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Abbreviations and acronyms

PSST Power-shift steering transmission
PHM Prognostics and health management
RL Residual life
CDF Cumulative distribution function
Mh Motorhour

Nomenclature

,j tL Degradation data for system i  at time t

 φi Random effects of the degradation model for system i
η Functional form of the degradation model

εi t, Random noise for system i  at time t

ωi j,
Weight parameter corresponding to the historical sys-
tem i  and the operating system j

,j tL Reconstructed degradation model for system j  at time 
t  using the weighted average method

,.jL Collected real-time degradation data until time t

ˆiϕ Estimated model parameters of historical systems

,
ˆ

j tL Reconstructed degradation data for system j  at time t  
using the Bayesian updating method

θθ j
1( ) Updated random effects of the degradation model for 

system j

jD Failure threshold for system j

, ii nL
Degradation data for system i  at time in

jn Number of data collections of operating system j

 λ Tuning coefficient
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Similarity-based failure threshold determination 
for system residual life prediction

Określanie progu awarii na podstawie podobieństwa jako metoda 
pozwalająca na przewidywanie trwałości resztkowej systemu

An accurate determination of the system failure threshold is an essential requirement in achieving an appropriate system residual 
life prediction and a reasonable planned maintenance strategy optimization afterward for degradation systems. This paper pro-
poses a failure threshold determination method based on quantitative measurement of the similarity between the operating system 
and the historical systems. The similarity is formulated by a weighted average function and then calculated by a convex quadratic 
formulation to minimizing the variance between the operating system and the historical systems. With an accurate determination 
of the system failure threshold in real-time, a better prediction of the residual life for the operating system is achieved. Finally, a 
real case study for several power-shift steering transmission systems monitored using oil spectral analysis is adopted to illustrate 
and numerically compare the improved performance of the proposed method.

Keywords:	 system failure threshold; residual life; similarity; prognostics; oil field data.

W przypadku systemów podlegających degradacji, dokładne określenie progu awarii systemu stanowi niezbędny warunek do-
konania trafnej prognozy jego trwałości resztkowej oraz późniejszej optymalizacji strategii konserwacji rutynowych. W artykule 
zaproponowano metodę wyznaczania progu awarii opartą na ilościowym pomiarze podobieństwa między systemem użytkowanym 
obecnie a systemami użytkowanymi uprzednio. Podobieństwo formułuje się na podstawie funkcji średniej ważonej, a następnie 
oblicza na podstawie wypukłej formy kwadratowej w celu zminimalizowania wariancji między obecnie użytkowanym systemem  
a uprzednimi systemami. Dzięki dokładnemu określeniu progu awarii systemu w czasie rzeczywistym uzyskuje się lepszą progno-
stykę trwałości resztkowej obecnie użytkowanego systemu. W końcowej części pracy, w celu zilustrowania i numerycznego porów-
nania ulepszonej wydajności proponowanej metody, zaprezentowano studium przypadku obejmujące kilka układów przeniesienia 
napędu monitorowanych przy użyciu analizy spektralnej oleju.

Słowa kluczowe:	 próg awarii systemu; trwałość resztkowa; podobieństwo; prognostyka; dane z badań oleju.
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( )R ⋅ Regularization function

tX Time-dependent covariates at time t

p Order of the polynomial model

μ 0
jì , μ1

jì Prior and posterior mean of random effects θj

0
j∑ , 1

j∑ Prior and posterior variance of random effects θj

ψj Design matrix for operating system j

d
ju Mean of failure threshold for system j

d
jv Variance of failure threshold for system j

jT Actual RL for testing PSST system j

jT Estimated RL for testing PSST system j

( )Φ ⋅ CDF of the standard normal function

eRL Mean prediction error of system RL

eFT Mean prediction error of system failure threshold

N Number of testing PSST systems

True
jD Actual failure threshold for PSST system j

1. Introduction

Degradation-induced failure is an inevitable and natural phenom-
enon for various industrial devices and systems. After a certain extent 
of degradation, a system will run to failure such that it no longer func-
tions, which may result in production downtime, severe economic 
loss, and safety problems afterward. For example, for power-shift 
steering transmission (PSST) systems are the most vital components 
in military vehicles, mining machines, and heavy industry, and they 
always degrade to failure frequently than other components [14, 15]. 
Their failures are critically hazardous and often lead to catastrophic 
consequences, and therefore, should be avoided. One useful approach 
to avoid unexpected failures is to conducting prognostics and health 
management (PHM), in which machine condition monitoring plays a 
foundational role and has aroused intensive concerns in academia and 
industry [27, 31]. With the collected degradation data (e.g., vibration 
signals, temperature information, and oil field data) from condition 
monitoring in real-time, the residual life (RL) of an operating system 
can then be estimated by conducting prognostic analysis.

