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Industrial gas turbine operating parameters monitoring 
and data-driven prediction 

Monitorowanie oraz bazująca na danych predykcja parametrów 
roboczych przemysłowej turbiny gazowej 

The article reviews traditional and modern methods for prediction of gas turbine operating characteristics and its potential fail-
ures. Moreover, a comparison of Machine Learning based prediction models, including Artificial Neural Networks (ANN), is pre-
sented. The research focuses on High Pressure Compressor (HPC) recoup pressure level of 4th generation LM2500 gas generator 
(LM2500+G4) coupled with a 2-stage High Speed Power Turbine Module. The researched parameter is adjustable and may be 
used to balance net axial loads exerted on thrust bearing to ensure stable gas turbine operation, but its direct measurement is 
technically difficult implicating the need to indirect measurement via set of other gas turbine sensors. Input data for the research 
have been obtained from BHGE manufactured and monitored gas turbines and consists of real-time data extracted from industrial 
installations. Machine learning models trained using the data show less than 1% Mean Absolute Percentage Error (MAPE) as 
obtained with the use of Random Forest and Gradient Boosting Regression models. Multilayer Perceptron Artificial Neural Net-
works (MLP ANN) models are reviewed, and their performance checks inferior to Random Forest algorithm-based model. The 
importance of hyperparameter tuning and feature engineering is discussed.

Keywords:	 gas turbine, machine learning, data-driven prediction, HP recoup pressure analysis.

W artykule przedstawiono przegląd klasycznych i aktualnych metod przewidywania parametrów operacyjnych oraz potenc-
jalnych usterek turbin gazowych. Dodatkowo zaprezentowano porównanie wybranych modeli opartych o uczenie maszynowe,  
w tym modeli wykorzystujące sztuczne sieci neuronowe.  Przeprowadzone badania dotyczyły analiz poziomu ciśnienia ze sprężarki 
turbiny gazowej LM2500 czwartej generacji (LM2500+G4) połączonej z dwustopniową turbiną roboczą. Badany parametr podle-
ga sterowaniu i może posłużyć do wyrównania sił osiowych działających na łożysko główne wału wysokiego ciśnienia w celu 
zapewnienia stabilnej i niezawodnej pracy turbiny gazowej. Jednocześnie jego bezpośredni pomiar jest kosztowny stąd potrzeba 
dokonania pośredniego pomiaru z wykorzystaniem innych czujników zamontowanych na turbinie. Dane wejściowe do analiz 
otrzymano dzięki uprzejmości producenta turbin, firmy BHGE. Zawierają one parametry bezpośrednio pobrane z monitorowan-
ych turbin gazowych. Modele uczenia maszynowego otrzymane w wyniku analizy charakteryzują się średnim błędem procentowym 
(MAPE) na poziomie poniżej 1%. Najmniejszym błędem charakteryzują się modele otrzymane przy zastosowaniu lasów losowych 
(Random Forest) oraz gradientowego wzmacniania regresji (Gradient Boosted Regression). Przetestowano także zastosowanie 
wielowarstwowych, w pełni połączonych sztucznych sieci neuronowych, których efektywność okazała się niższa od modelu opar-
tego o algorytm lasów losowych. W podsumowaniu podkreślono wagę dostosowywania hiperparametrów i inżynierii cech. 

Słowa kluczowe:	 turbina gazowa, uczenie maszynowe, predykcja bazująca na danych, analiza pomiarów 
ciśnienia sprężarki.

1. Introduction

Operational reliability of complex mechanical energy generation 
system is a key in assuring stable and cost-effective power supply for 
long-term commercial, industrial and communal purposes. One of the 
key systems used to deliver energy is currently, and for the foresee-
able future, gas turbine. Gas turbine in-service monitoring proved to 
be useful in potential failure diagnosis and prevention as well as in 
its emission monitoring [36]. Appropriate gas turbine utilization, for 
example in de-rated temperature mode, may have significant contri-
bution to decrease in harmful exhaust emissions [20] as well as to 
extend reliable operation of the system [1]. In this article accumulated 
gas turbine operating service data has been studied to predict key pa-
rameters. 

