
Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020 419

Article citation info:

1. Introduction

Software testing, as an indispensable stage in software develop-
ment life cycle, aims to discover defects in a software artefact as much
as possible to assure its quality and reliability [10]. It is a very costly

and resources consuming task that accounts for higher than 50% of
development costs [15]. In previous work [51], test case selection
(TCS), test case minimization (TCM) and TCP are three techniques
maximize the value of test suites. TCP is often used to improve the

Shao Y, Liu B, Wang S, Xiao P. A novel test case prioritization method based on problems of numerical software code statement defect
prediction. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22 (3): 419–431, http://dx.doi.org/10.17531/ein.2020.3.4.

Yuanxun Shao
Bin Liu
Shihai Wang
Peng Xiao

A novel test case prioritization method based on problems of
numerical software code statement defect prediction

Nowatorska metoda priorytetyzacji przypadków testowych
oparta na prognozowaniu błędów instrukcji kodu

oprogramowania numerycznego
Test case prioritization (TCP) has been considerably utilized to arrange the implementation order of test cases, which contributes
to improve the efficiency and resource allocation of software regression testing. Traditional coverage-based TCP techniques, such
as statement-level, method/function-level and class-level, only leverages program code coverage to prioritize test cases without
considering the probable distribution of defects. However, software defect data tends to be imbalanced following Pareto principle.
Instinctively, the more vulnerable the code covered by the test case is, the higher the priority it is. Besides, statement-level cover-
age is a more fine-grained method than function-level coverage or class-level coverage, which can more accurately formulate
test strategies. Therefore, we present a test case prioritization approach based on statement software defect prediction to tame
the limitations of current coverage-based techniques in this paper. Statement metrics in the source code are extracted and data
pre-processing is implemented to train the defect predictor. And then the defect detection rate of test cases is calculated by com-
bining the prioritization strategy and prediction results. Finally, the prioritization performance is evaluated in terms of average
percentage faults detected in four open source datasets. We comprehensively compare the performance of the proposed method
under different prioritization strategies and predictors. The experimental results show it is a promising technique to improve the
prevailing coverage-based TCP methods by incorporating statement-level defect-proneness. Moreover, it is also concluded that
the performance of the additional strategy is better than that of max and total, and the choice of the defect predictor affects the
efficiency of the strategy.

Keywords:	 software defect prediction, test case prioritization, code statement metrics, machine learning, soft-
ware testing.

Metodę priorytetyzacji przypadków testowych (TCP) wykorzystuje się powszechnie do ustalania kolejności implementacji przy-
padków testowych, co przyczynia się do poprawy wydajności i alokacji zasobów w trakcie testowania regresyjnego oprogramo-
wania. Tradycyjne techniki TCP oparte na pokryciu na poziomie instrukcji, metody/funkcji oraz klasy, wykorzystują pokrycie
kodu programu tylko w celu ustalenia priorytetów przypadków testowych, bez uwzględnienia prawdopodobnego rozkładu błędów.
Jednak dane o błędach oprogramowania są zwykle niezrównoważone zgodnie z zasadą Pareto. Instynktownie, im bardziej wrażli-
wy jest kod pokryty przypadkiem testowym, tym wyższy jest jego priorytet. Poza tym, pokrycie na poziomie instrukcji jest bardziej
szczegółową metodą niż pokrycie na poziomie funkcji lub pokrycie na poziomie klasy, które mogą dokładniej formułować strategie
testowe. Dlatego w artykule przedstawiamy podejście do priorytetyzacji przypadków testowych oparte na prognozowaniu błędów
instrukcji oprogramowania, które pozwala zmniejszyć ograniczenia obecnych technik opartych na pokryciu. Wyodrębniono me-
tryki instrukcji w kodzie źródłowym i zaimplementowano wstępne przetwarzanie danych w celu nauczania predyktora błędów. Na-
stępnie obliczono wskaźnik wykrywania błędów w przypadkach testowych poprzez połączenie strategii priorytetyzacji i wyników
prognozowania. Wreszcie, oceniono wydajność ustalania priorytetów pod względem średnich procentowych błędów wykrytych
w czterech zestawach danych typu open source. Kompleksowo porównano wydajność proponowanej metody w ramach różnych
strategii ustalania priorytetów i predyktorów. Wyniki eksperymentów pokazują, że jest to obiecująca technika poprawy dominu-
jących metod TCP opartych na pokryciu poprzez włączenie podatności na błędy na poziomie instrukcji. Ponadto stwierdzono
również, że strategia dodatkowa cechuje się lepszą wydajnością niż strategie max i total, a wybór predyktora błędów wpływa
na skuteczność strategii.

Słowa kluczowe:	 przewidywanie błędów oprogramowania, priorytetyzacja przypadków testowych, metryki
instrukcji kodu, uczenie maszynowe, testowanie oprogramowania.

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020420

Science and Technology

effectiveness of some performance objectives associated with regres-
sion testing [7, 10, 21, 26, 35, 36], but it does not increase software
costs like TCS and TSM by ignoring some meaningful test cases [9].
It prioritizes the test suite used according to certain test goals and
strategies to optimize the speed of the defect detection rate, which is
conducive to improving testing efficiency and reducing time and re-
source costs. With the expansion of application scenarios, it has been
successfully applied in different test areas, such as graphical user in-
terface testing [7, 20], web application testing [13].

TCP can schedule the execution of test cases in a specific order
in order to enhance the defect detection rate, that is, to discover most
defects as early as possible by prioritizing the most relevant test cases.
It can be roughly grouped into multiple major dimensions [21, 51],
such as requirement-based TCP [1, 22, 41], search-based TCP [26],
coverage-based TCP [35], history-based TCP [40]. For instance, some
researchers have studied the impact of requirement-based or search-
based TCP methods on improving defect detection rates. For example,
Arafeen et al. [1] and Krishnamoorthi et al. [22] showed that using
requirement information in test case sequencing can improve testing
efficiency. There are two common coverage strategies: total and addi-
tional. Li et al. [26] employed search-based heuristics TCP approach-
es (e.g.2-optimal greedy, hill climbing, genetic algorithms) to deal
with the NP-hard problem for regression testing. Compared results
on Siemens suite and space programs showed that genetic algorithms
perform well. In addition, Spieker et al. [40] used neural networks
and reinforcement learning to automatically select and prioritize test
cases in continuous integration testing and tamed history-based TCP
adaption problem. Among all TCP approaches, the coverage-based
prioritization approach is one of the most commonly used in TCP [8,
17, 21, 27, 35, 36], such as statement-level coverage, branch-level
coverage, method/function-level coverage and class-level coverage.
The structural coverage-based method usually prioritizes test cases
based on coverage, such as the total number of classes or methods
covered. For example, Rothermel et al. [11, 35, 36] proposed a series
of TCP methods including additional and total strategies combined
with code coverage information. Henard et al. [17] comprehensively
compared well-established white-box (e.g. total statement, additional
branch) TCP techniques with black-box (e.g. input model diversity)
ones. It is found that defects detected by the two techniques have high
overlap and small performance differences. However, the black-box
TCP techniques are more suitable for testing without source code.
On the contrary, coverage objects considered in white-box TCP are
source code, which is also the object concerned in this paper.