In the area of PHM, it is commonly assumed that a system fail-
ure will occur once its degradation data cross the predetermined 
failure threshold [13, 17, 24]. Therefore, the RL can be estimated 
by comparing the degradation profile with the failure threshold. Ac-
cordingly, to accurately evaluate the RL distribution, two challenges 
must be addressed [21]: (1) A reasonable degradation model that 
can characterize the degradation profile of an operating system, so 
that the degradation mechanism can be accurately captured. (2) A 
reliable failure threshold that can reflect the failure mechanism of 
the system, so that the moment when the system no longer fulfills its 
functions can be accurately predicted. For many years, while numer-
ous researches have been carried out focusing on the challenge (1) 
[2, 12, 26, 36], the existing research still insufficient to address the 
challenge (2), i.e., find a methodology that can precisely determine 
the failure threshold of the system. Therefore, the purpose of this 
paper is to address a failure threshold determination problem for 
the system with collected degradation data for the estimation of the 
system residual technical life.

Extensive work has been done in the application of different 
methods and techniques in degradation modeling, from which most 
of the current literature assumes that the collected degradation infor-
mation can precisely characterize the underlying degradation mecha-
nism of the system [1, 8]. In most cases, it is simply assumed that 
the failure threshold is known a priori, and, as a result, the failure 
threshold is always used as a fixed value for all systems. In practice, 
however, some recent research has shown that it may be irrational to 
use a fixed failure threshold [3, 4, 9]. For instance, as the work was 
done in [18, 22], the random failure threshold assumption has been 

adopted. Recently, the work in [29] presents a system failure thresh-
old determination method based on the statistic characteristics of the 
last degradation data collections from multiple historical systems, and 
the uncertainty in the failure threshold distribution is also considered. 
However, the estimated failure threshold is obtained using an average 
of historical systems, which may not adequately consider the unique 
characteristics of each system. It is known that the degradation process 
of a system is stochastic, and is under the influence of many known 
and unknown factors. Therefore, the last collected degradation data 
always quite different, as shown in many research and applications 
[33, 37]. Besides, for some systems that are governed by multiple 
failure modes [19, 28], the failure threshold often different for each 
failure mode. As a result, the population-wide characteristic-based 
failure threshold determination method in [29] may be unable to fully 
consider the unique properties of an individual system. Therefore, a 
reliable failure threshold determination method that can extract the 
unique property in each individual system should be developed for 
the RL distribution estimation of a system when the failure threshold 
is not predetermined as a priori.

Motivated by the above observations, this paper proposes a fail-
ure threshold determination method based on quantitative measure-
ment of the similarity between the operating system and historical 
systems. The similarity is formulated by using a weighted average 
function, and a convex quadratic formulation is then developed to 
minimizing the variance between the operating system and the his-
torical systems. Unlike the existing PHM researches that assume the 
failure threshold as a deterministic value, in the proposed method, a 
random failure threshold is considered for different systems. Based 
on the proposed method, the failure threshold can be determined 
for an operating system with the collected real-time degradation 
information. This is of practical significance to attaining a more 
reasonable and accurate RL distribution estimation and, thus, is the 
main contribution of this paper. Finally, to illustrate the proposed 
method, a case study is provided for power-shift steering transmis-
sion systems.

The rest of this paper is organized as follows. Section II de-
scribes the details of the proposed method, which includes problem 
motivation, problem formulation, and the following residual life 
prediction procedures. Section III provides an illustrative real case 
study that involves a spectral oil data set from several power-shift 
steering transmission systems to show the effectiveness of the pro-
posed method and its improved performance when used for system 
failure threshold determination and residual life prediction. Finally, 
Section IV draws the conclusion of this work and provides some 
future research directions.
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2. Development of the methodology

This paper considers systems that degrade over time in working 
conditions, and condition monitoring techniques are conducted to col-
lect the degradation data during the whole lifecycle (from an initial 
state to failure). Once the degradation data is collected, an associated 
degradation process ( ){ },  0L t t ≥  can be periodically analyzed to 
evaluate the degradation severity of the system. In engineering prac-
tice, many research efforts have been made on modeling the evalua-
tion of the system degradation process and its relationship with the 
collected degradation data. For example, a polynomial degradation 
model introduced by Chinnam in [5], which has been commonly used 
in many applications [16, 23, 30, 32], can be written as follows:

	 L ti t i i t, ,,= ( ) +η εϕ 	 (1)

where ,i tL  represents the measurement of degradation data for system 
i  at time t , η represents the functional form of the introduced degra-
dation model, φi

1p
i R ×∈ö represents the random effects of the degrada-

tion model for system i , and ε ,i tε  is the random noise for system i  at 
time t . With the introduced degradation model in Eq. (1), the degra-
dation model of a system can be constructed based on the collected 
degradation data from condition monitoring during the lifecycle.

