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1. Introduction

Software testing, as an indispensable stage in software develop-
ment life cycle, aims to discover defects in a software artefact as much 
as possible to assure its quality and reliability [10]. It is a very costly 

and resources consuming task that accounts for higher than 50% of 
development costs [15]. In previous work [51], test case selection 
(TCS), test case minimization (TCM) and TCP are three techniques 
maximize the value of test suites. TCP is often used to improve the 
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Nowatorska metoda priorytetyzacji przypadków testowych 
oparta na prognozowaniu błędów instrukcji kodu 

oprogramowania numerycznego
Test case prioritization (TCP) has been considerably utilized to arrange the implementation order of test cases, which contributes 
to improve the efficiency and resource allocation of software regression testing. Traditional coverage-based TCP techniques, such 
as statement-level, method/function-level and class-level, only leverages program code coverage to prioritize test cases without 
considering the probable distribution of defects. However, software defect data tends to be imbalanced following Pareto principle. 
Instinctively, the more vulnerable the code covered by the test case is, the higher the priority it is. Besides, statement-level cover-
age is a more fine-grained method than function-level coverage or class-level coverage, which can more accurately formulate 
test strategies. Therefore, we present a test case prioritization approach based on statement software defect prediction to tame 
the limitations of current coverage-based techniques in this paper. Statement metrics in the source code are extracted and data 
pre-processing is implemented to train the defect predictor. And then the defect detection rate of test cases is calculated by com-
bining the prioritization strategy and prediction results. Finally, the prioritization performance is evaluated in terms of average 
percentage faults detected in four open source datasets. We comprehensively compare the performance of the proposed method 
under different prioritization strategies and predictors. The experimental results show it is a promising technique to improve the 
prevailing coverage-based TCP methods by incorporating statement-level defect-proneness. Moreover, it is also concluded that 
the performance of the additional strategy is better than that of max and total, and the choice of the defect predictor affects the 
efficiency of the strategy.

Keywords:	 software defect prediction, test case prioritization, code statement metrics, machine learning, soft-
ware testing.

Metodę priorytetyzacji przypadków testowych (TCP) wykorzystuje się powszechnie do ustalania kolejności implementacji przy-
padków testowych, co przyczynia się do poprawy wydajności i alokacji zasobów w trakcie testowania regresyjnego oprogramo-
wania. Tradycyjne techniki TCP oparte na pokryciu na poziomie instrukcji, metody/funkcji oraz klasy, wykorzystują pokrycie 
kodu programu tylko w celu ustalenia priorytetów przypadków testowych, bez uwzględnienia prawdopodobnego rozkładu błędów. 
Jednak dane o błędach oprogramowania są zwykle niezrównoważone zgodnie z zasadą Pareto. Instynktownie, im bardziej wrażli-
wy jest kod pokryty przypadkiem testowym, tym wyższy jest jego priorytet. Poza tym, pokrycie na poziomie instrukcji jest bardziej 
szczegółową metodą niż pokrycie na poziomie funkcji lub pokrycie na poziomie klasy, które mogą dokładniej formułować strategie 
testowe. Dlatego w artykule przedstawiamy podejście do priorytetyzacji przypadków testowych oparte na prognozowaniu błędów 
instrukcji oprogramowania, które pozwala zmniejszyć ograniczenia obecnych technik opartych na pokryciu. Wyodrębniono me-
tryki instrukcji w kodzie źródłowym i zaimplementowano wstępne przetwarzanie danych w celu nauczania predyktora błędów. Na-
stępnie obliczono wskaźnik wykrywania błędów w przypadkach testowych poprzez połączenie strategii priorytetyzacji i wyników 
prognozowania. Wreszcie, oceniono wydajność ustalania priorytetów pod względem średnich procentowych błędów wykrytych  
w czterech zestawach danych typu open source. Kompleksowo porównano wydajność proponowanej metody w ramach różnych 
strategii ustalania priorytetów i predyktorów. Wyniki eksperymentów pokazują, że jest to obiecująca technika poprawy dominu-
jących metod TCP opartych na pokryciu poprzez włączenie podatności na błędy na poziomie instrukcji. Ponadto stwierdzono 
również, że strategia dodatkowa cechuje się lepszą wydajnością niż strategie max i total, a wybór predyktora błędów wpływa  
na skuteczność strategii.

Słowa kluczowe:	 przewidywanie błędów oprogramowania, priorytetyzacja przypadków testowych, metryki 
instrukcji kodu, uczenie maszynowe, testowanie oprogramowania.
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effectiveness of some performance objectives associated with regres-
sion testing [7, 10, 21, 26, 35, 36], but it does not increase software 
costs like TCS and TSM by ignoring some meaningful test cases [9]. 
It prioritizes the test suite used according to certain test goals and 
strategies to optimize the speed of the defect detection rate, which is 
conducive to improving testing efficiency and reducing time and re-
source costs. With the expansion of application scenarios, it has been 
successfully applied in different test areas, such as graphical user in-
terface testing [7, 20], web application testing [13].

