space model. Firstly, 
signals about machine working conditions are collected based on-line 
monitoring technology. Secondly, wavelet packet energy parameters 
are determined based on the monitored signals. Frequency band en-
ergy is regarded as characteristic parameter. Then, the degradation 
characteristics of signal to noise ratio is improved by moving average 
filtering processing. In the end, SSM is established to predict degrada-
tion characteristics of probability density distribution, and the degree 
of reliability is determined. Milling cutter is used to demonstrate the 
rationality and effectiveness of this method. Simpler version of state-
space model is applied here. Distefano et al [8] present outcomes of 
their article where the main goal is to demonstrate how state-space 
based techniques can satisfy demands on reliability and availability 
assessment. For this purpose some examples of specific dynamic reli-
ability behaviors, such as common cause failure and load sharing, are 
considered applying state-space based techniques to study the cor-
responding reliability models. Different repair policies in availability 
contexts are also explored. Both Markovian and non-Markovian mod-
els are studied via phase type expansion and renewal theory in order to 
adequately represent and evaluate the considered dynamic reliability 
aspects in case of generally distributed lifetimes and times to repair. 
Although there are a great number of state-space models applications 
used not only in a technical area, it is difficult to find the specific ap-
plication working with a single or multiple error state-space model. 
The authors offering interesting results in [11, 19].

Last but not least, we focus on the results dealing with reliabil-
ity forecasting/prognosis. Gobbato et al [15] present approach based 
on fatigue assessment of structural components. The first part of 
the paper provides an overview and extension of a comprehensive 
reliability-based fatigue damage prognosis methodology – previously 
developed by the authors – for recursively predicting and updating 
the remaining fatigue life of critical structural components and/or sub-
components in aerospace structures. In the second part of the paper, a 
set of experimental fatigue test data, available in the literature, is used 
to provide a numerical verification and an experimental validation of 
the proposed framework at the reliability component level (i.e., single 
damage mechanism evolving at a single damage location). Gobbato 
et al [16] present the theoretical basis of a novel and comprehensive 
probabilistic methodology for predicting the remaining service life of 
adhesively bonded joints within the structural components of com-
posite aircraft, with emphasis on a composite wing structure. Non-
destructive evaluation techniques and recursive Bayesian inference 
are used to (i) assess the current state of damage of the system and (ii) 
update the joint probability distribution function (PDF) of the damage 
extents at various locations. A probabilistic model for future aerody-
namic loads and a damage evolution model for the adhesive are then 
used to stochastically propagate damage through the joints and predict 
the joint PDF of the damage extents at future times. This information 
is subsequently used to probabilistically assess the reduced (due to 
damage) global aeroelastic performance of the wing by computing 
the PDFs of its flutter velocity and the velocities associated with the 
limit cycle oscillations of interest. Both of these methods are interest-
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ing however small testing data set for approach validity confirmation 
has been presented. Dindarloo [7] presents alternatives to traditional 
reliability assessment approaches. Both the autoregressive integrated 
moving average (ARIMA or the Box-Jenkins technique) and artificial 
neural networks (ANNs) are viable alternatives to the traditional reli-
ability analysis methods (e.g., Weibull analysis, Poisson processes, 
non-homogeneous Poisson processes, and Markov methods). Time 
series analysis of the times between failures via ARIMA or ANNs 
does not have the limitations of the traditional methods such as re-
quirements/assumptions of a priori postulation and/or statistically 
independent and identically distributed observations for TBFs. The 
reliability of an load-haul-dump unit was investigated by analysis of 
time between failures. Seasonal autoregressive integrated moving 
average (SARIMA) was employed for both modeling and forecast-
ing the failures. The results were compared with a genetic algorithm-
based (ANNs) model. In this approach we can see interesting practi-
cal application. Kontrec et al [26] propose an approach that supports 
decision making process in planning and controlling of spare parts 
in aircraft maintenance systems. Reliability characteristics of aircraft 
consumable parts were analyzed in order to substantiate this approach. 
Moreover, the proposed reliability model was used to evaluate char-
acteristics of subassemblies and/or assemblies these parts belong to. 
Finally, an innovative approach for determining the total amount of 
parts required in inventory and underage costs, based on observing 
the total unit time as a stochastic process, is presented herein. This 
application of stochastic process is also partially inspirational. Other 
encouraging results which deal with assessing systems reliability and 
include real field data but not only on water mains, are those intro-
duced in [27,30,36-38].