Unlike software reliability models [33, 38], software defect pre-
diction can forecast defect prone or the number of defects in a software
system, which is conducive to allocate testing resources efficiently.
Furthermore, previous work [29, 32, 34, 43, 46, 48, 50] has suggested
that using the defect-proneness of a defect predictor to rank makes
sense for test cases. In other words, the more the code tends to finds
defects, the higher the defect detection rate. Current defect predictors
are mainly oriented to modules (e.g. class level [16], method/function
level [25, 28, 37, 39, 44]), which are a relatively coarse granularity
for TCP. For instance, Tonella et al. [43] integrated user knowledge
through the case-based ranking machine learning algorithm with mul-
tiple, diverse TCP indexes. The method can handle partial, inconsist-
ent and high-level data in a low-cost knowledge acquisition manner.
The preliminary results showed that it is close to the optimal strategy
for moderate test suite size (no more than 60). Wang et al. [7] present-
ed quality-aware test case prioritization which leverages an unsuper-
vised statistic defect prediction (CLAMI [30]) and a static bug finder
(FindBugs [19]) to detect defective code and then revise the existing
coverage-based methods by considering the weighted detective code.
Empirical results performed on 7 open-source Java projects showed
that it could improve coverage-based methods for test cases. Xiao et
al. [48] designed a clustering-based TCP approach that utilized the de-

fect-proneness probability based on the results of a method-level de-
fect prediction model. The approach used a support vector machine to
build the defect-proneness prediction model and employed K-means
to calculate the optimal number of clusters. However, it only consid-
ered four code metrics: Line of code, total operators, total operands
and cyclometric complexity. Lachmann et al. [23] proposed a system-
level black-box TCP approach based on a support vector machine,
which utilized test case history and natural language-based test case
descriptions to prioritize. The method is compared with random and
manual prioritization on the two subject systems, which show that it
is beneficial to improve the defect detection rate. Mirarab et al. [29]
provided a TCP approach based on the class-level Bayesian networks
defect prediction model, which integrated software defect-proneness,
code modification information, and test coverage data. The obtained
results on a Java application showed that the approach has better test
performance when there are a reasonable number of defects. Paterson
et al. [32] proposed a TCP strategy (G-clef) based on defect prediction
(Schwa) to reorder a test suite. They utilized code attributes such as
the number of authors and revisions to configure Schwa, and com-
pared G-clef on three groups of strategies: single-version, test execu-
tion history and software history. The results revealed that applying
defect prediction to rank test cases was appealing.

However, as mentioned above, most of the current work focused
on TCP methods based on coarse-grained software defect prediction
models, such as class-level [29], method/function-level [7, 48], sys-
tem-level [23]. Moreover, some techniques [32, 48] leverage only a
small amount of metric information or user experience [43] to build
defect-proneness models. If the granularity can be subdivided into the
code statement-level, more accurate test resource allocation or case
prioritization can be formulated, such as white-box TCP based on
statement coverage [21, 35, 36]. However, these methods rank test
cases in terms of the total number of statements covered without con-
sidering the probable distribution of code defects, that is, assuming
that defects are evenly distributed in the source code. Nevertheless,
the distribution of defects is skewed in most cases, with approximate-
ly 80% of defects occurring in 20% of the code [5]. In this paper,
the defect-proneness probability of all valid statements in the code is
predicted to guide coverage-based TCP. Therefore, integrating state-
ment-based software defect prediction into a coverage-based test case
prioritization has great theoretical and practical engineering value.

Furthermore, to the best of our present knowledge, there is no
software defect prediction model that can predict defect prone of code
statements. The key issue is how to select and extract statement met-
rics from source code. Besides, the existing mainstream research [29,
32, 34, 43, 46, 48, 50] only incorporates a single predictor into the
TCP methods and does not compare the effects of various predictors
on defect detection rate of test cases.

To overcome these shortcomings, we put forward a novel test case
prioritization method based on software code statement defect predic-
tion (TCP-SCSDP). The main idea of our method TCP-SCSDP is first
to inject defects and extract code statement features to form a labelled
defect dataset and perform data pre-processing on it. And then a su-
pervised machine learning algorithm (e.g. random forest) is selected
to build a software defect prediction model based on code statements.
The model can assess the defect probability of statements and achieve
the fine-grained prediction at the statement-level. Taking the white
box test cases based on code coverage as the subject (test set), the
prioritization strategy is utilized to calculate the defect detection rate
of each test case. Finally, the weighted average percentage of defect
detection is utilized to measure the ranking results. It can be observed
that the code statement-level defect prediction method can not only
improve the prediction granularity problem, but also fill the gap of
the test case prioritization method based on the code statement-level
defect-proneness prediction.

Our contributions to the current research are as follows:

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020 421

Science and Technology

We propose a software defect prediction model based on code (1)	
statement-level, which addresses the problems of acquiring
statement metrics and prediction granularity.
We incorporate code statement level software defect prediction (2)	
into the test case prioritization process, which improves the
defect detection rate.
We systematically compare the effects of four common priori-(3)	
tization strategies and three classic predictors on test perform-
ance and find that the additional strategy is to the max and
total ones and the choice of predictors has an impact on the
prioritization strategy.
We present an empirical evaluation using four open-source (4)	
projects from the Software Infrastructure Repository (SIR).
The experimental results indicate that our proposed TCP-SCS-
DP is effective and feasible.

The remainder of this paper is organized as follows: The remain-
der of this paper is organized as follows: Section 2 presents the test
case prioritization based on code statement defect prediction. Sec-
tion 3 is devoted to the experimental setup. Experimental results and
discussion are described in Section 4. Some threats to validity are
described in Section 5. Finally, conclusions and future work are gen-
eralized in Section 6.

2. Test case prioritization based on code statement
defect prediction

2.1.	 The proposed overall framework

The proposed method TCP-SCSDP is divided into two parts,
code statement level defect prediction, and the prioritization strategy.
The framework is presented in Fig. 1. The software defect prediction
method based on code statement-level is a more fine-grained predic-
tion than the traditional method based on function level or class level,
which helps to solve the problem of unable to predict accurately. First-
ly, metrics and defect information of code statements are extracted
from the source code and software test report to form a labeled train-
ing dataset. And selecting a supervised learning algorithm (e.g. RF,
GBRT, LRM) to train a software defect prediction model. Similarly,
the features of the new software code statements are used as the vali-
dation test dataset. Secondly, the proposed prediction model is used to
forecast the defect proneness of each line of code statement. Then we

apply the test case priority such as total strategy and additional strat-
egy [35] to calculate the defect probability of each test case. Finally,
the test cases are sorted in terms of the probability of defects.