TCP can schedule the execution of test cases in a specific order 
in order to enhance the defect detection rate, that is, to discover most 
defects as early as possible by prioritizing the most relevant test cases. 
It can be roughly grouped into multiple major dimensions [21, 51], 
such as requirement-based TCP [1, 22, 41], search-based TCP [26], 
coverage-based TCP [35], history-based TCP [40]. For instance, some 
researchers have studied the impact of requirement-based or search-
based TCP methods on improving defect detection rates. For example, 
Arafeen et al. [1] and  Krishnamoorthi et al. [22] showed that using 
requirement information in test case sequencing can improve testing 
efficiency. There are two common coverage strategies: total and addi-
tional. Li et al. [26] employed search-based heuristics TCP approach-
es (e.g.2-optimal greedy, hill climbing, genetic algorithms) to deal 
with the NP-hard problem for regression testing. Compared results 
on Siemens suite and space programs showed that genetic algorithms 
perform well. In addition, Spieker et al. [40] used neural networks 
and reinforcement learning to automatically select and prioritize test 
cases in continuous integration testing and tamed history-based TCP 
adaption problem. Among all TCP approaches, the coverage-based 
prioritization approach is one of the most commonly used in TCP [8, 
17, 21, 27, 35, 36], such as statement-level coverage, branch-level 
coverage, method/function-level coverage and class-level coverage. 
The structural coverage-based method usually prioritizes test cases 
based on coverage, such as the total number of classes or methods 
covered. For example, Rothermel et al. [11, 35, 36] proposed a series 
of TCP methods including additional and total strategies combined 
with code coverage information. Henard et al. [17] comprehensively 
compared well-established white-box (e.g. total statement, additional 
branch) TCP techniques with black-box (e.g. input model diversity) 
ones. It is found that defects detected by the two techniques have high 
overlap and small performance differences. However, the black-box 
TCP techniques are more suitable for testing without source code. 
On the contrary, coverage objects considered in white-box TCP are 
source code, which is also the object concerned in this paper.

Unlike software reliability models [33, 38], software defect pre-
diction can forecast defect prone or the number of defects in a software 
system, which is conducive to allocate testing resources efficiently. 
Furthermore, previous work [29, 32, 34, 43, 46, 48, 50] has suggested 
that using the defect-proneness of a defect predictor to rank makes 
sense for test cases. In other words, the more the code tends to finds 
defects, the higher the defect detection rate. Current defect predictors 
are mainly oriented to modules (e.g. class level [16], method/function 
level [25, 28, 37, 39, 44]), which are a relatively coarse granularity 
for TCP. For instance, Tonella et al. [43] integrated user knowledge 
through the case-based ranking machine learning algorithm with mul-
tiple, diverse TCP indexes. The method can handle partial, inconsist-
ent and high-level data in a low-cost knowledge acquisition manner. 
The preliminary results showed that it is close to the optimal strategy 
for moderate test suite size (no more than 60). Wang et al. [7] present-
ed quality-aware test case prioritization which leverages an unsuper-
vised statistic defect prediction (CLAMI [30]) and a static bug finder 
(FindBugs [19]) to detect defective code and then revise the existing 
coverage-based methods by considering the weighted detective code. 
Empirical results performed on 7 open-source Java projects showed 
that it could improve coverage-based methods for test cases. Xiao et 
al. [48] designed a clustering-based TCP approach that utilized the de-

fect-proneness probability based on the results of a method-level de-
fect prediction model. The approach used a support vector machine to 
build the defect-proneness prediction model and employed K-means 
to calculate the optimal number of clusters. However, it only consid-
ered four code metrics: Line of code, total operators, total operands 
and cyclometric complexity. Lachmann et al. [23] proposed a system-
level black-box TCP approach based on a support vector machine, 
which utilized test case history and natural language-based test case 
descriptions to prioritize. The method is compared with random and 
manual prioritization on the two subject systems, which show that it 
is beneficial to improve the defect detection rate. Mirarab et al. [29] 
provided a TCP approach based on the class-level Bayesian networks 
defect prediction model, which integrated software defect-proneness, 
code modification information, and test coverage data. The obtained 
results on a Java application showed that the approach has better test 
performance when there are a reasonable number of defects. Paterson 
et al. [32] proposed a TCP strategy (G-clef) based on defect prediction 
(Schwa) to reorder a test suite. They utilized code attributes such as 
the number of authors and revisions to configure Schwa, and com-
pared G-clef on three groups of strategies: single-version, test execu-
tion history and software history. The results revealed that applying 
defect prediction to rank test cases was appealing. 

However, as mentioned above, most of the current work focused 
on TCP methods based on coarse-grained software defect prediction 
models, such as class-level [29], method/function-level [7, 48], sys-
tem-level [23]. Moreover, some techniques [32, 48] leverage only a 
small amount of metric information or user experience [43] to build 
defect-proneness models. If the granularity can be subdivided into the 
code statement-level, more accurate test resource allocation or case 
prioritization can be formulated, such as white-box TCP based on 
statement coverage [21, 35, 36]. However, these methods rank test 
cases in terms of the total number of statements covered without con-
sidering the probable distribution of code defects, that is, assuming 
that defects are evenly distributed in the source code. Nevertheless, 
the distribution of defects is skewed in most cases, with approximate-
ly 80% of defects occurring in 20% of the code [5]. In this paper, 
the defect-proneness probability of all valid statements in the code is 
predicted to guide coverage-based TCP. Therefore, integrating state-
ment-based software defect prediction into a coverage-based test case 
prioritization has great theoretical and practical engineering value.

Furthermore, to the best of our present knowledge, there is no 
software defect prediction model that can predict defect prone of code 
statements. The key issue is how to select and extract statement met-
rics from source code. Besides, the existing mainstream research [29, 
32, 34, 43, 46, 48, 50] only incorporates a single predictor into the 
TCP methods and does not compare the effects of various predictors 
on defect detection rate of test cases.