1.2. Motivation

The main motivation of this article is to show that despite having 
only restricted information in the data, it is still possible to carry out 
certain estimates and prognoses of reliability measures. What is more, 
the data are very austere, and from the mathematics point of view, also 
very sparse. The only thing available is the number of failures which 
occurred during single months, the data information value is therefore 

very low. The assumptions about the future system behaviour are then 
very uncertain because of numerous influences, e.g. seasonal influ-
ences, water mains material, etc. That is the reason why we would 
like to introduce a suitable mathematical approach based on a few 
newly proposed single and multiple error state-space models. Using 
these models, we have the ambition not only to estimate the course 
of ROCOF, but also predict the system behaviour in the future. This 
information can significantly contribute to i) the optimization of this 
part of a critical infrastructure, ii) the planning of water mains mainte-
nance, iii) the support of crisis management and emergency planning, 
iv) the rationalization of life cycle costs (LCC).

2. Field data analyzed

The analysed data are dichotomous and quantitative. They are the 
real field data collected in a broad area from the operators of the mains 
distribution system. In the area covered by the monitoring there are 
more than 5 million inhabitants supplied by water. The data cover the 
period longer than 17 years. Table 1 shows the example of such a data 
segment. We introduce the example of a complete form of the recorded 
data when having only the number of failures during single months. 
Although it would be possible to work with quarters which could filter 
out some data mistakes, we prefer to work with the number of failures 
during a month. The work with this variable would be possible but not 
entirely favourable. This value is therefore always transferred into the 
rate of failures occurrence (ROCOF), since it is necessary to consider 
and filter out the different number of days during a month. However, 
we presume that it will be possible to trace certain seasonal influences 
affecting the data.

The total course of ROCOF during a observed time elapse is 
shown in Fig. 1. The course is accompanied by trend smoothing non-
parametric curves: lowess and cubic spline.

Next, in Fig. 2. we applied box plots to show a preliminary analy-
sis of a time-series based on robust estimates of yearly and monthly 
ROCOF levels (thick lines in the boxes illustrate a median value) 
and on robust estimates of ROCOF variability during single years or 
months (see the box containing 75 % of the values of a given period). 
The left graph (panel) shows that the failure frequency decreases over 

Table 1. Extracted sample of field data example – number of failures Ft during a respective month and ROCOF

Year 2000 2001 2002 2003

Month Ft ROCOF Ft ROCOF Ft ROCOF Ft ROCOF

January 6 0.19354839 10 0.32258065 6 0.19354839 13 0.41935484

February 12 0.4137931 11 0.39285714 11 0.39285714 7 0.25

March 27 0.87096774 14 0.4516129 14 0.4516129 8 0.25806452

April 23 0.76666667 10 0.33333333 4 0.13333333 13 0.43333333

May 18 0.58064516 12 0.38709677 4 0.12903226 4 0.12903226

June 8 0.26666667 9 0.3 3 0.1 2 0.06666667

July 12 0.38709677 16 0.51612903 7 0.22580645 4 0.12903226

August 8 0.25806452 12 0.38709677 10 0.32258065 8 0.25806452

September 12 0.4 10 0.33333333 7 0.23333333 11 0.36666667

October 17 0.5483871 10 0.32258065 6 0.19354839 12 0.38709677

November 24 0.8 5 0.16666667 6 0.2 7 0.23333333

December 17 0.5483871 7 0.22580645 14 0.4516129 12 0.38709677

Total in year 184 126 92 101
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time – during years, which indicates that the system condition ‘gets 
improved’, perhaps due to gradual modernisation of network lines. 
We can also see that the ROCOF variability fluctuates during single 
years. The right graph (panel) shows the distribution of ROCOF in re-
spective months and its variability. That is very useful since we work 
with and study the seasonality.