2.2.	 Software defect prediction based on code statement
level

2.2.1.	 Description of program code statement features

A key issue in statement-based software defect prediction is the
way to extract code features. Traditional code feature (attribute or
metric) such as McCabe, Halsted, and other metrics describes a mod-
ule static metric information [28]. And machine learning algorithms
are utilized to build the relationship between software module metrics
and defect. The main difference from the traditional code features is
that code vocabulary is used as independent variables in the software
defect prediction based on code statement.

Regardless of the programming language, source code is com-
posed of three vocabularies: language keywords, operators and op-
erands.

Language keywords, called reserved words, indicate an identi-•	
fier that has a special meaning defined in advance by program-
ming language. They can be used to describe a data type, the
logical structure of a control program, and so on. In general, they
cannot be used arbitrarily as variable names, method names,
class names, package names, and parameters.

Operators are symbols that represent specific •	
operations and can be used to construct program
language expressions. Common operators are
mainly divided into five categories: arithmetic
operators, relational operators, logical opera-
tors, assignment operators, as well as operators
that complete bit operations - bitwise operators.

An operand is an entity on which an operator •	
acts and specifies the number operation variable
in the instruction.

For example, the American National Stand-
ards Institute (ANSI) defines 32 language
keywords for C programs. According to the
characteristics of the programming language,
four keywords are designed: type, control, data
storage, and other keywords, among which
type keywords indicate the type of data, con-
trol keywords are responsible for the logic of
the processing program, store keywords declare
variable range. Some of these types can be re-
fined in combination with the functional struc-

Table 1. 32 C language keywords defined by ANSI-C.

Type Description

Type keywords
Basic type: void, char, int, short, long, double, float,

signed, unsigned
Complex type: enum, struct, union

Control key-
words

Cycle control: for, do, while
Condition control: if, else, switch, case, default

Jump control: break, continue, goto, return

Storage key-
words auto, extern, register, static

Modifier key-
words const, sizeof, typedef, volatile

Fig. 1. The proposed test case prioritization framework based on statement-level defect prediction

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020422

Science and Technology

ture. As shown in Table 1, control keywords can be divided into loop
control, condition control, and jump control.

Operators are binary operators that assign the right operand to the
left. Operators in C language are mainly divided into five categories,
as shown in Table 2.

Obviously, there may be differences between keywords and op-
erators for different programming languages, which are related to its
own characteristics and design style. Java keywords are shown in Ta-
ble 3. By comparing the keywords of C and Java language, we can see
that C is a structured oriented language and Java is a typical object-
oriented programming language. Therefore, there are many keywords
describing classes in Java, such as abstract and interface, which are
impossible to appear in C. In addition, although Java provides key-
words such as try and catch for exception handling mechanisms, there
is little difference between C and Java in a logic structure such as
control and type keywords.

2.2.2.	 Feature extraction based on code statement

In the previous section, it was emphasized that the program code
is composed of three vocabularies, that is, most of the defects in the
code are basically related to them. For example, the wrong variable
type, the wrong operator, and the wrong operand are defined respec-
tively. Regardless of the defects that may be caused by the code run-
ning environment, the defects are highly related to these vocabularies.
In this paper, keywords, operators, operands, and lines are mainly uti-
lized as the metrics of each line of code for statement-based software
defect prediction, as illustrated in Table 4.

Fig. 2 shows the process of extracting features from valid state-
ments, which do not contain comment lines, empty lines, and brack-
ets. The current code is line 8, including 1 basic type, 2 arithmetic

operators, 3 variable operands, etc. The features and a de-
fective class label together constitute the original dataset of
software defect prediction.

2.2.3. Feature selection

It is a known fact that attribute selection has been ex-
tensively used in SDP [2, 16, 18, 24, 28, 45]. However, the
following issues may arise during model training without
using attribute selection (or feature selection): 1) The noise,
redundancy and irrelevant features may be included. As all
features collected in a dataset can be used for different tasks,

not all of which contribute to SDP evaluation. 2) The accuracy, in-
terpretability and generalization ability of the predictor may be af-
fected.

Attribute selection can be primarily split into filter-based and
wrapper-based approaches. The wrapper-based method obtains the
best attribute subset by interacting with the learner feedback, while
the filter-based method evaluates the feature subset on the training
set without relying on the learner. Compared with the filter-based
method, the wrapper-based method is inclined to more computation-
ally complexity. Hence, a filter-based attribute selection method is
preferred.

In this study, the classic correlation-based feature selection (CFS)
filter method [14] is employed in software defect prediction [2, 3, 6].

Table 2.	 List of C language operators

Arithmetic operators Relational operators Logical operators Bitwise operators Assignment operators

+:addition or	 unary
plus
-:subtraction or unary
minus
*:multiplication
/:division
%:remainder
++:prefix increment
–:prefix decrement

==:equal to
!=:not equal to
>:greater than
>=:greater than or
equal to
<:less than
<=:less than or equal to

&&: logical AND
||:logical OR
!:logical NOT

&:bitwise AND
|:bitwise OR :bit-
wise complement
∼:bitwise exclu-
sive OR
<<:left shift
>>:right shift

=:basic assignment
+=:addition assignment
-=:subtraction assignment
*=:multiplication assignment
/=:division assignment
%=:remainder assignment
&=:bitwise AND assignment
|=:bitwise OR assignment
∼=:bitwise XOR assignment
<<=:left shift assignment
>>=: right shift assignment

Table 3. List of Java language keywords

Keywords Description

Access Modifiers Private, protected, public

Class, Method, and Abstract, class, extends, final, implements, interface, native,
new

Variable Modifiers Static, strictfp, synchronized, transient, volatile

Process control Break, continue, return, do-while, if-else, for, instanceof,
switch-case-default

Exception handling Try catch, throw, throws

Package Import, package

basic data types Boolean, byte, char, double, float, int, long, short, null, true,
false

variable reference Super, this, void

reserved word Goto, const

Fig. 2 The process of code feature extraction.

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020 423

Science and Technology

A subset of metrics is treated as input rather than all attributes of the
dataset according to the heuristic function. This function (Equation 1)
assigns a high score to a subset of metrics that are highly related to the
class and have a low correlation with each other. Redundant metrics
are therefore discriminated against because they are highly associated
with one or more other metrics.

	 e
(1)
cf

s
ff

r
M rit

k k k r
=

+ − 

 	 (1)

Where Merits is the metric subset containing k metrics, cfr is the av-
erage metric-class correlation, and ffr is the average metric-metric
intercorrelation.

2.2.4.	 Building the prediction model

The software defect prediction model based on valid code state-
ments is a method that uses a predictor to find the relationship be-
tween features and the defect class label. Generally, software defect
prediction models are trained and tested on the same project dataset
[25, 28, 37, 39]. However, it is difficult to build the software defect
prediction model when there is not sufficient historical data [44]. In
order to avoid this problem, features and the defective label of the
context scene are obtained by selecting similar tested software from
other projects as training samples. In addition, metrics of the con-
text scene is extracted from the tested software code as new data. By
building and testing the statement-based prediction model in the train-
ing dataset and the new target testing dataset respectively, the prob-
ability of defect proneness of each line of code is calculated, as shown
in Fig. 3.