To overcome these shortcomings, we put forward a novel test case 
prioritization method based on software code statement defect predic-
tion (TCP-SCSDP). The main idea of our method TCP-SCSDP is first 
to inject defects and extract code statement features to form a labelled 
defect dataset and perform data pre-processing on it. And then a su-
pervised machine learning algorithm (e.g. random forest) is selected 
to build a software defect prediction model based on code statements. 
The model can assess the defect probability of statements and achieve 
the fine-grained prediction at the statement-level. Taking the white 
box test cases based on code coverage as the subject (test set), the 
prioritization strategy is utilized to calculate the defect detection rate 
of each test case. Finally, the weighted average percentage of defect 
detection is utilized to measure the ranking results. It can be observed 
that the code statement-level defect prediction method can not only 
improve the prediction granularity problem, but also fill the gap of 
the test case prioritization method based on the code statement-level 
defect-proneness prediction.

Our contributions to the current research are as follows:
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We propose a software defect prediction model based on code (1)	
statement-level, which addresses the problems of acquiring 
statement metrics and prediction granularity.
We incorporate code statement level software defect prediction (2)	
into the test case prioritization process, which improves the 
defect detection rate.
We systematically compare the effects of four common priori-(3)	
tization strategies and three classic predictors on test perform-
ance and find that the additional strategy is to the max and 
total ones and the choice of predictors has an impact on the 
prioritization strategy.
We present an empirical evaluation using four open-source (4)	
projects from the Software Infrastructure Repository (SIR). 
The experimental results indicate that our proposed TCP-SCS-
DP is effective and feasible.

The remainder of this paper is organized as follows: The remain-
der of this paper is organized as follows: Section 2 presents the test 
case prioritization based on code statement defect prediction. Sec-
tion 3 is devoted to the experimental setup. Experimental results and 
discussion are described in Section 4. Some threats to validity are 
described in Section 5. Finally, conclusions and future work are gen-
eralized in Section 6.

2. Test case prioritization based on code statement 
defect prediction

2.1.	 The proposed overall framework

The proposed method TCP-SCSDP is divided into two parts, 
code statement level defect prediction, and the prioritization strategy. 
The framework is presented in Fig. 1. The software defect prediction 
method based on code statement-level is a more fine-grained predic-
tion than the traditional method based on function level or class level, 
which helps to solve the problem of unable to predict accurately. First-
ly, metrics and defect information of code statements are extracted 
from the source code and software test report to form a labeled train-
ing dataset. And selecting a supervised learning algorithm (e.g. RF, 
GBRT, LRM) to train a software defect prediction model. Similarly, 
the features of the new software code statements are used as the vali-
dation test dataset. Secondly, the proposed prediction model is used to 
forecast the defect proneness of each line of code statement. Then we 

apply the test case priority such as total strategy and additional strat-
egy [35] to calculate the defect probability of each test case. Finally, 
the test cases are sorted in terms of the probability of defects.

2.2.	 Software defect prediction based on code statement 
level

2.2.1.	 Description of program code statement features

A key issue in statement-based software defect prediction is the 
way to extract code features. Traditional code feature (attribute or 
metric) such as McCabe, Halsted, and other metrics describes a mod-
ule static metric information [28]. And machine learning algorithms 
are utilized to build the relationship between software module metrics 
and defect. The main difference from the traditional code features is 
that code vocabulary is used as independent variables in the software 
defect prediction based on code statement.

Regardless of the programming language, source code is com-
posed of three vocabularies: language keywords, operators and op-
erands.

Language keywords, called reserved words, indicate an identi-•	
fier that has a special meaning defined in advance by program-
ming language. They can be used to describe a data type, the 
logical structure of a control program, and so on. In general, they 
cannot be used arbitrarily as variable names, method names, 
class names, package names, and parameters.

Operators are symbols that represent specific •	
operations and can be used to construct program 
language expressions. Common operators are 
mainly divided into five categories: arithmetic 
operators, relational operators, logical opera-
tors, assignment operators, as well as operators 
that complete bit operations - bitwise operators.

An operand is an entity on which an operator •	
acts and specifies the number operation variable 
in the instruction.

For example, the American National Stand-
ards Institute (ANSI) defines 32 language 
keywords for C programs. According to the 
characteristics of the programming language, 
four keywords are designed: type, control, data 
storage, and other keywords, among which 
type keywords indicate the type of data, con-
trol keywords are responsible for the logic of 
the processing program, store keywords declare 
variable range. Some of these types can be re-
fined in combination with the functional struc-

Table 1. 32 C language keywords defined by ANSI-C.

Type Description

Type keywords
Basic type: void, char, int, short, long, double, float, 

signed, unsigned
Complex type: enum, struct, union

Control key-
words

Cycle control: for, do, while
Condition control: if, else, switch, case, default

Jump control: break, continue, goto, return

Storage key-
words auto, extern, register, static

Modifier key-
words const, sizeof, typedef, volatile

Fig. 1. The proposed test case prioritization framework based on statement-level defect prediction
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ture. As shown in Table  1, control keywords can be divided into loop 
control, condition control, and jump control.

Operators are binary operators that assign the right operand to the 
left. Operators in C language are mainly divided into five categories, 
as shown in Table  2.

Obviously, there may be differences between keywords and op-
erators for different programming languages, which are related to its 
own characteristics and design style. Java keywords are shown in Ta-
ble 3. By comparing the keywords of C and Java language, we can see 
that C is a structured oriented language and Java is a typical object-
oriented programming language. Therefore, there are many keywords 
describing classes in Java, such as abstract and interface, which are 
impossible to appear in C. In addition, although Java provides key-
words such as try and catch for exception handling mechanisms, there 
is little difference between C and Java in a logic structure such as 
control and type keywords.