Since we have the idea of applying the following mathematical 
tools, we would like to verify the dependence or independence in the 
data – an autocorrelation function (ACF) and a partial correlation 
(PACF). Autocorrelation and partial autocorrelation plots are very of-
ten used in time series analysis and forecasting. These are plots that 
graphically summarize the strength of a relationship with an observa-
tion in a time series with observations at prior time steps, called lags. 
The blue dashed lines represent an approximate confidence interval 

for what is produced by white noise, by default 
a 95% interval. The ACF identifies the obvious 
seasonal variation (with high positive autocor-
relations at lags 12, 24, …) and shows the slow 
decay typical for a non-stationary series. The re-
sults shown in Fig. 3 demonstrate that the data 
are independent.

No standard state-space models fit the data 
distributed in this manner. Therefore, we sug-
gest special forms which capture, describe and 
fit the behaviour in the data a lot better. They 
are also able to depict the course of ROCOF in a 
better and more accurate way.

3. Modelling methodology

When modelling the system behaviour 
from the reliability point of view, we will fol-

low the approach illustrated in 
Fig. 4. The first four steps have 
already been described above, 
and the remaining steps will be 
described in view of the applied 
theory. 

Using the recorded data and 
the calculated ROCOF, we try 
to find the proper state-space 
model.

3.1. General theory of state 
space models

At first, we will describe 
briefly and generally the basic 
state-space models theory, later 
we will give a more detailed de-
scription of our newly proposed 
approaches and modifications of 
specially designed state-space 
models to be used for the exam-
ined specific technical case. 

The state space representa-
tion of a linear time series mod-
el is given by:

 y w xt t t t= ′ +−1 ε          (1)

 x F xt t t t= +−1 η          (2)

for t = 1, ... , n, where yt 
is the observed time series value. wt (with wt

´ its transpose) is as-
sumed to be known vector, Ft a known matrix and xt is the (possibly 
unobservable) state vector. Furthermore, εt are serially uncorrelated 
disturbances assumed to have zero mean and variance σε

2, while ηt 
is a vector of serially uncorrelated disturbances with zero mean and 
covariance matrix Vt. Usually, εt and ηt are assumed to be (multivari-
ate) normally distributed and uncorrelated with each other at all time 
periods (i.e. E(εt ηs) = 0 for all t, s = 1, ... , n). The model is thus 
characterized by wt, Ft, σε

2 and Vt. Equation (1) is known as the ob-
servation or measurement equation and (2) as the transition or state 
equation. If wt, Ft and Vt do not change over time, the model is said to 
be time-invariant. Next we assume, the underlying state space models 
are time-invariant.

Fig. 1. ROCOF – monthly of observed series: accompanied with lowess trend line and its 95% confidence 
intervals (left) and with cubic spline and its 95% confidence intervals (right)

Fig. 2. Visualisation of robust estimates of ROCOF levels and of ROCOF variabilities for each year (left panel) and months 
(right panel)

Fig. 3. Course of autocorrelation function during respective quarters (left) and partial autocorrelation function (right)
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One popular special case of state space models is the class of 
structural models. For these models, the vector xt denotes a vector of 
states corresponding to the trend, cycle and seasonal components (see 
[18], chapter 2).

A special form of the state space model is the innovations model 
by Anderson and Moore (1979) [1]:

 y w xt t t t= ′ +−1 ε  (3)

 x F x gt t t t= +−1 η   (4)

where g is a fixed vector. The difference with the general state space 
model (1)-(2) is that the disturbance terms in the observation and tran-
sition equations are now perfectly correlated, implying that there is 
effectively only a single source of randomness. Since there is only one 
disturbance term in the model, it is referred to as a single source of 
error (SSOE) model. Models with more than one disturbance term are 
known as multiple sources of error (MSOE) models. This model has 
many common models as special cases, such as multiple regression, 
exponential smoothing, and ARIMA models. Any ARIMA model can 
be converted to this form. This model was first related to exponential 
smoothing in [33].