Fig. 3.	 The proposed software defect prediction framework based on code
statementlevel

There is no difference between the defect prediction
based on code context scenario and the traditional ap-
proach based on method/function or class defect predic-
tion in the construction phase. The main difference lies in
feature extraction that has been introduced in the previous
part. There are plenty of machine learning methods, in-
cluding supervised learning, unsupervised learning, and
semi-supervised learning. Common supervised learning
algorithms have been investigated for software reliability
prediction and software defect prediction, such as Naive
Bayes (NB) [2, 16, 28], linear Regression Model (LRM)
[34], non-linear classifiers (e.g. support vector machines
(SVM), neural network (NN)) [3, 49], ensemble learning
(e.g. random forest (RF), bagging, Gradient Boost Regres-
sion Tree (GBRT)) [25, 47], and tree/rule-based classifiers
(e.g. OneR, RIPPER, decision tree (C4.5), decision table

(DT), partial decision trees (PART)) [28, 42]. Existing software defect
predictors are mainly used for classification and ranking. Classifica-
tion aims to predict software sample entities into defect proneness or
non-defect proneness and the ranking task is to prioritize the samples
according to the predicted code defect proneness probability. Com-
pared with software defect classification, ranking results are more
flexible and easier to use. Defect prediction can guide software test-
ing to optimize resource allocation, which is essentially a test priority
determination problem. This article uses code metrics for training to
forecast the probability of defect proneness in code statements and
then ranks them. Fig. 4 shows an example of the prediction results of
the proposed method with the actual program code.

Fig. 4.	 An example of defect prediction result based on code statement-level

In Fig. 4, the leftmost column is the code line, the middle column
is the defect prediction probability, and the right is the source code.
We can see from this example that the software code statement-level
defect prediction is feasible and has great research potential.

2.2.	 Test case Prioritization

The TCP problem is formalized as follows [35]:
Assumption T: A Test suite; PT: The set of permutations of T; f: a

function from PT to the real numbers.

Problem: find T PT′∈ for ()()T T PT′′ ′′∀ ∈ meets
() ()f T f T′ ′′≥  , where ()T T′′ ′≠ .

In the formal description, PT represents all possible TCP suites.
The input of function f is the specified priority order generated by
the ranking target, and the output result is linked to the ranking tar-
get. Generally speaking, typical ranking targets include code cover-

Table 4.	 Simple description of code metrics

Features Description

Keywords Basic types, modified words, complex types, storage types, branch
control, loop control, jump control, unique keywords, total keywords

Operators Arithmetic operators, relational operators, logical operators, assign-
ment operators, unique operators, total operators

Operands Constant operands, variable operands, function operands, unique
operands, total operands

Lines Total line, comment line, blank line, code & comment

Defect Bug

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020424

Science and Technology

age, defect detection rate, defect important, test cost and so on. In this
paper, the code coverage-based TCP method concentrates on three
aspects: prioritization strategy, prioritization criteria, and prioritiza-
tion search.

Prioritization criteria describes the coverage criterion of the inter-
nal structure of the program code, such as method coverage, statement
coverage, branch coverage and modified condition/decision coverage
(MC/DC), which reflects the test adequacy. This paper associates
code statement defect-proneness prediction with statement cover-
age to achieve test case sequencing. Prioritization search refers to the
search algorithm used in sorting test cases such as greedy algorithm,
genetic algorithm [26]. Most studies have adopted the greedy method,
and empirical studies [11, 36] also prove that the greedy method is a
simple and efficient ranking method. Prioritization strategy refers to
the method used to prioritize test cases in a test suite. The typically
used prioritization methods are as follows [11, 35]:

Random prioritization: It assigns the priority of test cases in the •	
test case set without any sorting criteria. It is used as a baseline
for performance comparison in this paper.
Optimal prioritization: It is based on the fact that each test case •	
in the test suite can expose software errors, and determines the
optimal sorting of test cases to maximize the defect detection
rate. However, it is not a practical method because it requires
pre-determining the defect information, which is often not avail-
able before testing. It was chosen to serve as an upper bound
on the effectiveness of ranking strategies to distinguish the gaps
between various strategies and the optimal solution.
Total prioritization: It is a completely static strategy that directly •	
counts the coverage of each test case in the test suite. The defect
detection rate of test cases is calculated according to the code
coverage and the test cases are sorted.
Additional prioritization: It is a feedback mechanism strategy •	
that takes into account overall coverage. Software entities (e.g.
functions, statements, branches) covered by test cases are no
longer considered. Therefore, after executing a test case, the
covered software entities are eliminated and the remaining test
cases are reordered. With the continuous execution of test cases,
software entities will gradually be covered. When they are all
covered, these entities need to be reset to the uncovered state,
and the above process is repeated for the remaining test cases.
Max prioritization: It takes the maximum defect prediction prob-•	
ability of the covered program code as the defect detection rate
and the test cases are prioritized.

Prioritization strategy is usually combined with sorting criteria
and sorting search. It is closely related to the average percentage
faults detected (APFD) value, and different prioritization strategies
often lead to different prioritization results. In this paper, we adopt a
greedy search method based on code statement coverage to prioritize
test cases on different strategies.

2.3.	 The defect detection rate of test cases

The proposed TCP-SCSDP determines the priority of test cases
by their defect detection rate–a measure of how quickly defects are
detected during software testing [11, 35]. Fig. 5 shows an example of
defect detection rates for the total, additional and max prioritization
strategies. It can be seen that the defect detection rate varies with the
prioritization strategy.

Where the probability is obtained from software defect prediction
based on code statement. The defect detection rate is computed ac-
cording to the selected prioritization strategy and the code coverage
of the test case. For example, the defect detection rate of test case 1
is 0.686 in total, 0.387 in max and 0.686 in additional, and the defect
detection rate of test case 2 is 0.672 in total, 0.209 in max and 0.343 in
additional prioritization. It is worth noting that the additional strategy

is a feedback strategy, which will eliminate the covered code after the
last test. After the defect detection rate of test cases is obtained and
sorted, the APFD value is finally calculated.

Fig. 5.	 Defect detection rate of test cases under different ranking strategies

3. Experimental setup

3.1.	 Research questions

In order to study the performance of the proposed method TCP-
SCSDP systematically and objectively, we present three questions as
follows:
RQ1: What is the performance comparison of different prioritization
strategies?

To answer this question, we compared the APFD values under
the five prioritization strategies of random, optimal, max, additional
and total. Among them, the random strategy and the optimal strategy
are used as a comparison baseline to evaluate the test performance of
total, max and additional strategies.
RQ2: How do different software defect predictors affect test case pri-
oritization?