2.2.2.	 Feature extraction based on code statement

In the previous section, it was emphasized that the program code 
is composed of three vocabularies, that is, most of the defects in the 
code are basically related to them. For example, the wrong variable 
type, the wrong operator, and the wrong operand are defined respec-
tively. Regardless of the defects that may be caused by the code run-
ning environment, the defects are highly related to these vocabularies. 
In this paper, keywords, operators, operands, and lines are mainly uti-
lized as the metrics of each line of code for statement-based software 
defect prediction, as illustrated in Table  4.

Fig. 2 shows the process of extracting features from valid state-
ments, which do not contain comment lines, empty lines, and brack-
ets. The current code is line 8, including 1 basic type, 2 arithmetic 

operators, 3 variable operands, etc. The features and a de-
fective class label together constitute the original dataset of 
software defect prediction.

2.2.3.  Feature selection

It is a known fact that attribute selection has been ex-
tensively used in SDP [2, 16, 18, 24, 28, 45]. However, the 
following issues may arise during model training without 
using attribute selection (or feature selection): 1) The noise, 
redundancy and irrelevant features may be included. As all 
features collected in a dataset can be used for different tasks, 

not all of which contribute to SDP evaluation. 2) The accuracy, in-
terpretability and generalization ability of the predictor may be af-
fected.

Attribute selection can be primarily split into filter-based and 
wrapper-based approaches. The wrapper-based method obtains the 
best attribute subset by interacting with the learner feedback, while 
the filter-based method evaluates the feature subset on the training 
set without relying on the learner. Compared with the filter-based 
method, the wrapper-based method is inclined to more computation-
ally complexity. Hence, a filter-based attribute selection method is 
preferred.

In this study, the classic correlation-based feature selection (CFS) 
filter method [14] is employed in software defect prediction [2, 3, 6]. 

Table  2.	 List of C language operators

Arithmetic operators Relational operators Logical operators Bitwise operators Assignment operators

+:addition or	 unary
plus
-:subtraction or unary 
minus
*:multiplication
/:division
%:remainder
++:prefix increment
–:prefix decrement

==:equal to
!=:not equal to
>:greater than
>=:greater than or
equal to
<:less than
<=:less than or equal to

&&: logical AND
||:logical OR
!:logical NOT

&:bitwise AND
|:bitwise OR :bit-
wise complement
∼:bitwise exclu-
sive OR
<<:left shift
>>:right shift

=:basic assignment
+=:addition assignment
-=:subtraction assignment
*=:multiplication assignment
/=:division assignment
%=:remainder assignment
&=:bitwise AND assignment 
|=:bitwise OR assignment
∼=:bitwise XOR assignment
<<=:left shift assignment
>>=: right shift assignment

Table  3. List of Java language keywords

Keywords Description

Access Modifiers Private, protected, public

Class, Method, and Abstract, class, extends, final, implements, interface, native, 
new

Variable Modifiers Static, strictfp, synchronized, transient, volatile

Process control Break, continue, return, do-while, if-else, for, instanceof, 
switch-case-default

Exception handling Try catch, throw, throws

Package Import, package

basic data types Boolean, byte, char, double, float, int, long, short, null, true, 
false

variable reference Super, this, void

reserved word Goto, const

Fig.  2 The process of code feature extraction.
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A subset of metrics is treated as input rather than all attributes of the 
dataset according to the heuristic function. This function (Equation 1) 
assigns a high score to a subset of metrics that are highly related to the 
class and have a low correlation with each other. Redundant metrics 
are therefore discriminated against because they are highly associated 
with one or more other metrics.

	 e
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Where Merits is the metric subset containing k metrics, cfr is the av-
erage metric-class correlation, and ffr  is the average metric-metric 
intercorrelation.

2.2.4.	 Building the prediction model

The software defect prediction model based on valid code state-
ments is a method that uses a predictor to find the relationship be-
tween features and the defect class label. Generally, software defect 
prediction models are trained and tested on the same project dataset 
[25, 28, 37, 39]. However, it is difficult to build the software defect 
prediction model when there is not sufficient historical data [44]. In 
order to avoid this problem, features and the defective label of the 
context scene are obtained by selecting similar tested software from 
other projects as training samples. In addition, metrics of the con-
text scene is extracted from the tested software code as new data. By 
building and testing the statement-based prediction model in the train-
ing dataset and the new target testing dataset respectively, the prob-
ability of defect proneness of each line of code is calculated, as shown 
in Fig. 3.

Fig. 3.	 The proposed software defect prediction framework based on code 
statementlevel

There is no difference between the defect prediction 
based on code context scenario and the traditional ap-
proach based on method/function or class defect predic-
tion in the construction phase. The main difference lies in 
feature extraction that has been introduced in the previous 
part. There are plenty of machine learning methods, in-
cluding supervised learning, unsupervised learning, and 
semi-supervised learning. Common supervised learning 
algorithms have been investigated for software reliability 
prediction and software defect prediction, such as Naive 
Bayes (NB) [2, 16, 28], linear Regression Model (LRM) 
[34], non-linear classifiers (e.g. support vector machines 
(SVM), neural network (NN)) [3, 49], ensemble learning 
(e.g. random forest (RF), bagging, Gradient Boost Regres-
sion Tree (GBRT)) [25, 47], and tree/rule-based classifiers 
(e.g. OneR, RIPPER, decision tree (C4.5), decision table 

(DT), partial decision trees (PART)) [28, 42]. Existing software defect 
predictors are mainly used for classification and ranking. Classifica-
tion aims to predict software sample entities into defect proneness or 
non-defect proneness and the ranking task is to prioritize the samples 
according to the predicted code defect proneness probability. Com-
pared with software defect classification, ranking results are more 
flexible and easier to use. Defect prediction can guide software test-
ing to optimize resource allocation, which is essentially a test priority 
determination problem. This article uses code metrics for training to 
forecast the probability of defect proneness in code statements and 
then ranks them. Fig. 4 shows an example of the prediction results of 
the proposed method with the actual program code.