In the literature of PHM, the system degradation profiles (e.g., the 
failure modes, the failure threshold, and the constructed degradation 
model) of the same series of systems under the same working condi-
tions (e.g., cycle condition, environment condition) are commonly as-
sumed to be the same under some random variations [34, 35]. Under 
this assumption, our innovative idea is to reconstruct the operating 
system’s degradation profile by the weighted average of the histori-
cal system degradation profiles. Specifically, the weight parameter 
measures the relative similarity between the degradation profiles of 
operating system j  and historical system i  compared to the other 
historical systems. Note that if the weight parameter ω ,i jù  is obtained, 
the failure threshold of the operating system j can then be determined 
by the weighted sample moments of historical systems. By doing this, 
the system failure threshold can be online estimated by effectively us-
ing the condition monitoring data from a group of historical systems.

2.1.	 Description of the problem

According to the above mentioned innovative idea, a general 
description of the concerned system failure threshold determination 
problem is first provided in this section. Recall that the degradation 
model of an operating system can be reconstructed using the weighted 
average of the established historical system degradation models, and, 
if the weight parameter ω ,i jù  is obtained, then the degradation model 
of an operating system can be reconstructed based on Eq. (1), which 
is given as:

	 E L tj t j
i

m
i j i



, .. , ,|L( ) = ( )( )
=
∑

1
ω η ϕ̂ 	 (2)

where ,j tL  represents the reconstructed degradation model for op-

erating system j  at time t , and ,. ,1 ,, ,
j

T
j j i nL L L = … 

 represents 

the collected real-time degradation data during the lifecycle; ω , 0i jω ≥
represents the proposed weight parameter corresponding to historical 

system i , and ,
1

1
m

i j
i

ω
=

=∑ ; ˆiϕ  represents the estimated model param-

eters, m represents thenumber of historical systems.

On the other hand, when the real-time condition monitoring data 
are observed from an operating system, the Bayesian updating meth-
ods [7, 10] has also been widely used by many researchers to update 
the posterior distribution of the random effects for an operating sys-
tem. In the perspective of the update process, the degradation model 
for operating system j  can be updated using the Bayesian updating 
method based on the collected real-time condition monitoring data, 
which is given as:

	 E L E tj t j j, .. ,|L( ) = ( )( )( )η θθ 1ˆ
	 (3)

where ,
ˆ

j tL represents the reconstructed degradation data for operating 
system j  at time t using the Bayesian updating method, ,.jL

 
repre-

sents the collected real-time condition monitoring data until time t , 
and θθ j

pR1 1( ) ×∈  represents the estimated model parameters using the 
Bayesian updating method, which represents the updated random ef-
fects at time t .

Recall that the failure threshold of the same series of systems 
under the same operating conditions are expected to be the same, 
and the innovative idea is to reconstruct the degradation profile of 
an operating system by the weighted average of the historical system 
degradation profiles. In particular, if we consider the approximation 
of the Bayesian updated degradation model in Eq. (3) by using the 
reconstructed degradation model in Eq. (2), then, the system failure 
threshold distribution can be accurately estimated by using the infor-
mation of historical systems with the real-time data of the operating 
system. In other words, the failure threshold for operating system j
at the k th condition observation moment, k

jD , can be determined by 
the weighted average of the last observation moments:

	
E D Lj

k
m

i j i n
k

i




 = ( )∑

1
ω , ,

	 (4)

where , 0i jω ≥ for 1,2, ,i m= … , and ,
1

1
m

i j
i

ω
=

=∑ ; , ii nL represents the 

degradation data of the last observation times before the failure of his-
torical system i . Note that if the weight parameter ,i jω

 
is obtained, 

the failure threshold of operating system j  can then be online de-
termined. Therefore, the challenge here is to find the proper weight 
parameter, which will be specifically solved in the rest section.

2.2.	 Formulation of the methodology

Recall that the weight parameter ωωi j,  is proposed to measure the 
relative similarity between the degradation profile of operating sys-
tem j  and the degradation profile of historical system i  compared to 
other historical systems. As a result, the aim of this section is to find 
the optimal weight parametersfor the operating system to maximize 
the goodness-of-fit between the reconstructed degradation model in 
Eq. (2) and the Bayesian updated degradation model in Eq. (3). In 
particular, the optimization model is formulated as a programming 
problem to minimize the sum of squared errors to estimate the optimal 
weight parameter ωωi j, , which is written as follows:

	
min

,
, ,

ωi j

j

t

n

j t j tE L E L
=
∑   −  ( )

1

2
ˆ

	
(5)

	 s.t. 
i

m
i j

=
∑ =

1
1ω , , ωi j, ≥ 0 , for 1,2, ,i m= …
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where jn represents the number of data collections from operating 
system j , ,

ˆ
j tE L   represents the degradation degree obtained by us-

ing the Bayesian updating method in Eq. (3), ,j tE L  
 represents the 

degradation degree obtained by using the weighted average method in 

Eq. (2) and 
i

m
i j

=
∑ =

1
1ω ,

 
represents that the reconstructed degradation 

model is the weighted average of the historical system degradation 
profiles.