The test prioritization task in this paper is the result of software
defect prediction based on the code statement-level. Its test perform-
ance depends on the defect predictor. To answer this question, we
choose LRM, GBRT and RT classifiers for comparative analysis.

3.2.	 Benchmark classifiers

For experimental comparison research, three distinct types of ma-
chine learning methods are used: Linear Regression Model (LRM),
Random Forest (RF), and Gradient Boosting Regression Tree (GBRT).
The three classifiers are widely used in software defect prediction and
show superior prediction performance [25, 34, 47]. In addition, be-
cause this paper is a test case prioritization based on code statement-
level defect prediction, all three algorithms can well support the de-
fect prediction.

LRM: A curve that is called the best fitting curve is utilized to fit
the data points, and the fitting process is called regression. When the
curve is linear, the process is called the linear regression. The main
idea of linear regress model is to use the pre-determined weights to
combine the attributes to represent the categories.

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020 425

Science and Technology

	 0 1 1 2 2+ + + + k kx w w a w a w a= ⋅ ⋅ ⋅ 	 (2)

where x is a class label, 1 2, , , ka a a⋅ ⋅ ⋅ is an attribute value,
1 2, , , kw w w⋅ ⋅ ⋅ is a weight value. In general, LRM can be resolved by

the least square method.

RF: It is an improved decision tree algorithm, which is a typical
bagging ensemble learning, mainly to handle the over-fitting problem
of decision tree. It has the advantages of high accuracy, not easy to
overfit and can handle high-dimensional data [47]. It uses multiple
the mechanism of decision trees for voting to improve the prediction
results. Assume that random forest is composed of m trees, where
each tree is generated by a certain amount of training samples n. In
order to ensure the generalization ability of random forest, n sam-
ples are generated by bootstrapping and the final prediction results
are obtained by bagging.

GBRT: It is a gradient boosting algorithm, which was first put
forward by Friedman [12]. It fits a regression tree by using the fast-
est descent approximation method, that is, using the value of the
negative gradient of the loss function in the current model as the ap-
proximate value (pseudo-residual) of the residual of the lifting tree
algorithm in the regression problem. In simple terms, each tree in a
progressive gradient regression tree is learned from the residuals of
all previous trees.

3.3.	 Benchmark datasets

In this paper, four open-source C program datasets are chosen as
experimental objects, which are Gzip, Grep, Flex and Sed. Among
them, Gzip is a widely-used file compression program of GNU free
software, Grep is a text search tool running under Linux which can
search text using specific pattern matching including regular expres-
sions, Flex is a program for SQL lexical analysis in Linux environ-
ment and sed is a tool for running Linux instructions. These programs
are intensively studied in the field of software engineering [4, 17].
Their source code and related materials can be accessed from SIR.
According to the defect information found in the historical version of
these codes, defect injection is carried out selectively, in which the de-
fect of the deleted class and non-modified code class are not injected.
Table 5 describes the basic information of the datasets.

3.4.	 Performance evaluation measures

The goal of test case prioritization is to find as many software
defects as early as possible, so as to they can be fixed early in test-
ing. It can improve the effectiveness of software testing and shorten
the software development life cycle. Generally, APFD is invoked as
the performance evaluation indicator of the priority ranking method.
Suppose there are n test cases in a test case T, m defects found in a
defective set F, and the test case rank T ′ , its APFD is as follows:

	 APFD TF TF TF TF
m n n

i m= −
+ + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅

+1 1
2

1 2
*

	 (3)

In Equation 3, iTF is the position of the first test case with de-
fect i found in sorting strategy T ′ . The APFD value ranges from
0 to 1. The higher its value is, the better the test case prioritization
is. For instance, there is a test case set as shown in Table 6. If it is

sorted according to 1 10T T− , the APFD value of the test sequence is

0.46APFD = . If it is sorted according to 10 1T T− , the APFD value
of the test sequence is 0.7875APFD = .

4. Experimental results and discussion

In order to systematically study the problems raised, four open-
source program datasets of SIR website are taken as experimental
objects. Taking the set of Siemens programs (Gzip, Grep, Flex and
Sed) as the data source, data samples are established through the au-
tomatically extracted code features and defect label as training data-
set of the prediction model. And the testing dataset is removed from
the training dataset to avoid over-fitting seen in Table 7. A prediction
model trained from the historical data across other projects is utilized

to predict defects in the project to solve
the problem of insufficient historical
defect data. For instance, assuming
that the training dataset is {Grep, Flex,
Sed} then the Gzip program is the test-
ing dataset, and then the Gzip program
is the testing dataset.

Aiming at the first problem RQ1,
five test case prioritization strategies,
max, total, additional, random and
optimal, are compared. Because the
random strategy has randomness in se-
lecting test cases, the average result of
20 times will be used as a comparison

value to objectively evaluate its performance. In addition, for the sec-
ond problem RQ2, three different predictors, LRM, RF, and GBRT,

Table 5.	 An overview of subjects used in this study

Dataset Size Injected
defects

Defect rate per
thousand lines
of code (KLOC)

Number of test
cases Source Description

Gzip 5680 37 6.51 279 SIR File compression utility

Grep 10068 47 4.67 669 SIR Text search tool

Flex 10459 32 3.06 447 SIR SQL parsing tool

Sed 14427 27 1.87 261 SIR Linux command run tool

Table 6.	 Correspondence between test cases and defects.

Test Case
ID

Defect ID

F1 F2 F3 F4 F5 F6 F7 F8

T1

T2

T3 ※ ※

T4 ※ ※ ※

T5 ※ ※

T6

T7 ※ ※ ※ ※

T8 ※ ※

T9 ※

T10 ※ ※ ※

Table 7. Case studies

Training Testing (case study)

Grep, Flex, Sed Gzip

Gzip, Flex, Sed Grep

Gzip, Grep, Sed Flex

Gzip, Grep, Flex Sed

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020426

Science and Technology

are used to analyse the impact of on the ranking of test cases. Fig. 6-9
show the Alberg diagrams [31, 34] of the experimental results, where
the x-axis indicates the proportion of test cases used in the total test
cases and the y-axis indicates the percentage of defects found in the
total defects.

Fig. 6.	 Results on Flex dataset from different combinations of predictors and
test prioritization strategies

4.1.	 RQ1: What is the performance comparison of different
prioritization strategies?

From the observation of Fig. 6-9 and Table 8, it can be seen that
the performance of different prioritization strategies is different.

The optimal strategy has the best performance, which is the up-•	
per theoretical limit of test case prioritization. The APFD values
of the optimal strategy in Gzip and Sed are 0.933 and 0.948,
respectively.