Fig. 4.	 An example of defect prediction result based on code statement-level

In Fig. 4, the leftmost column is the code line, the middle column 
is the defect prediction probability, and the right is the source code. 
We can see from this example that the software code statement-level 
defect prediction is feasible and has great research potential.

2.2.	 Test case Prioritization

The TCP problem is formalized as follows [35]:
Assumption T: A Test suite; PT: The set of permutations of T; f: a 

function from PT to the real numbers.

Problem:  find T PT′∈  for ( )( )T T PT′′ ′′∀ ∈  meets 
( ) ( )f T f T′ ′′≥  , where ( )T T′′ ′≠ .

In the formal description, PT represents all possible TCP suites. 
The input of function f is the specified priority order generated by 
the ranking target, and the output result is linked to the ranking tar-
get. Generally speaking, typical ranking targets include code cover-

Table  4.	 Simple description of code metrics

Features Description

Keywords Basic types, modified words, complex types, storage types, branch 
control, loop control, jump control, unique keywords, total keywords

Operators Arithmetic operators, relational operators, logical operators, assign-
ment operators, unique operators, total operators

Operands Constant operands, variable operands, function operands, unique 
operands, total operands

Lines Total line, comment line, blank line, code & comment

Defect Bug
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age, defect detection rate, defect important, test cost and so on. In this 
paper, the code coverage-based TCP method concentrates on three 
aspects: prioritization strategy, prioritization criteria, and prioritiza-
tion search.

Prioritization criteria describes the coverage criterion of the inter-
nal structure of the program code, such as method coverage, statement 
coverage, branch coverage and modified condition/decision coverage 
(MC/DC), which reflects the test adequacy. This paper associates 
code statement defect-proneness prediction with statement cover-
age to achieve test case sequencing. Prioritization search refers to the 
search algorithm used in sorting test cases such as greedy algorithm, 
genetic algorithm [26]. Most studies have adopted the greedy method, 
and empirical studies [11, 36] also prove that the greedy method is a 
simple and efficient ranking method. Prioritization strategy refers to 
the method used to prioritize test cases in a test suite. The typically 
used prioritization methods are as follows [11, 35]:

Random prioritization: It assigns the priority of test cases in the •	
test case set without any sorting criteria. It is used as a baseline 
for performance comparison in this paper.
Optimal prioritization: It is based on the fact that each test case •	
in the test suite can expose software errors, and determines the 
optimal sorting of test cases to maximize the defect detection 
rate. However, it is not a practical method because it requires 
pre-determining the defect information, which is often not avail-
able before testing. It was chosen to serve as an upper bound 
on the effectiveness of ranking strategies to distinguish the gaps 
between various strategies and the optimal solution.
Total prioritization: It is a completely static strategy that directly •	
counts the coverage of each test case in the test suite. The defect 
detection rate of test cases is calculated according to the code 
coverage and the test cases are sorted.
Additional prioritization: It is a feedback mechanism strategy •	
that takes into account overall coverage. Software entities (e.g. 
functions, statements, branches) covered by test cases are no 
longer considered. Therefore, after executing a test case, the 
covered software entities are eliminated and the remaining test 
cases are reordered. With the continuous execution of test cases, 
software entities will gradually be covered. When they are all 
covered, these entities need to be reset to the uncovered state, 
and the above process is repeated for the remaining test cases.
Max prioritization: It takes the maximum defect prediction prob-•	
ability of the covered program code as the defect detection rate 
and the test cases are prioritized.

Prioritization strategy is usually combined with sorting criteria 
and sorting search. It is closely related to the average percentage 
faults detected (APFD) value, and different prioritization strategies 
often lead to different prioritization results. In this paper, we adopt a 
greedy search method based on code statement coverage to prioritize 
test cases on different strategies.

2.3.	 The defect detection rate of test cases

The proposed TCP-SCSDP determines the priority of test cases 
by their defect detection rate–a measure of how quickly defects are 
detected during software testing [11, 35]. Fig.  5 shows an example of 
defect detection rates for the total, additional and max prioritization 
strategies. It can be seen that the defect detection rate varies with the 
prioritization strategy.

Where the probability is obtained from software defect prediction 
based on code statement. The defect detection rate is computed ac-
cording to the selected prioritization strategy and the code coverage 
of the test case. For example, the defect detection rate of test case 1 
is 0.686 in total, 0.387 in max and 0.686 in additional, and the defect 
detection rate of test case 2 is 0.672 in total, 0.209 in max and 0.343 in 
additional prioritization. It is worth noting that the additional strategy 

is a feedback strategy, which will eliminate the covered code after the 
last test. After the defect detection rate of test cases is obtained and 
sorted, the APFD value is finally calculated.

Fig. 5.	 Defect detection rate of test cases under different ranking strategies

3. Experimental setup

3.1.	 Research questions

In order to study the performance of the proposed method TCP-
SCSDP systematically and objectively, we present three questions as 
follows:
RQ1: What is the performance comparison of different prioritization 
strategies?