Since state space models contain both an unobservable state vec-
tor and unknown parameters, estimation for state space models has 
two aspects: i) estimating the unknown parameters, ii) estimating the 
unobservable state variables. 

The first can be done by, for example, maximum likelihood esti-
mation. The second is done by the Kalman filter (see e.g., [18]). The 
Kalman filter is a recursive procedure for computing the optimal esti-

mator of the state vector at time t, based on the information available 
at time t (i.e. the observations up to and including yt). Every time peri-
od, when new observations become available, this information is used 
to update the estimates. For state space models, optimal predictions of 
future observations and optimal estimates of unobserved components 
can be made using the Kalman filter. If the model is Gaussian (εt,ηt 
and the initial state are normally distributed), the Kalman filter is op-
timal in the sense that it yields minimum mean square error estimators 
(MMSE’s).

For both the time-invariant MSOE and SSOE model, the Kalman 
filter converges to a steady state under some conditions.

In the next part we give a more detailed description of the particu-
lar proposed models used for examining our specific technical case.

3.1.1. Single error state space models for exponential smoothing

Exponential smoothing state space methods constitute a broad 
family of approaches to univariate time series forecasting that have 
been around for many decades and only in the twenty-first century 
placed into a systematic framework. The definitive book on the sub-
ject is [20]. In general, innovation ETS models are defined according 
to three model structure parameters: (E) error type, (T) trend type, 
and (S) seasonality type [20,24]. Each of the parameters can be an N 
(none), A (additive), or M (multiplicative) state. The trend component 
also can be d (damped) type.

ETS(A,Ad,A) (seasonal exponential smoothing with damped 
trends)

Consider the single error state space model given by:
observed series: y l st t t m t= + +− ε    ε σεt NID~ ,° ( )0 2

latent level: l l bt t t t= + +− −1 1φ αε    0 1< <φ  – damping param-
eter

latent trend/drift: b bt t t= +−φ βε1

latent seasonal: s st t m t= +− γε   0 1≤ ≤α β γ, ,  - smoothing param-
eters

A deterministic representation of the seasonal components can be 
obtained by setting the smoothing parameters equal to zero.

BATS model (exponential smoothing state space model with 
Box-Cox transformation, ARMA errors, trend and seasonal 
components)

De Livera et al. [6] propose modifications to the linear innovation 
models in order to include a wide variety of seasonal patterns and 
solve the problem of correlated errors. To avoid falling into nonlin-
earity problems, these authors restricted the models to those homo-
skedastic and the Box-Cox transformation [3] are used when there 
is some type of specific nonlinearity. The model including the trans-
formation of Box and Cox, ARMA errors (see [4,5,40]) and seasonal 
patterns can be expressed as follows:

Box-Cox power transformation:  y
y

y
t

t

t

( )
( )

ln

ω

ω

ω
ω

ω
=

−
≠

=









1 0

0
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latent trend/drift:                         b b b dt t t= −( ) + +−1 1φ φ β

latent seasonal:      s s dt
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i ti
( ) ( )= +− γ

Fig. 4. Methodology of elaboration the recorded data on mains failure
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ARMA(p, q) process:d dt i t i t ti
q

i
p= + +− −== ∑∑ ϕ θ ε ε1 111  ε σεt NID~ ,0 2( )

where:
ω      Box-Cox transformation parameter
φ      damping parameter of trend (see  

  [12, 34]),
1, , Mm m   seasonal periods,

b      long-run trend parameter,

tb      short-run trend parameter in time t,

α β γ γ, , ,( ) ( )
1 2

i i  smoothing parameters.

These models are called BATS with arguments (ω,φ, p, q, m1, …, 
mM). A deterministic representation of the seasonal components can 
be obtained by setting the smoothing parameters equal to zero.