The random strategy has the worst performance, which is caused •	
by its indiscriminate random selection of test cases. Its APFD
values in Gzip, Grep, Flex and Sed are 0.628, 0.65, 0.62 and
0.551, respectively, which are close to the theoretical values of
0.5. However, the actual result of the random strategy is higher
than the theoretical value. This is because the corresponding
relationship between the designed test cases and defects is not
one-to-one, that is, a defect can be found by multiple test cases,
which is closer to the actual test situation. This leads to an in-
creased probability of finding defects in the test case set. There-
fore, the probability of finding defects in the test case is higher
than the theoretical value.
The curve of the max strategy on the •	 Gzip and Sed datasets is
closer to that of the total (see Fig. 8 and Fig. 9), and it is closer
to the additional strategy on the Grep and Flex datasets (see

(a) LRM

(b) RF

(c) GBRT

 (a) LRM

(b) RF

(c) GBRT

Fig. 7.	 Results on Grep dataset from different combinations of predictors and
test prioritization strategies

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020 427

Science and Technology

Fig. 7 and Fig. 6). The APFD values of the max strategy are
generally higher than those of the total strategy (see Table 8).
However, the starting curve of the total is higher than the max,
which indicates that the total is actually better than the max in
the early stage of testing. This is mainly because the total is on
the overall coverage strategy. It is easier to prioritize test cases
with wider coverage in the early stage so that the probability of
finding defects is higher. However, it is prone to falling into the
situation of repeatedly covering the tested code later in the test-
ing. The max strategy takes into account the greatest probability
of detecting defects in the code. Although it is not as good as the

total strategy in the early stage of testing, it is easier to prioritize
the execution of defective test cases in the later stage.
The additional is a strategy with excellent performance, which •	
is only slightly lower than the optimal strategy. Although the
additional is not as good as the max on Grep and Flex datasets
in some cases, the overall curve in the figures shows that the
additional is worse than the max and total. This is because both
the max and total are static strategies, while the additional is
a dynamic one. After each test execution, the defect detection
rate of the test case will be readjusted according to the cover-
age of the test code. This feedback method is helpful for the
additional strategy to optimize its test case selection behaviour
in real-time.
In addition, compared with the random strategy, the test per-•	
formance gain curves of the three TCP strategies max, total and

 (a) LRM
 (a) LRM

(b) RF
(b) RF

(c) GBRT

(c) GBRT

Fig. 8.	 Results on Gzip dataset from different combinations of predictors and
test prioritization strategies

Fig. 9.	 Results on Sed dataset from different combinations of predictors and
test prioritization strategies

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020428

Science and Technology

optimal are convexly shown in Fig. 10. As the proportion of test
cases increases, the test performance difference tends to increase
firstly and then decreased. Moreover, when 20%-30% of the test
cases are selected, three test performance gain curves reach the
maximum and the efficiency ratio is the largest.

Fig. 10.	 The test performance gains of the three strategies max, total and op-
timal compared to the random strategy

On the whole, the performance of the test case prioritization strat-
egy is optimal, additional, max, total and random in turn from high
to low. In order to quantitatively analyse the performance difference,
the APFD average values under different classifiers and test case pri-
oritization strategies are calculated as shown in Table 8. The aver-
age value is used as total, max, additional and optimal strategies are
0.7918 (-16.05%), 0.8451 (-10.72%), 0.8473 (-10.50%), and 0.9523
respectively. The percentiles in parentheses are the performance loss
ratio relative to the optimal strategy. The smaller the loss ratio, the
better the ranking.

Based on the above results, the following conclusions can be
drawn: The proposed model is suitable for test case prioritization. In
the test case prioritization methods, the APFD performance of the ad-
ditional strategy is preferable to max strategy and total strategy.

5.2.	 RQ2: How do different software defect predictors affect
test case prioritization?

This problem explores the impact of different defect prediction
classifiers on test results. It can be found that from Table 8 that differ-
ent predictors have an impact on the additional, max and total strate-
gies, while the optimal and random strategies will not be disturbed
because they are not related to the predictor. For the convenience of
analysis, this section analyses the performance of the three predictors
on Gzip, Grep, Flex and Sed by taking the additional strategy as the
object as illustrated in Figure 11.

It can be seen from Fig. 11 that using the RF-based predictor
for the additional test case prioritization strategy is better than using

the LRM-based or GBRT-based on Gzip, Grep, Flex and Sed datasets.
Especially on the Grep dataset, the test performance is significantly
higher than the other two predictors. This shows that the choice of the
predictor has an influence on the test case prioritization based on code
statement level defect prediction, and its degree of influence is also
inconsistent with the different experimental objects.

Based on the above results, the following conclusions can be
drawn: The prediction performance of the defect predictor will affect
the efficiency of the test case prioritization method, that is, different

(a) Flex dataset (b) Grep dataset

(c) Gzip dataset (d) Sed dataset

Fig. 11. Impact of LRM, RF and GBRT predictors on the additional prioritization strategy

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020 429

Science and Technology

defect predictors will bring different prediction probabilities to the
test case prioritization.

5. Threats to validity

As an empirical study, its potential limitations must be taken into
account when interpreting its results. This section describes several
potential threats to the validity of our models.

5.1.	 Internal Validity

Internal validity mainly refers to the correctness and reproducibility
of our empirical results. We implement all the baseline predictors (RF,
LRM and GBRT) with default settings invoking WEKA to reduce the
potential possibility to make mistakes. The optimal parameters of the
predictors may be different for different defect datasets, which may lead
to different results. However, it does not hinder the feasibility and ef-
fectiveness of the test case prioritization based on code statement-level
software defect prediction. And all the algorithms involved adopting
the same data pre-processing (e.g. CFS-based attribute selection [14])
to minimize redundancy. Besides, we have double-checked all of our
experiments, but there may be a few errors.

5.2.	 External Validity

External validity relates to the generalization ability of our em-
pirical results. The proposed approach was compared and analysed

in four selected subjects, which may have data quality issues. And
the attributes collected are all code statement metrics from SIR Re-
pository and the samples are abstracted at code statement level from
C programming language. Although our proposed model could be
employed in other programming languages (i.e., Java, C++), we can-
not guarantee the same empirical results. Besides, we only employed
the three prevailing defect classifiers (RF, LRM, and GBRT). As we
all know, there are a large number of predictive classifiers [6, 25,
47]. We could not validate all other algorithms due to time and space
constraints. However, it does not dispute that choosing different pre-
dictors affects test case prioritization results. To reduce the external
threats, more programming languages, high-quality defect datasets,
and the predictors should be utilized in the future.

5.3.	 Construct Validity

Construct validity refers to the suitability of the test performance
evaluation measure. There are some several measures [7], such as
average severity of faults detected (ASFD), coverage effectiveness
(CE), total percentage of faults detected (TPFD), average percentage
faults detected (APFD). However, in fact, there is no studies have ap-
plied all of the measures to evaluate test case prioritization. We chose
carefully the most commonly used measure APFD to prioritize test
cases. Besides, in order to reduce construct validity, we also use the
Alberg diagram to visually describe the curve of the proportion of
found defects to the total number of defects as the proportion of test
cases to the total number of test cases increases.