To answer this question, we compared the APFD values under 
the five prioritization strategies of random, optimal, max, additional 
and total. Among them, the random strategy and the optimal strategy 
are used as a comparison baseline to evaluate the test performance of 
total, max and additional strategies.
RQ2: How do different software defect predictors affect test case pri-
oritization?

The test prioritization task in this paper is the result of software 
defect prediction based on the code statement-level. Its test perform-
ance depends on the defect predictor. To answer this question, we 
choose LRM, GBRT and RT classifiers for comparative analysis.

3.2.	 Benchmark classifiers

For experimental comparison research, three distinct types of ma-
chine learning methods are used: Linear Regression Model (LRM), 
Random Forest (RF), and Gradient Boosting Regression Tree (GBRT). 
The three classifiers are widely used in software defect prediction and 
show superior prediction performance [25, 34, 47]. In addition, be-
cause this paper is a test case prioritization based on code statement-
level defect prediction, all three algorithms can well support the de-
fect prediction.

LRM: A curve that is called the best fitting curve is utilized to fit 
the data points, and the fitting process is called regression. When the 
curve is linear, the process is called the linear regression. The main 
idea of linear regress model is to use the pre-determined weights to 
combine the attributes to represent the categories.
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	 0 1 1 2 2+ + + + k kx w w a w a w a= ⋅ ⋅ ⋅  	 (2)

where x  is a class label, 1 2, , , ka a a⋅ ⋅ ⋅ is an attribute value, 
1 2, , , kw w w⋅ ⋅ ⋅  is a weight value. In general, LRM can be resolved by 

the least square method.

RF: It is an improved decision tree algorithm, which is a typical 
bagging ensemble learning, mainly to handle the over-fitting problem 
of decision tree. It has the advantages of high accuracy, not easy to 
overfit and can handle high-dimensional data [47]. It uses multiple 
the mechanism of decision trees for voting to improve the prediction 
results. Assume that random forest is composed of m trees, where 
each tree is generated by a certain amount of training samples n. In 
order to ensure the generalization ability of random forest, n sam-
ples are generated by bootstrapping and the final prediction results 
are obtained by bagging.

GBRT: It is a gradient boosting algorithm, which was first put 
forward by Friedman [12]. It fits a regression tree by using the fast-
est descent approximation method, that is, using the value of the 
negative gradient of the loss function in the current model as the ap-
proximate value (pseudo-residual) of the residual of the lifting tree 
algorithm in the regression problem. In simple terms, each tree in a 
progressive gradient regression tree is learned from the residuals of 
all previous trees.

3.3.	 Benchmark datasets

In this paper, four open-source C program datasets are chosen as 
experimental objects, which are Gzip, Grep, Flex and Sed. Among 
them, Gzip is a widely-used file compression program of GNU free 
software, Grep is a text search tool running under Linux which can 
search text using specific pattern matching including regular expres-
sions, Flex is a program for SQL lexical analysis in Linux environ-
ment and sed is a tool for running Linux instructions. These programs 
are intensively studied in the field of software engineering [4, 17]. 
Their source code and related materials can be accessed from SIR. 
According to the defect information found in the historical version of 
these codes, defect injection is carried out selectively, in which the de-
fect of the deleted class and non-modified code class are not injected. 
Table 5 describes the basic information of the datasets.

3.4.	 Performance evaluation measures

The goal of test case prioritization is to find as many software 
defects as early as possible, so as to they can be fixed early in test-
ing. It can improve the effectiveness of software testing and shorten 
the software development life cycle. Generally, APFD is invoked as 
the performance evaluation indicator of the priority ranking method. 
Suppose there are n  test cases in a test case T, m defects found in a 
defective set F, and the test case rank T ′ , its APFD is as follows:

	 APFD TF TF TF TF
m n n

i m= −
+ + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅

+1 1
2

1 2
*

	 (3)

In Equation 3, iTF is the position of the first test case with de-
fect i  found in sorting strategy T ′ . The APFD value ranges from 
0 to 1. The higher its value is, the better the test case prioritization 
is. For instance, there is a test case set as shown in Table 6. If it is 

sorted according to 1 10T T− , the APFD value of the test sequence is

0.46APFD = . If it is sorted according to 10 1T T− , the APFD value 
of the test sequence is 0.7875APFD = .

4. Experimental results and discussion

In order to systematically study the problems raised, four open-
source program datasets of SIR website are taken as experimental 
objects. Taking the set of Siemens programs (Gzip, Grep, Flex and 
Sed) as the data source, data samples are established through the au-
tomatically extracted code features and defect label as training data-
set of the prediction model. And the testing dataset is removed from 
the training dataset to avoid over-fitting seen in Table 7. A prediction 
model trained from the historical data across other projects is utilized 

to predict defects in the project to solve 
the problem of insufficient historical 
defect data. For instance, assuming 
that the training dataset is {Grep, Flex, 
Sed} then the Gzip program is the test-
ing dataset, and then the Gzip program 
is the testing dataset.

Aiming at the first problem RQ1, 
five test case prioritization strategies, 
max, total, additional, random and 
optimal, are compared. Because the 
random strategy has randomness in se-
lecting test cases, the average result of 
20 times will be used as a comparison 

value to objectively evaluate its performance. In addition, for the sec-
ond problem RQ2, three different predictors, LRM, RF, and GBRT, 

Table 5.	 An overview of subjects used in this study

Dataset Size Injected 
defects

Defect rate per 
thousand lines 
of code (KLOC)

Number of test
cases Source Description

Gzip 5680 37 6.51 279 SIR File compression utility

Grep 10068 47 4.67 669 SIR Text search tool

Flex 10459 32 3.06 447 SIR SQL parsing tool

Sed 14427 27 1.87 261 SIR Linux command run tool

Table 6.	 Correspondence between test cases and defects.