By solving the optimization problem in Eq. (5), the optimal weight 
parameter ,i jω

 
can be obtained and, the Bayesian updated degrada-

tion model can then be fitted by using the reconstructed degradation 
model of historical systems. It is worth note that overfitting problem 
may appear when the optimization model in Eq. (5) was directly im-
plemented, especially when the operating system is in the initial stage 
that the number of available degradation data collections jn  is small. 
To solve this problem, a regularization function is introduced as:

	 R E L Lj m j
i

m
i j j n i ni i

ω ω ω1
1

2
, , , , ,, ,…( ) =   −{ }









=
∑ ˆ 	 (6)

where ,
ˆ

ij nE L    
represents the expected degradation data measure-

ment for operating system j at the failure moment of historical sys-
tem i , which can be obtained by using the Bayesian updating method 
in Eq. (3) up to the time in , , ii nL represents the measurement of deg-
radation data at the failure moment of historical system i . 

Remark 1: The proposed regularization function can be understood 
in this perspective: Recall that the main idea of our proposed failure 
threshold determination method is using the weighted average of the 
last measurements of degradation data of historical systems to deter-
mine the expected failure threshold of operating system j , as shown 
in Eq. (4). In this way, if the Bayesian updated degradation data for an 
operating system j  at time in  is obviously different from the meas-
urement of degradation data for historical system i  at time in , the 
historical system i  has less impact on determining the failure thresh-
old of operating system j . In other words, as shown in the regulari-
zation function of Eq. (6), we think a large penalty is supposed to be 
added to historical system i .

In summary, the concerned optimization model can be formulated 
by combining the regularization function in Eq. (6) with the formula-
tion Eq. (5):

	

ˆ
min .,

,

, ,
, ,

ω
λ ω ω

i j

j

t

n
j t j t

j
j m j

E L E L

n
R

=
∑

  −  ( )
+ …( )

1

2

1



	 (7)
	 s.t. 

i

m
i j

=
∑ =

1
1ω , , ωi j, ≥ 0 , for 1,2, ,i m= …

where λ represents the tuning coefficient that measures the relative 
importance of the regularization function compared with the sum of 
squared errors between the reconstructed degradation model and the 
Bayesian updated degradation model. The tuning coefficient λ can be 
calculated with cross-validation [11], and in engineering practice, the 
value of λ often determined according to the importance assigned to 
each item. 
Remark 2: Note that the optimization model in the Eq. (7) consid-
ers both the differences between the reconstructed degradation data 
for operating system j  and the measurement of degradation data of 
historical systems at their failure moments, and the means squared er-

ror of the collected degradation data in the time domain for operating 
system j .

As noted above, the failure threshold for operating system j  can 
be determined by using the optimal solution of weight parameters ωj 
with Eq. (4). Once the failure threshold k

jD  is determined, the RL 
for operating system j  can then be evaluated. Therefore, in the next 
section, the RL distribution derivation method of an operating system 
will be investigated based on the proposed model in Eq. (7).

2.3.	 Estimation of the residual life

Recall that a system failure will occur once the degradation data 
cross the failure threshold. Without loss of generality, given the real-

time degradation data ,. ,1 ,, ,
j

T
j j j nL L = … L of system j collected 

up to the current sampling moment jn , the RL distribution of system 
j , jT  can be estimated by:

	 P T P L Dj j j n t j jj
 ≤( ) = ≥+t|L L,. , ,.( | ) 	 (8)

where jD represents the failure threshold of system j , , jj n tL + repre-
sents the measurement of project degradation data at the future sam-
pling time jn t+ .

Therefore, to accurately evaluate the RL distribution of the op-
erating system, a degradation model that can characterize the system 
degradation profile should be first established. In this paper, the poly-
nomial function form of the degradation model is used for its useful 
mathematical properties [5]. To be specific, a widely used p th-order 
polynomial degradation model is given as:

	 L tj t t j j t
k

p

j k
k

j t, , , ,= + = +
=
∑X θθ ε θ ε

0
	 (9)

where 1, , , p
t t t = … X , and p represents the order of the degradation 

model; θj is the vector that represents the random effects of the model 
that follows a multivariate normal distribution N p j j+ ∑( )1 µµ , , ,j tε

represents the random noise and it is assumed to follow N j0 2,σ( )  . 
Note that after the degradation profiles of historical systems are fitted, 
then the prior distribution can be estimated:

	 θθ µµj p j j
0

1
0 0( )

+ ∑( )~ ,N ,	 (10)

where µµ j
0  is the prior mean value of the random effects, and 0

j∑
is the prior variance value of the random effects. Then, the posterior 
distribution, θθ j