6. Conclusion

This paper proposes a novel test case prioritization method based
on code statement-level defect prediction named TCP-SCSDP, which
takes into account the possible distribution of defects and prediction
granularity. The proposed feature set for measuring code statements
first is used as the input for the statement software defect prediction
model, and data pre-processing is performed on the software defect
dataset. Secondly, the predictor is applied to predict the defect prone-
ness probability of valid code statements. Then the defect detection
rate of all test cases is calculated by using the test case prioritization
strategy, and they are sorted from high to low. Finally, APFD is used
to evaluate the prioritization.

Experimental results on 4 open source datasets show that the pro-
posed approach is feasible and effective, and the test performance will
be affected by the predictor and the test case prioritization strategy.

Our future work will focus on the following aspects: (1) Collect
more open source software projects, programming languages (e.g.
C++, Java) and predictors (e.g. neural network, k nearest neighbour),
as mentioned earlier, to validate the generality of our method. (2) Op-
timize the test case prioritization strategy to improve software testing
efficiency.

Acknowledgement
The research work is supported by a grant from the Science & Tech-
nology on Reliability & Environmental Engineering Laboratory of

China (Grant No.614200404031117). And this work is also partially
supported by No. 61400020404. We would be grateful to the editor

and anonymous reviewers for their insightful and valuable comments
and suggestions to improve the paper.

Table 8.	 APFD values under different prioritization and predictors

Dataset prioritization
Machine learning algorithm

LRM RF GBRT

Gzip

Max 0.740 0.739 0.731

Total 0.701 0.740 0.698

Additional 0.794 0.821 0.766

Random 0.628 0.628 0.628

Optimal 0.933 0.933 0.933

Grep

Max 0.910 0.910 0.908

Total 0.746 0.894 0.751

Additional 0.746 0.941 0.766

Random 0.650 0.650 0.650

Optimal 0.964 0.964 0.964

Flex

Max 0.900 0.900 0.908

Total 0.776 0.907 0.802

Additional 0.855 0.943 0.874

Random 0.620 0.620 0.620

Optimal 0.964 0.964 0.964

Sed

Max 0.814 0.873 0.808

Total 0.801 0.886 0.799

Additional 0.880 0.889 0.892

Random 0.551 0.551 0.551

Optimal 0.948 0.948 0.948

References

1. Arafeen M J, Do H. Test case prioritization using requirements-based clustering. Proceedings of the 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation 2013: 312-321, https://doi.org/10.1109/ICST.2013.12.

2. Arar O F, Ayan K. A feature dependent naive bayes approach and its application to the software defect prediction problem. Applied Soft
Computing 2017; 59: 197-209, https://doi.org/10.1016/j.asoc.2017.05.043.

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020430

Science and Technology

3. Arar O F, Ayan K. Software defect prediction using cost-sensitive neural network. Applied Soft Computing 2015; 33(C): 263-277, https://
doi.org/10.1016/j.asoc.2015.04.045.

4. Bertolino A, Miranda B, Pietrantuono R, et al. Adaptive coverage and operational profile-based testing for reliability improvement.
Proceedings of the 39th International Conference on Software Engineering 2017: 541-551.

5. Boehm B, Basili V R. Software defect reduction top 10 list. Computer 2001; 34(1): 135-137, https://doi.org/10.1109/2.962984.
6. Catal C, Diri B. Investigating the effect of dataset size, metrics sets, and feature selection techniques on software fault prediction problem.

Information Sciences 2009; 179(8): 1040-1058, https://doi.org/10.1016/j.ins.2008.12.001.
7. Catal C, Mishra D. Test case prioritization: A systematic mapping study. Software Quality Journal 2013; 21(3): 445-478, https://doi.

org/10.1007/s11219-012-9181-z.
8. Di Nardo D, Alshahwan N, Briand L, et al. Coverage-based regression test case selection, minimization and prioritization: A case study on

an industrial system. Software Testing, Verification and Reliability 2015; 25(4): 371-396, https://doi.org/10.1002/stvr.1572.
9. Do H, Mirarab S, Tahvildari L, et al. The effects of time constraints on test case prioritization: A series of controlled experiments. IEEE

Transactions on Software Engineering 2010; 36(5): 593-617, https://doi.org/10.1109/TSE.2010.58.
10. Durelli V H S, Durelli R S, Borges S S, et al. Machine learning applied to software testing: A systematic mapping study. IEEE Transactions

on Reliability 2019; 68(3): 1189-1212, https://doi.org/10.1109/TR.2019.2892517.
11. Elbaum S, Malishevsky A G, Rothermel G. Test case prioritization: A family of empirical studies. IEEE Transactions on Software Engineering

2002; 28(2): 159-182, https://doi.org/10.1109/32.988497.
12. Friedman J H. Stochastic gradient boosting. Computational statistics & data analysis 2002; 38(4): 367-378.
13. Garg D, Datta A. Test case prioritization due to database changes in web applications. Proceedings of the 2012 IEEE Fifth International

Conference on Software Testing, Verification and Validation 2012: 726-730.
14. Hall M, Frank E, Holmes G, et al. The weka data mining software: An update. ACM SIGKDD explorations newsletter 2009; 11(1): 10-18.
15. Harrold M J. Testing: A roadmap. Proceedings of the Future of Software Engineering 2000: 61-72.
16. He P, Li B, Liu X, et al. An empirical study on software defect prediction with a simplified metric set. Information and Software Technology

2015; 59(C): 170-190, https://doi.org/10.1016/j.infsof.2014.11.006.
17. Henard C, Papadakis M, Harman M, et al. Comparing white-box and black-box test prioritization. Proceedings of the 2016 IEEE/ACM 38th

International Conference on Software Engineering (ICSE) 2016: 523-534, https://doi.org/10.1145/2884781.2884791.
18. Hosseini S, Turhan B, Mäntylä M. A benchmark study on the effectiveness of search-based data selection and feature selection for cross

project defect prediction. Information and Software Technology 2017; 95: 296-312, https://doi.org/10.1016/j.infsof.2017.06.004.
19. Hovemeyer D, Pugh W. Finding bugs is easy. Acm sigplan notices 2004; 39(12): 92-106, https://doi.org/10.1145/1052883.1052895.
20. Huang C Y, Chang J R, Chang Y H. Design and analysis of gui test-case prioritization using weight-based methods. Journal of Systems and

Software 2010; 83(4): 646-659, https://doi.org/10.1016/j.jss.2009.11.703.
21. Khatibsyarbini M, Isa M A, Jawawi D N A, et al. Test case prioritization approaches in regression testing: A systematic literature review.