Test Case 
ID

Defect ID

F1 F2 F3 F4 F5 F6 F7 F8

T1

T2

T3 ※ ※

T4 ※ ※ ※

T5 ※ ※

T6

T7 ※ ※ ※ ※

T8 ※ ※

T9 ※

T10 ※ ※ ※

Table 7. Case studies

Training Testing (case study)

Grep, Flex, Sed Gzip

Gzip, Flex, Sed Grep

Gzip, Grep, Sed Flex

Gzip, Grep, Flex Sed



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020426

Science and Technology

are used to analyse the impact of on the ranking of test cases. Fig. 6-9 
show the Alberg diagrams [31, 34] of the experimental results, where 
the x-axis indicates the proportion of test cases used in the total test 
cases and the y-axis indicates the percentage of defects found in the 
total defects.

Fig. 6.	 Results on Flex dataset from different combinations of predictors and 
test prioritization strategies

4.1.	 RQ1: What is the performance comparison of different 
prioritization strategies?

From the observation of Fig. 6-9 and Table 8, it can be seen that 
the performance of different prioritization strategies is different.

The optimal strategy has the best performance, which is the up-•	
per theoretical limit of test case prioritization. The APFD values 
of the optimal strategy in Gzip and Sed are 0.933 and 0.948, 
respectively.

The random strategy has the worst performance, which is caused •	
by its indiscriminate random selection of test cases. Its APFD 
values in Gzip, Grep, Flex and Sed are 0.628, 0.65, 0.62 and 
0.551, respectively, which are close to the theoretical values of 
0.5. However, the actual result of the random strategy is higher 
than the theoretical value. This is because the corresponding 
relationship between the designed test cases and defects is not 
one-to-one, that is, a defect can be found by multiple test cases, 
which is closer to the actual test situation. This leads to an in-
creased probability of finding defects in the test case set. There-
fore, the probability of finding defects in the test case is higher 
than the theoretical value.
The curve of the max strategy on the •	 Gzip and Sed datasets is 
closer to that of the total (see Fig. 8 and Fig. 9), and it is closer 
to the additional strategy on the Grep and Flex datasets (see 

(a) LRM

(b) RF

(c) GBRT

 (a) LRM

(b) RF

(c) GBRT

Fig. 7.	 Results on Grep dataset from different combinations of predictors and 
test prioritization strategies
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Fig. 7 and Fig. 6). The APFD values of the max strategy are 
generally higher than those of the total strategy (see Table 8). 
However, the starting curve of the total is higher than the max, 
which indicates that the total is actually better than the max in 
the early stage of testing. This is mainly because the total is on 
the overall coverage strategy. It is easier to prioritize test cases 
with wider coverage in the early stage so that the probability of 
finding defects is higher. However, it is prone to falling into the 
situation of repeatedly covering the tested code later in the test-
ing. The max strategy takes into account the greatest probability 
of detecting defects in the code. Although it is not as good as the 

total strategy in the early stage of testing, it is easier to prioritize 
the execution of defective test cases in the later stage.
The additional is a strategy with excellent performance, which •	
is only slightly lower than the optimal strategy. Although the 
additional is not as good as the max on Grep and Flex datasets 
in some cases, the overall curve in the figures shows that the 
additional is worse than the max and total. This is because both 
the max and total are static strategies, while the additional is 
a dynamic one. After each test execution, the defect detection 
rate of the test case will be readjusted according to the cover-
age of the test code. This feedback method is helpful for the 
additional strategy to optimize its test case selection behaviour 
in real-time.
In addition, compared with the random strategy, the test per-•	
formance gain curves of the three TCP strategies max, total and 

 (a) LRM
 (a) LRM

(b) RF
(b) RF

(c) GBRT

(c) GBRT

Fig. 8.	 Results on Gzip dataset from different combinations of predictors and 
test prioritization strategies

Fig. 9.	 Results on Sed dataset from different combinations of predictors and 
test prioritization strategies
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optimal are convexly shown in Fig.  10. As the proportion of test 
cases increases, the test performance difference tends to increase 
firstly and then decreased. Moreover, when 20%-30% of the test 
cases are selected, three test performance gain curves reach the 
maximum and the efficiency ratio is the largest.

Fig. 10.	 The test performance gains of the three strategies max, total and op-
timal compared to the random strategy

On the whole, the performance of the test case prioritization strat-
egy is optimal, additional, max, total and random in turn from high 
to low. In order to quantitatively analyse the performance difference, 
the APFD average values under different classifiers and test case pri-
oritization strategies are calculated as shown in Table 8. The aver-
age value is used as total, max, additional and optimal strategies are 
0.7918 (-16.05%), 0.8451 (-10.72%), 0.8473 (-10.50%), and 0.9523 
respectively. The percentiles in parentheses are the performance loss 
ratio relative to the optimal strategy. The smaller the loss ratio, the 
better the ranking.

Based on the above results, the following conclusions can be 
drawn: The proposed model is suitable for test case prioritization. In 
the test case prioritization methods, the APFD performance of the ad-
ditional strategy is preferable to max strategy and total strategy.