1( ) , can be calculated by using the collected real-time 
degradation data ,.jL  of operating system j . Specifically, using the 
Bayesian updating approach that introduced in Makis et al. [36], the 
updated random effects θθ j

1( ) will be obtained as the following normal 
distribution:

	 θθ θθ µµj j j p j jN1
1

1 1( )
+= ∑( )| ~ ,,.L 	 (11)

where  µµ µµ
ψψ ψψ ψψ

j
j
T

j

j
j

j
T

j

j
j j

1
2

0 1
1

2
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










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









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−

σ σ
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

,	
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











−
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ψψ ψψ
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Remark 3: Note that other distributions or simulation methodologies 
can also be used to calculate the posterior distribution and the RL 
of an operating system. Here, the use of the normal distribution for 
the model parameter characterizations is to take the convenience of 
its closed-form solution results. In fact, for many degradation models 
introduced in the existing literature, a normal distribution assumption 
for the random effects has been widely used [13, 17, 24, 31]. 

Remark 4: Note that other degradation models can also be utilized 
to build the degradation profiles and to determine the failure thresh-
old. Here, the use of the polynomial form for the system degradation 
model is to take advantage of the convenient when calculating the 
parameters and the system RL. In fact, many other degradation mod-
els can also be transformed into the polynomial form [30,32], such as 
the random coefficient growth model [8], and the exponential form 
model [34].

Therefore, for the convenience of illustration, we only focus on 
the polynomial form for degradation models and the normal distribu-
tion for the random effects. Consequently, given the updated random 
effects θθ j

1( ) , the degradation model of operating system j at time 
twill be obtained:

	 L Nj t j t j t j t
T

j, | ~ ,θθ µµ1 1 1 2( ) ∑ +( )X X X σ 	 (12)

Recall that the mean value d
ju  and variance value d

jv  of the 
failure threshold jD for an operating system j can be calculated by 

u Lj
d

i

m
i j i ni

= ( )
=
∑

1
ω , ,  and v L Lj

d

i

m
i j i n

i

m
i j i ni i

= ( ) − ( )









= =
∑ ∑

1

2

1

2

ω ω, , , ,  using 

Eq. (4). We further assume the system failure threshold jD  follows 
a normal distribution as well, i.e., D N u vj j

d
j
d~ ,( ) . Note that this 

normal assumption for the system failure threshold distribution has 
been widely used in much existing research [13, 17, 24, 31]. Then, 
using the determined system failure threshold, the CDF of the RL jT  
for operating system j  based on the collected real-time degradation 
data ,.jL can be calculated as:

P T t P L Dj j j n t j j
n t j j

d

n t j n
j

j

j j

 ≤( ) = ≥( ) = −

∑
+

+

+ +

| ,. , ,.L L
X ¼

X X
| Φ

1

1

µ

tt
T

j j
dv+ +
















= ( )( )

σ 2
Φ g t

(13)

Given that the RL for operating system j  should be greater than 
0, the truncated CDF was further considered conditioning on 0jT ≥ :

P T t T
P T t

P Tj j j
j j

j j

 





≤ ≥( ) =
≤ ≤( )

≥( )
=

( )( ) −
| , ,.

,.

,.
0

0

0
L

L

L

|

|

g tΦ Φ gg
g

0
1 0

( )( )
− ( )( )Φ

 (14)

Since the truncated CDF in Eq. (14) is skewed, the median can be 
used as the point estimator for the RL prediction.

2.4.	 Flowchart of the methodology

The flowchart of the proposed system failure threshold determi-
nation method is shown in Fig. 1. A convex quadratic formulation is 
developed to combine the information from the degradation data of 
historical systems and the information from the real-time condition 
monitoring data of an operating system. Using the degradation data 
from historical systems, the degradation models of each historical sys-
tem is first established and then reconstructed using a weighted aver-
age method to fit the degradation model of an operating system, as 
shown in Eq. (2). In addition, the information about the last condition 
monitoring data collections ( ,i tL ) is extracted, and in other words, 
the failure threshold of historical system i is estimated using the last 
condition monitoring data collection ( ,i tL ). Then, to established the 
real-time update model, the prior distribution of the parameters in the 
Bayesian updated model is also obtained using the historical systems. 
Then, using the degradation data from the operating system, the deg-
radation model for the operating system is updated based on the Baye-
sian approach using the collected real-time condition monitoring data, 
as shown in Eq. (11). Particularly, the method focuses on using the 
degradation profiles of historical systems to fit the degradation pro-
file of an operating system. And then, using the updated degradation 
model and the reconstructed degradation model of historical systems, 
the failure threshold of the operating system is finally determined by 
solving Eq. (7). Finally, using the determined failure threshold and the 

Fig. 1. Failure threshold determination framework for RL prediction
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collected real-time condition monitoring data, the degradation model 
of an operating system can be established, and the system RL can then 
be estimated by Eq. (13) and Eq. (14).