3.1.2. Multiple error state space model

Among state space models with multiple errors, the following 
model was chosen as suitable

observed series:  y l st t t t= + +1, ε  ε σεt NID~ ,0 2( )

latent level:  l bt t t− −+ +1 1 η  η σηt NID~ ,0 2( )

latent trend/drift:  b bt t t= +−1 ξ  ξ σξt NID~ ,0 2( )

latent seasonal: 1
1, , 11

s
t j t tjs s ν−

−== − +∑  ν σνt NID~ ,0 2( )

  
2, 1, 1

1, 2, 1

t t

m t m t

s s

s s

−

− − −

=

=


This model is called BSM (Basic Structural Model). If we omit 
the drift component bt in the BSM model, we mark this model as 
Level-BSM.

3.1.3. Quality of forecasting

Different criteria such as forecast error measurements, the speed 
of calculation, interpretability and others have been used to assess the 
quality of forecasting. Forecast error measures or forecast accuracy 
are the most important in solving practical problems. Typically, the 
common used forecast error measurements are applied for estimating 
the quality of forecasting methods and for choosing the best forecast-
ing mechanism in case of multiple objects.

Training and test sets

It is important to evaluate forecast accuracy using genuine fore-
casts. Consequently, the size of the residuals is not a reliable indica-
tion of how large true forecast errors are likely to be. The accuracy of 
forecasts can only be determined by considering how well a model 
performs on new data that were not used when fitting the model. 
When choosing models, it is common practice to separate the avail-
able data Yn = {y1, ... , yn} into two portions, training and test data,

 training data: YT = {y1, ... , yT}, test data: Ytest = {yT+1, yT+2, ... , yn}

where the training data is used to estimate any parameters of a forecast-
ing method and the test data is used to evaluate its accuracy. Because 
the test data is not used in determining the forecasts, it should provide 
a reliable indication of how well the model is likely to forecast on new 
data. This data sub-division into regions can be seen in Fig. 5.

Forecast Accuracy

The forecast accuracy can be evaluated on the test set using re-

sidual diagnostics and forecast accuracy measures. A forecast “error” 
is the difference between an observed value and its forecast. Here 
“error” does not mean a mistake, it means the unpredictable part of an 
observation. It can be written as:

 
( )m

t t te y f= −  

where yt is the measured value at time t, ft(m) is predicted value at time 
t, obtained from the use of the forecast model m. Note that forecast 
errors are different from residuals in two ways. First, residuals are cal-
culated on the training set while forecast errors are calculated on the 
test set. Second, residuals are based on one-step forecasts while fore-
cast errors can involve multi-step forecasts. We can measure forecast 
accuracy by summarising the forecast errors in different ways – see 
bellow please.

Scale-dependent errors

The forecast errors are on the same scale as the data. Accuracy 
measures that are based only on et are therefore scale-dependent and 
cannot be used to make comparisons between series that involve dif-
ferent units. The two most commonly used scale-dependent measures 
are based on the absolute errors or squared errors:

 Mean absolute error: MAE = mean(|et|)

 Root mean squared error: 2( )tRMSE mean e=

When comparing forecast methods applied to a single time series, 
or to several time series with the same units, the MAE is popular as it 
is easy to both understand and compute. A forecast method that mini-
mises the MAE will lead to forecasts of the median, while minimis-
ing the RMSE will lead to forecasts of the mean. Consequently, the 
RMSE is also widely used, despite being more difficult to interpret.

Percentage Errors

The percentage error is given by:

 
100 t

t
t

ep
y

=
 

Percentage errors have the advantage of being unit-free, and so 
are frequently used to compare forecast performances between data 
sets. The most commonly used measure is:
 Mean percentage error: MPE = mean(pt)
 Mean absolute percentage error: MAPE = mean(|pt|)

Measures based on percentage errors have the disadvantage of be-
ing infinite or undefined if yt = 0 for any t in the period of interest, and 
having extreme values if any yt is close to zero. Another problem with 
percentage errors that is often overlooked is that they assume the unit 
of measurement has a meaningful zero.