5.2.	 RQ2: How do different software defect predictors affect 
test case prioritization?

This problem explores the impact of different defect prediction 
classifiers on test results. It can be found that from Table  8 that differ-
ent predictors have an impact on the additional, max and total strate-
gies, while the optimal and random strategies will not be disturbed 
because they are not related to the predictor. For the convenience of 
analysis, this section analyses the performance of the three predictors 
on Gzip, Grep, Flex and Sed by taking the additional strategy as the 
object as illustrated in Figure 11.

It can be seen from Fig. 11 that using the RF-based predictor 
for the additional test case prioritization strategy is better than using  

the LRM-based or GBRT-based on Gzip, Grep, Flex and Sed datasets. 
Especially on the Grep dataset, the test performance is significantly 
higher than the other two predictors. This shows that the choice of the 
predictor has an influence on the test case prioritization based on code 
statement level defect prediction, and its degree of influence is also 
inconsistent with the different experimental objects.

Based on the above results, the following conclusions can be 
drawn: The prediction performance of the defect predictor will affect 
the efficiency of the test case prioritization method, that is, different 

(a) Flex dataset (b) Grep dataset

(c) Gzip dataset (d) Sed dataset

Fig. 11. Impact of LRM, RF and GBRT predictors on the additional prioritization strategy



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020 429

Science and Technology

defect predictors will bring different prediction probabilities to the 
test case prioritization.

5. Threats to validity

As an empirical study, its potential limitations must be taken into 
account when interpreting its results. This section describes several 
potential threats to the validity of our models.

5.1.	 Internal Validity

Internal validity mainly refers to the correctness and reproducibility 
of our empirical results. We implement all the baseline predictors (RF, 
LRM and GBRT) with default settings invoking WEKA to reduce the 
potential possibility to make mistakes. The optimal parameters of the 
predictors may be different for different defect datasets, which may lead 
to different results. However, it does not hinder the feasibility and ef-
fectiveness of the test case prioritization based on code statement-level 
software defect prediction. And all the algorithms involved adopting 
the same data pre-processing (e.g. CFS-based attribute selection [14]) 
to minimize redundancy. Besides, we have double-checked all of our 
experiments, but there may be a few errors.

5.2.	 External Validity

External validity relates to the generalization ability of our em-
pirical results. The proposed approach was compared and analysed 

in four selected subjects, which may have data quality issues. And 
the attributes collected are all code statement metrics from SIR Re-
pository and the samples are abstracted at code statement level from 
C programming language. Although our proposed model could be 
employed in other programming languages (i.e., Java, C++), we can-
not guarantee the same empirical results. Besides, we only employed 
the three prevailing defect classifiers (RF, LRM, and GBRT). As we 
all know, there are a large number of predictive classifiers [6, 25, 
47]. We could not validate all other algorithms due to time and space 
constraints. However, it does not dispute that choosing different pre-
dictors affects test case prioritization results. To reduce the external 
threats, more programming languages, high-quality defect datasets, 
and the predictors should be utilized in the future.

5.3.	 Construct Validity

Construct validity refers to the suitability of the test performance 
evaluation measure. There are some several measures [7], such as 
average severity of faults detected (ASFD), coverage effectiveness 
(CE), total percentage of faults detected (TPFD), average percentage 
faults detected (APFD). However, in fact, there is no studies have ap-
plied all of the measures to evaluate test case prioritization. We chose 
carefully the most commonly used measure APFD to prioritize test 
cases. Besides, in order to reduce construct validity, we also use the 
Alberg diagram to visually describe the curve of the proportion of 
found defects to the total number of defects as the proportion of test 
cases to the total number of test cases increases.

6. Conclusion

This paper proposes a novel test case prioritization method based 
on code statement-level defect prediction named TCP-SCSDP, which 
takes into account the possible distribution of defects and prediction 
granularity. The proposed feature set for measuring code statements 
first is used as the input for the statement software defect prediction 
model, and data pre-processing is performed on the software defect 
dataset. Secondly, the predictor is applied to predict the defect prone-
ness probability of valid code statements. Then the defect detection 
rate of all test cases is calculated by using the test case prioritization 
strategy, and they are sorted from high to low. Finally, APFD is used 
to evaluate the prioritization.

Experimental results on 4 open source datasets show that the pro-
posed approach is feasible and effective, and the test performance will 
be affected by the predictor and the test case prioritization strategy.

Our future work will focus on the following aspects: (1) Collect 
more open source software projects, programming languages (e.g. 
C++, Java) and predictors (e.g. neural network, k nearest neighbour), 
as mentioned earlier, to validate the generality of our method. (2) Op-
timize the test case prioritization strategy to improve software testing 
efficiency.
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Table 8.	 APFD values under different prioritization and predictors

Dataset prioritization
Machine learning algorithm

LRM RF GBRT

Gzip

Max 0.740 0.739 0.731

Total 0.701 0.740 0.698

Additional 0.794 0.821 0.766

Random 0.628 0.628 0.628

Optimal 0.933 0.933 0.933

Grep

Max 0.910 0.910 0.908

Total 0.746 0.894 0.751

Additional 0.746 0.941 0.766

Random 0.650 0.650 0.650

Optimal 0.964 0.964 0.964

Flex

Max 0.900 0.900 0.908

Total 0.776 0.907 0.802

Additional 0.855 0.943 0.874

Random 0.620 0.620 0.620

Optimal 0.964 0.964 0.964

Sed

Max 0.814 0.873 0.808

Total 0.801 0.886 0.799

Additional 0.880 0.889 0.892

Random 0.551 0.551 0.551

Optimal 0.948 0.948 0.948
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