3. Imperfect PM model considering system aging

In this section, the performance of the proposed system failure 
threshold determination method is investigated using a degradation 
dataset from several PSST systems. Specifically, we compare the 
prognostic performance of the proposed method with the existing 
population-wide characteristic-basedsystem failure threshold deter-
mination method. In fact, the method in [29] can be regarded as a 
special case of the proposed method in which each historical system 
is treated with equal importance, i.e., the weight coefficient is set as 
ωi,j =1 / m, for 1,2, ,  mi = … . On the contrary, when determining the 
failure threshold of the operating system j , the proposed method will 
calculate the optimal weight coefficient ωi,j for 1,2, ,  mi = …  by solv-
ing Eq. (7).

3.1.	 Origin of the data

The dataset is collected from several PSST systems (Fig.2), which 
is a widely used mechanical powertrain system in heavy tracked ve-
hicles. With PSST operating, metal debris mixed in lubricating oil 
accelerates the wear of every mechanical component, consequently 
leads to the degradation of the PSST system. However, the underlying 
degradation is not directly observable and can be only indirectly as-
sessed via oil spectral analysis, which is a commonly used technique 
to monitor the underlying degradation conditions in oil-lubricated ma-
chines [24, 25, 28, 32]. In addition, the underlying failure mechanism 
in PSSTis not explicitly revealed. Therefore, researchers have to rely 
solely on the spectral oil data collected in the oil field dataset to estab-
lish the PSST degradation model and predict the RL.

In particular, the oil field dataset obtained from the reliability test-
bed (Fig. 3) for the PSST system is used for the case study illustration. 
Each system was run to failure under the same operating condition: 
cyclic multi-gear, load-varying, and multispeed. After a period of more 
than 10 years, we have collected oil field data for more than one thou-
sand samples, and a detailed description of the dataset can be found in 
[31, 32]. The dataset we used in this paper contains 45m =  training 
systems and 15 testing systems, of which each system contains more 
than 30 oil samples that were collected from 0 Mh to up to 284Mh 
according to the sample periodof nearly 5 Mh. Each sample contains 
15 types of spectral oil data, among which 6 types, namely, Cr, Ni, Cu, 

Mn, Fe, and Mo, are selected in [30] and shown to be highly related 
to the degradation mechanism. Due to space restrictions, the selected 
spectral oil data of one PSST system are shown in Fig. 4.

Fig. 3.	 A life-cycle testbed of the PSST 	  
1: Diesel engine. 2, 4, 5: Torque and speed sensors.3: PSST. 6,  
7: Inertia discs. 8, 9: Loading piston pump

Fig. 4. Spectral oil data for one PSST system

3.2.	 System degradation modeling

For each PSST system, there are 6 types of spectral oil data that 
monitor the degradation process of the PSST system performance. Us-
ing these spectral oil data, the system degradation model can be estab-
lished. The concerned PSST systems are subjected to three potential 
failure modes: 1) a fault at the transmission gears, or 2) a fault at the 
wet clutches, or 3) a fault at the rotary sealings. According to the pre-
vious research in [20], the spectral oil data following an exponential 
functional form. Thus, the following exponential degradation model 
is considered to model the degradation profiles of PSST systems:

	 y ei j t j
t ti j i j i j i j t

, ,
, , , , , , , ,= + + + +γ θ θ θ0 1 2

2  	 (15)

Fig. 2.	 Sketch of the PSST	  
1: Hydraulic torque convertor. 2: CV clutch.3: CH clutch. 4: First-
shaft. 5: Steering pump. 6: Second shaft. 7: C1C2 clutch.8: Thirdshaft. 
9: Steering motor. 10: C3 clutch. 11: CLCR clutch
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where , ,i j ty represents the degradation data measurement for PSST 
system i , spectral oil data j at time t ; jγ represents the initial-effect 
coefficient for spectral oil data j ,i j t, ,  represents the random noise; 
and θi,j,0 , θi,j,1 and θi,j,2represent the random effects for PSST system 
i , spectral oil data j .Similar to Makis et al. [6] and Liu et al. [20], a 
log-transformation is used to process the original spectral oil data, and 
then the logged spectral oil data is modeled as follows:

	 L y t ti j t i j t j i j i j i j i j t, , , , , , , , , , , ,ln= −( ) = + + +γ θ θ θ0 1 2
2  	 (16)

Using the established degradation model in Eq. (16), the PSST 
system RL can be then determined. It is noted that all the selected 60 
PSST systems are degraded and failed according to one of the three 
possible failure modes. In addition, it is assumed that all PSST systems 
within the same failure modes following the assumptions: 1) have the 
same expected failure threshold subject to the same variations; and 2) 
the random effects have the same distribution.