Fig. 5. Example of data sub-division into training, testing and forecasting region
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ETS models

Based on the AIC criterion, the most appropriate ETS model for 
training data YT is first found. This model is ETS(A,Ad,A):
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Even on the basis of all the data Yn, another type of ETS model 
was not chosen as optimal.

ETS(A,Ad,A):
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Components of this state space model for both training and all 
data are presented in Fig. 6.

BATS models

Again, using the AIC criterion, we find the most appropriate BATS 
model for training data, which is model BATS(1, {0,0}, -, {12}) (see 
[23, 24]). Since ω = 1, the observed data is not transformed. In addi-
tion, dumping parameter ϕ is zero, so the model becomes simpler as 
the drift component falls out. Moreover, the orders of both AR and MA 
processes are zero, so dt is white noise εt. Components of this state 
space model for both training and all data are presented in Fig. 7.

Scaled Errors
Scaled errors were proposed by Hyndman & Koehler (2006) [21] 

as an alternative to using percentage errors when comparing forecast 
accuracy across series with different units. They proposed scaling the 
errors based on the training MAE from a simple forecast method.

For a non-seasonal time series, a useful way to define a scaled 
error uses naïve forecasts:
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Because the numerator and denominator both involve values on 
the scale of the original data, qj is independent of the scale of the data. 
A scaled error is less than one if it arises from a better forecast than 
the average naive forecast computed on the training data. Conversely, 
it is greater than one if the forecast is worse than the average naive 
forecast computed on the training data. For seasonal time series, a 
scaled error can be defined using seasonal naive forecasts:
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 The mean absolute scaled error is simply
 MASE = mean(|qj|).

Both evaluation metrics and residuals diagnostics are used. The 
most common evaluation metrics for forecasting are RMSE, which 
you may have used on regression problems; MAPE, as it is scale-inde-
pendent and represents the ratio of error to actual values as a percent; 
and MASE, which indicates how well the forecast performs compared 
to a naïve average forecast.

4. Results of ROCOF modelling
In this section we bring results for ROCOF modelling using the 

respective above proposed new state space models.

4.1. SSOE models – innovations state space models for expo-
nential smoothing

In this paper, the innovation state space models that capture vari-
ous forms of the exponential smoothing methodology is used first. The 
method described by Hyndman et al [22] uses a state space framework 
for the automatic selection of exponential smoothening techniques for 
forecasting. The framework makes an assessment of best fit – com-
paring Akaike’s Information Criterions (see [23, 24]).

Fig. 6. Components of ETS method (left panel: training data, right panel: all data)
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4.2. MSOE models – innovations state space models for 
exponential smoothing

The MSOE models are based on the state space form, the Kalman 
filter, and the associated smoother. The likelihood is constructed from 
the Kalman filter in terms of the one-step-ahead prediction errors and 
maximized with respect to the hyperparameters by numerical opti-
mization. The score vector of the parameters can be obtained via a 
smoothing algorithm which is associated with the Kalman filter. Once 
the hyperparameters have been estimated, the filter is used to produce 
one-step-ahead prediction residuals which enables us to compute di-
agnostic statistics for normality, serial correlation, and goodness of 
fit. The smoother is used to estimate unobserved components, such as 
trends and seasonals, and to compute diagnostic statistics for detect-
ing outliers and structural breaks.

BSM models

Next, the BSM model was fitted to the training data with the fol-
lowing results:
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and I10 is 10×10 matrix.

Next, the BSM model was fitted to the all of the available monthly 
data with the following results:
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Components of this state space model for both training and all 
data are presented in Fig. 8.

Fig. 7. Components of BATS method (left panel: training data, right panel: all data)

Fig. 8. Components of BSM method (left panel: training data, right panel: all data)
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Components of this state space model for both training and all 
data are presented in Fig. 9.

In all the graphs in Figures 6 – 9 we might observe very clearly 
specific development of the “level” value course and the affected RO-
COF behaviour changes during the “seasonal” course. 