Information and Software Technology 2018; 93: 74-93, https://doi.org/ 10.1016/j.infsof.2017.08.014.
22. Krishnamoorthi R, Sahaaya Arul Mary S A. Requirement based system test case prioritization of new and regression test cases. International

Journal of Software Engineering and Knowledge Engineering 2009; 19(3): 453-475, https://doi.org/10.1142/S0218194009004222.
23. Lachmann R, Schulze S, Nieke M, et al. System-level test case prioritization using machine learning. Proceedings of the 2016 15th IEEE

International Conference on Machine Learning and Applications (ICMLA) 2016: 361-368, https://doi.org/10.1109/ICMLA.2016.163.
24. Laradji I H, Alshayeb M, Ghouti L. Software defect prediction using ensemble learning on selected features. Information and Software

Technology 2015; 58: 388-402, https://doi.org/10.1016/j.infsof.2014.07.005.
25. Lessmann S, Baesens B, Mues C, et al. Benchmarking classification models for software defect prediction: A proposed framework and novel

findings. IEEE Transactions on Software Engineering 2008; 34(4): 485-496, https://doi.org/10.1109/TSE.2008.35.
26. Li Z, Harman M, Hierons R M. Search algorithms for regression test case prioritization. IEEE Transactions on Software Engineering 2007;

33(4): 225-237, https://doi.org/10.1109/TSE.2007.38.
27. Mei H, Hao D, Zhang L, et al. A static approach to prioritizing junit test cases. IEEE Transactions on Software Engineering 2012; 38(6):

1258-1275, https://doi.org/10.1109/TSE.2011.106.
28. Menzies T, Greenwald J, Frank A. Data mining static code attributes to learn defect predictors. IEEE Transactions on Software Engineering

2006; 33(1): 2-13, https://doi.org/10.1109/TSE.2007.256941.
29. Mirarab S, Tahvildari L. A prioritization approach for software test cases based on bayesian networks. Proceedings of the International

Conference on Fundamental Approaches to Software Engineering 2007: 279-290.
30. Nam J, Kim S. Clami: Defect prediction on unlabeled datasets. Proceedings of the 2015 30th IEEE/ACM International Conference on

Automated Software Engineering (ASE) 2015: 452-463, https://doi.org/10.1109/ASE.2015.56.
31. Ohlsson N, Alberg H. Predicting fault-prone software modules in telephone switches. IEEE Transactions on Software Engineering 1996;

22(12): 886-894, https://doi.org/10.1109/32.553637.
32. Paterson D, Campos J, Abreu R, et al. An empirical study on the use of defect prediction for test case prioritization. Proceedings of the 2019

12th IEEE Conference on Software Testing, Validation and Verification (ICST) 2019: 346-357, https://doi.org/10.1109/ICST.2019.00041.
33. Peng R, Zhai Q. Modeling of software fault detection and correction processes with fault dependency. Eksploatacja i Niezawodnosc –

Maintenance and Reliability 2017; 19(3): 467-475, https://doi.org/10.17531/ein.2017.3.18.
34. Peng X, Liu B, Wang S. Feedback-based integrated prediction: Defect prediction based on feedback from software testing process. Journal

of Systems and Software 2018; 143: 159–171, https://doi.org/10.1016/j.jss.2018.05.029.
35. Rothermel G, Untch R H, Chu C, et al. Prioritizing test cases for regression testing. IEEE Transactions on Software Engineering 2001;

27(10): 929-948, https://doi.org/10.1109/32.962562.
36. Rothermel G, Untch R H, Chu C, et al. Test case prioritization: An empirical study. Proceedings of the IEEE International Conference on

Software Maintenance-1999 (ICSM'99)'Software Maintenance for Business Change'(Cat No 99CB36360) 1999: 179-188.
37. Shao Y, Liu B, Wang S, et al. A novel software defect prediction based on atomic class-association rule mining. Expert Systems with

Applications 2018; 114: 237-254, https://doi.org/10.1016/j.eswa.2018.07.042.

Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020 431

Science and Technology

38. Shatnawi O. Measuring commercial software operational reliability: An interdisciplinary modelling approach. Eksploatacja i Niezawodnosc
– Maintenance and Reliability, 2014; 16(4): 585-594.

39. Song Q, Jia Z, Shepperd M, et al. A general software defect-proneness prediction framework. IEEE Transactions on Software Engineering
2011; 37(3): 356-370, https://doi.org/10.1109/TSE.2010.90.

40. Spieker H, Gotlieb A, Marijan D, et al. Reinforcement learning for automatic test case prioritization and selection in continuous
integration. Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis 2017: 12-22, https://doi.
org/10.1145/3092703.3092709.

41. Srikanth H, Hettiarachchi C, Do H. Requirements based test prioritization using risk factors: An industrial study. Information and Software
Technology 2016; 69: 71-83, https://doi.org/10.1016/j.infsof.2015.09.002.

42. Sun Z, Song Q, Zhu X. Using coding-based ensemble learning to improve software defect prediction. IEEE Transactions on Systems Man
and Cybernetics Part C 2012; 42(6): 1806-1817, https://doi.org/10.1109/TSMCC.2012.2226152.

43. Tonella P, Avesani P, Susi A. Using the case-based ranking methodology for test case prioritization. Proceedings of the 2006 22nd IEEE
International Conference on Software Maintenance 2006: 123-133.

44. Turhan B, Menzies T, Bener A c, ,e B., et al. On the relative value of cross-company and within-company data for defect prediction.
Empirical Software Engineering 2009; 14(5): 540-578, https://doi.org/10.1007/s10664-008-9103-7.

45. Wang H, Khoshgoftaar T M, Napolitano A. Software measurement data reduction using ensemble techniques. Neurocomputing 2012; 92(3):
124-132, https://doi.org/10.1016/j.neucom.2011.08.040.

46. Wang S, Nam J, Tan L. Qtep: Quality-aware test case prioritization. Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering 2017: 523-534, https://doi.org/10.1145/3106237.3106258.

47. Wang S, Yao X. Using class imbalance learning for software defect prediction. IEEE Transactions on Reliability 2013; 62(2): 434-443,
https://doi.org/10.1109/TR.2013.2259203.

48. Xiao L, Miao H, Zhuang W, et al. An empirical study on clustering approach combining fault prediction for test case prioritization. Proceedings
of the 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS) 2017: 815-820.

49. Xu J, Meng Z, Xu L. Integrated system of health management-oriented reliability prediction for a spacecraft software system with an
adaptive genetic algorithm support vector machine. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2014; 16(4): 571-578.

50. Yang X, Tang K, Yao X. A learning-to-rank approach to software defect prediction. IEEE Transactions on Reliability 2015; 64(1): 234-246,
https://doi.org/10.1109/TR.2014.2370891.

51. Yoo S, Harman M. Regression testing minimization, selection and prioritization: A survey. Software Testing, Verification and Reliability
2012; 22(2): 67-120, https://doi.org/10.1002/stv.430.

Yuanxun Shao
Bin Liu
Shihai Wang
School of Reliability and Systems Engineering
Beihang University
No.37 Xueyuan RD. Haidian, 100191, Beijing, China

Peng Xiao
Ji'an Municipal Industry and Information Technology Bureau
11/F, Block B, Administration Center Building
Jizhou District, Ji'an, Jiangxi, 343000, China

E-mails: yuanxunshao@buaa.edu.cn, liubin@buaa.edu.cn,
wangshihai@buaa.edu.cn, buaaxp@foxmail.com