To challenge our proposed method, it is further assumed that the 
failure modes of the training PSST system and the operating PSST 
system are unknown, which is usually the case in the real application. 
This assumption is to show the superiority of our proposed method 
in inferring the failure threshold and the RL of an operating PSST 
system, even if the failure mode of the training PSST system is un-
known. In this way, the performance of our proposed system failure 
determination method can be evaluated and compared with the exist-
ing method [29]. Specifically, two metrics listed in the following are 
used for evaluation:

The mean prediction error of the system RL (1)	 eRL ), which is 
defined as follows:

	 RL
N

T n T n
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where N represents the number of testing PSST systems, jn repre-
sents the number of collected spectral oil data for testing PSST system 
j , and j jT n+ represents the lifetime for testing PSST system j ; 

jT represents the actual RL for testing PSST system j ,and jT repre-
sents the estimated system RL for the same testing PSST system.

The mean prediction error of the system failure threshold  2)	
( eFT ), which is defined as follows:

	 FT
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N j j

j
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100

1
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where jE D    represents the estimated system failure threshold for 
testing PSST j  using our proposed method in Eq. (4), and True

jD  represents the actual failure threshold for the same testing PSST 
system.

Matric (1) measures the mean prediction error between the pre-
dicted system residual life and the actual system residual life for the 
testing PSST system, and matric (2) measures the mean prediction 
error between the estimation value and the corresponding actual value 
of the system failure threshold for the testing PSST system. Note that 
these two metrics measure the concerned two aspects, namely, the 
failure threshold and system RL [4], when using collected condition 
monitoring data for system RL prediction.

3.3.	 System Failure Threshold Determination 

For the system failure threshold determination, the procedures 
described in Section 2.4 are adopted. First, the system failure thresh-
old of training PSST system i  is estimated by the last observation (

, ii ns ) of the spectral oil data. Then the degradation model parameters 
are denoted as ,0 ,1 ,2, ,

T
i i i iϕ ϕ ϕ ϕ =    and the degradation model for 

each training PSST system i  is reconstructed based on a second-or-
der polynomial model. Next, the model parameters of testing system 
j are assumed to follow a normal distribution θ j p j jN0

1
0 0( )

+ ∑( )~ ,u
, where 0

ju  is estimated by the mean value of the parameters iϕ  of 
training PSST systems, and 0

j∑ is estimated by the variance value of 
the parameters iϕ  of training PSST systems. Then the posterior dis-
tribution θθ j

1
 
is calculated using the real-time collected spectral oil 

data ,.jL  from the testing PSST system as shown in Eq. (11). Finally, 
the weight coefficient ,i jω  is calculated by solving Eq. (7) with five-
fold cross-validation and consequently, the failure threshold of test-
ing PSST system j can be estimated with the mean value 

u sj
d

i

m
i j i ni
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=
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1
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Please note that Henze-Zircller’s test is conducted in this case study 
based on the spectral oil data sets from the training PSST systems, 
and the calculation results show that using the normal distribution as 
the prior distribution for the random effects is satisfactory, as men-
tioned in Eq. (10).

The average prediction error of the failure threshold of the PSST 
system, eFT  as defined in Eq. (18), is shown in Fig.5, of which the 
best performance spectral oil data sample (Fe) is used for illustration. 
The threshold is modeled as a function of the operating time of the 
testing PSST systems. To be specific, the point corresponding to the 
“0” label is the average prediction error of the testing PSST systems 
in the initial state, while the point corresponding to the “50” label is 
the average prediction error when the testing PSST systems operating 
to 50% of the whole life. Here, for the convenience of illustration, the 
existing population-wide characteristic-based system failure threshold 
determination method in [29] is denoted as the “benchmark method”.

From Fig.5, we can observe that our proposed method has an ex-
cellent performance, and the average prediction error is consistently 
reduced with the increase of the operating time. On the contrary, the 
benchmark method has poor performance, and the RL prediction ac-
curacy does not improve with the increase of the operating time. It 
can be concluded that the proposed method provides a better result 
compared with the benchmark method when used for system failure 

Fig. 5. Prediction error of the PSST system failure threshold using Fe
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threshold determination. That is because that the threshold determi-
nation using the benchmark method just considering the population-
wide characteristics from historical PSST systems, does not consider 
the individual characters from the operating PSST system. In addi-
tion, when using our proposed method, the average prediction error is 
approximately less than 3% when the operating PSST systems operate 
to half-life. To be specific, the result shows that the proposed method 
can determine the PSST system failure threshold accurately even the 
PSST system is operating in a stable condition. Moreover, from Fig.5, 
it can be seen that the average prediction error tends to be large when 
the testing PSST systems operate at an early stage (less than 20% 
of the lifetime). One possible reason is that the system degradation 
model in Eq. (3) is established using the Bayesian update method that 
may not fully capture the unique degradation features of the testing 
PSST systems when there are fewer spectral oil data samples avail-
able. However, when more spectral oil data samples are available, 
the accuracy of the PSST system failure threshold determination is 
improved significantly, which shows the rationality and superiority of 
the proposed system failure threshold determination method.