5. Discussion to ROCOF modelling and performance 
measures

This and following part 5.1 are devoted to graphic and numeri-
cal results which help us to i) find the model which could fit a given 
type of the analyzed data best, ii) get an idea of the courses of single 
model types for both the training data and the testing data especially 
in the forecasting region, iii) numerically compare the results of single 
models for the courses – fitting, level, drift, forecast a 95% prediction 
intervals in the forecasting region for training and all data.  
Based on the outcomes presented further there can be seen small but 
still existing difference in the applied models. Although one may say 
that divergence in these models is not significant it is not absolutely 
truth. Both of these models have their mathematical principles, there-
fore advantages and practical applicability especially in terms of these 
field data forms.

Level-BSM models

Next, the Level-BSM model was fitted to the training data with 
the following results:

y l
st
t

t
t= [ ]







 +−

−
10 1 0 0 0 0 0 0 0 0 0 1

1
| ε ; ε σεt N~ ,0 2( ) σε = −1 04 01. E

1

1

1 0
0

t t

t seas t

l l
s F s

−

−

     
=     

     
 l Nt ~ ,0 2ση( )  ση = −1 71 02. E

s Nt s~ ,11 0 ∑( ) s=












∑ σν
2 0

0 0 σν = −1 61 02. E

where st = (s1,t, … , s11,t), 
10

1 1 1
0seasF

I
− − − 

=  
 



 and I10 is 
10×10 matrix.

Next, the Level-BSM model was fitted to the all of the available 
monthly data with the following results:
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Fig. 9. Components of Level-BSM method (left panel: training data, right panel: all data)

Table 2. Forecast accuracy on test data with rating

Model Type RMSE rRMSE MAE rMAE MASE rMASE

ets SSOE 0.0886 3 0.0728 3 0.6480 3

bats SSOE 0.0751 2 0.0637 2 0.5673 2

bsm MSOE 0.0904 4 0.0742 4 0.6604 4

level-bsm MSOE 0.0715 1 0.0595 1 0.5302 1

Table 3. Forecast accuracy on training data with rating

Model Type AIC rAIC BIC rBIC RMSE rRMSE MAE rMAE MASE rMASE

ets SSOE 178.3885 2 235.8617 2 0.1107 2 0.0842 2 0.7494 3

bats SSOE 173.3949 1 179.7809 1 0.1110 3 0.0862 3 0.7433 2

bsm MSOE 306.1965 3 318.9683 3 0.0980 1 0.0753 1 0.6706 1

level-bsm MSOE 328.2960 4 337.8749 4 0.1223 4 0.0937 4 0.8342 4
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Fig. 10. Forecasting and testing – ETS model

Fig. 12. Forecasting and testing – BSM model Fig. 13. Forecasting and testing – Level-BSM model