3.4.	 System residual life estimation

To further evaluate the performance of the proposed method for 
system RL prediction, the RL of the testing PSST systems is esti-
mated by adopting the calculated system failure threshold in Section 
3.3 and the proposed method in Section 2.3. Given the spectral oil 
data from all of the 15 testing PSST system, the average prediction 
error of the RL, as defined in Eq. (17), is then calculated by using 
the actual RL of the testing PSST system. The calculation result is 
summarized in Tab. 1.

From Tab. 1, we can observe that the accuracy of RL prediction 
using the proposed method is improved for all selected spectral oil 
data when compared with the benchmark method. Moreover, the av-
erage prediction error at different levels of actual RL for the testing 
PSST systems are calculated and shown in Fig.6, and the comparison 
between the proposed method and the benchmark method is shown in 
Fig.7. In Fig.6 and 7, the label “30” represents the average prediction 
error for the testing PSST system that has 30 or less actual RL. The 
minimum actual RL among all the testing PSST systems is 150. The 
label “150” represents the average prediction error using all the test-
ing PSST systems. Thus, the same sets of testing PSST systems are 
used to calculate the accuracy of RL prediction as different levels of 
the actual RL.

From Fig.6, it can be seen that the RL prediction becomes accu-
rate in general with the testing PSST system operating from the initial 
state to failure. This may because more spectral oil data samples are 
collected when the actual RL becomes less, and thus, the estimated 
system failure threshold, as well as the updated Bayesian degradation 
model for the operating PSST system, becomes more confidential.

Fig. 7 further shows the comparison by using the best perform-
ance spectral oil data sample (Fe) and the worst performance spectral 
oil data sample (Mn) according to the result in Tab.1. Based on Fig. 7, 
it can be clearly seen that the proposed system failure threshold deter-
mination method outperforms the original benchmark method in both 
spectral oil data. This observation further shows the rationality and 
superiority of our proposed method for system RL estimation.

By comparing Fig. 6 and 7, it can be seen that the accuracy of RL 
prediction is highly related to the accuracy of system failure threshold 
determination. To be specific, with the improvement of the accuracy 
of system failure threshold determination for the operating PSST sys-
tem, the accuracy of RL prediction using the proposed method also 
improves compared with the benchmark method.

4. Conclusion and discussion

This paper proposes a similarity-based failure threshold determi-
nation method for the system residual life prediction. To be specific, 
the similarity between the operating system and historical systems is 
measured by a weighted average function and calculated by using a 
convex quadratic formulation, and thus, the corresponding system 
failure threshold can be determined. The novelty of the proposed 

method is that the degradation 
profiles of historical systems and 
the real-time condition monitor-
ing data of an operating system 
are combined for real-time esti-
mating the system failure thresh-
old of an operating system when 
the failure threshold is unknown. 

Table 1.	 The average prediction error of the RL

Spectral oil data Cr Ni Cu Mn Fe Mo Average

The proposed method 9.75% 10.6% 8.32% 15.85% 7.5% 12.6% 10.77%

The benchmark method 15.78% 14.55% 14.52% 20.21% 13.8% 18.06% 16.15%

Improvement 6.03% 3.95% 6.2% 4.36% 6.3% 5.46% 5.38%

Fig. 6.	 Prediction error for the testing PSST systems using the proposed meth-
od

Fig. 7.	 Prediction error between the proposed method and the benchmark 
method
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The validity of the proposed method was demonstrated using selected 
oil field data collected from several PSST systems. The results not 
only show the effectiveness of the proposed method but also reveal 
the importance of real-time estimating the failure threshold for an op-
erating system.

Compared with the existing failure threshold determination meth-
od which using population-wide characteristics, the proposed method 
provides an accurate determination of the system failure threshold, as 
illustrated in the case study. With the improved determination of the 
failure threshold, a more accurate system residual life estimation can 
then be obtained; even the monitored system is at an early moment of 
the degradation. Such advantages can be effectively used to obtain a 
better prognostic application and the following planned maintenance 
optimization. Following the results of the proposed method, the case 
study described in the existing works of literature, for example, Vališ 
et al. [24], Yan et al. [32] and Liu et al. [20], might be complemented 

when these methods are utilized for system soft failure prediction, 
health index extraction and other condition monitoring applications.

The main contribution of this paper is not only a new direction in 
the failure threshold determination for degradation systems but also 
open up possibilities for combining the real-time degradation data 
with the historical condition monitoring data. There are several pos-
sible directions for future research. First, other methods, such as a 
Bayesian framework, might be considered to update the failure thresh-
old, as compared to the proposed frequentist method. Second, other 
degradation modeling method can fuse multiple condition monitoring 
data may have to be used when modeling other systems. 
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