Fig. 11. Forecasting and testing – BATS model

Table 4. Forecast accuracy on all data with rating

Model Type AIC rAIC BIC rBIC RMSE rRMSE MAE rMAE MASE rMASE

ets SSOE 238.4869 1 300.2151 2 0.1032 2 0.0793 2 0.7613 3

bats SSOE 243.7871 2 250.6458 1 0.1058 3 0.0814 3 0.6936 2

bsm MSOE 492.1602 3 505.8776 3 0.0906 1 0.0689 1 0.6609 1

level-bsm MSOE 514.8491 4 525.1372 4 0.1239 4 0.0956 4 0.9176 4

Table 5. Numerical values of ETS model components

Date Nr. 
days

Nr. 
Failures ROCOF ETS 

Fit
ETS 

Level
ETS 
Drift

ETS 
Seasonal

ETS 
Forecast

ETS 
PI 95L

ETS 
PI 95U

1.1.2000 31 6 0.193548 0.570834 0.576737 -1.46E-
02 -0.015703446

1.2.2000 29 12 0.413793 0.590349 0.5579475 -1.47E-
02 0.027815288

1.3.2000 31 27 0.870968 0.511642 0.5529108 -1.33E-
02 -0.031934835

…

1.10.2018 31 7 0.22580645 0.21918228 0.2049066 4.34E-
04 0.014286635

1.11.2018 30 9 0.3 0.27814934 0.205359 4.49E-
04 0.072826575

1.12.2018 31 8 0.25806452 0.33630317 0.2056702 3.24E-
04 0.130503361

1.1.2019 31 ~6 0.184536 -0.02582 0.394893

1.2.2019 28 ~7 0.232937 0.02258 0.443294

1.3.2019 31 ~5 0.155278 -0.05508 0.365637

…

1.10.2022 31 ~7 0.2269827 0.014268325 0.4396971

1.11.2022 30 ~9 0.2855796 0.072760766 0.4983983

1.12.2022 31 ~11 0.3433112 0.130386422 0.5562359
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5.1. Performance model measures

In this part we introduce numerical calculations of single mea-
sures which show the fitness of the proposed models. The forecast 
accuracy for the test data is put in Table 2, the forecast accuracy for 
the training data is put in Table 3, and the forecast accuracy for all the 

data is put in Table 4. The outcomes are always accompanied by rating 
of prioritization.

The modeling outputs along with prognoses are introduced in a 
graphical form first, see Fig. 10 – 13.

For each of the most suitable models of SSOE – ETS and MSOE 
– BSM groups we performed simulations within a forecast region in 
order to determine prediction intervals – PI (95% lower and upper (PI 
95L and PI 95U). The graphical outcomes are put in Fig. 14 and 15, 
and the following numerical outcomes are put in Tables 5 and 6. The 
predicted numbers of water mains failures according to single models 
are put in Italics.

The introduced results show that graphical and numerical model 
forms are interesting, however, in their prognoses they complement 
each other significantly even when it comes to the predicted failure 
numbers.

6. Conclusions

In our article we introduce new and promising state-space mod-
els which seem to be very useful and suitable every time there is in-
sufficient information on the system failures. The models SSOE and 
MSOE, or their representatives ETS and BSM, belong to the group of 

structural models which fit this type of analyzed field data very well, 
and also are suitable for forecasting failures and reliability measures 
development.

In our future work we would like to verify in practice, whether the 
achieved results agree and to what extent with our calculations. Luck-
ily, as early as at the beginning of 2019, the first checks of our results 
conformed to our calculations significantly.

All the outcomes, both graphical and numerical, were acquired 
with the help of R Studio [31].
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Table 6. Numerical values of BSM model components

Date Nr. 
days

Nr. 
Failures ROCOF BSM 

Fit
BSM 
Level

BSM 
Drift

BSM 
Seasonal

BSM 
Forecast

BSM 
PI 95L

BSM 
PI 95U

1.1.2000 31 6 0.193548 0.43750179 0.507319 -7.58E-03 -6.98E-02

1.2.2000 29 12 0.413793 0.48954893 0.4999693 -7.58E-03 -1.04E-02

1.3.2000 31 27 0.870968 0.55150313 0.4926839 -7.59E-03 5.88E-02

…

1.10.2018 31 7 0.22580645 0.244381 0.21077 2.61E-04 3.36E-02

1.11.2018 30 9 0.3 0.293988 0.210966 2.59E-04 8.30E-02

1.12.2018 31 8 0.25806452 0.333904 0.211154 2.59E-04 1.23E-01

1.1.2019 31 ~6 0.18671103 -0.036826694 0.4102488

1.2.2019 28 ~8 0.2973334 0.073650738 0.5210161

1.3.2019 31 ~3 0.09532622 -0.129205549 0.319858

…

1.10.2022 31 ~8 0.25667698 -0.109152479 0.6225064

1.11.2022 30 ~9 0.30634686 -0.064033347 0.6767271

1.12.2022 31 ~11 0.34633359 -0.027338535 0.7200057

Fig. 14. Simulation inside the forecast region – ETS model – trend with 95% PI Fig. 15. Simulation inside the forecast region – BSM model – trend with 95% PI
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