Prediction of gas turbine performance is one of the key factors 
researched. In-service performance deterioration and system unrelia-
bility are significant contributors to a gas turbine utilization planning. 
System failure or even single percent of power reduction can result 
in significant impact throughout life cycle. Overhaul is the optimum 
remedy to restore desired parameters, but for the planning purposes, 
it should also be modelled and postponed if possible. Moreover, per-
formance deterioration (and system failure) proved to be difficult to 
monitor and predict using installed gas turbine due to sensor accuracy, 
instrumentation aging, assembly constraints and control challenges. 
Therefore, maintenance planning should be based on multiple param-
eter’s analysis and results integration using specialized model [12].  

There are several typical examples of monitoring systems, that 
have been studied in the past. Historically, standard gas turbine tests 
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have been used to create performance maps and model typical gas 
turbine behavior. Instrumentation proved to be one of the most im-
portant challenges, limiting data acquisition capability [11]. Gas tur-
bine integrity issues, cost of engine testing and limited acquisition 
capabilities are responsible for this restraint [35]. Moreover, tests of 
the heavyweight gas turbines (75 MW and more) are not carried out 
before gas turbine delivery due to cost and assembly reasons. 

Multiple statistical methods have been developed over time to 
preview, model and decrease gas turbine life cycle cost. Traditional 
analytical methods include, among others: Failure Mode and Effects 
Analysis (FMEA), Fault Tree Analysis (FTA), and Markov Analy-
sis. An example of the Failure Mode and Effects Analysis (FMEA) 
supplemented by statistical failure rate model has been discussed by 
Mingazov and Korobitsin [29]. The results of such model application 
may allow to assess different gas turbine systems reliability.  Non-tra-
ditional reliability monitoring methods and novel approaches to reli-
ability monitoring include vague lambda-tau methodology [23], fuzzy 
sets [37] and numerical assessment based on Piecewise Deterministic 
Markov Process and Quasi Monte Carlo methods [10]. The Petri Net 
model fed by Failure Tree Analysis (FTA) has also been presented and 
discussed by Verma and Kumar [35]. To address system unreliability, 
the fuzzy sets application has been studied by several authors, example 
of which is described by Huang et all [18]. The results obtained using 
these methods are promising, however they also require rough estima-
tion of expected reliability to proactively choose appropriate model-
ling method. The dynamic nature of gas turbine can also be taken into 
consideration. The power generation system deteriorates over time 
and thus its reliability is time dependent. Binary Decision Diagram 
(BDD) has been proposed to address a multi-phase network system as 
discussed by Lu et al. [26]. The industrial gas turbine system opera-
tion may also be considered as phased-mission system (PMS) since 
their operation mode usually consists of numerous repetitive phases. 
Therefore, a flexible truncation limit may be applied to BDD problem 
explosion. While the truncation application is necessary to model in-
creasing number of phases, the flexible truncation allows retention of 
the truncation error at low level as presented by Lu et al. in [27]. 

The statistical-based analytical models are the most frequently 
used methods for Engine Health Monitoring (EHM). Trend analy-
sis is one of the standard methods used to compare current gas tur-
bine parameters with warning levels [32]. Pattern recognition can be 
employed in limited time frames (or sliding windows) to detect gas 
turbine behavior anomaly and potential failure. Kalman filters are 
applied to define parameter changes that result in least square error. 
Artificial Neural Networks (ANN), support vector machines (SVM) 
and particle swarm optimization (PSO) techniques are also utilized 
to improve the accuracy of the predictions [6,7,16,21,33]. It has been 
proven that a hybrid PSO-SVM based model can result in a regres-
sion accuracy of approximately 95% [13]. It is also worth noting that 
described methods can achieve top results only when 
applicable dataset is available in vast quantities for 
multiple sensors (implicating Big Data solutions). In 
general, it can be concluded that the physical mod-
els derived from full or partial operating parameters 
provide the most accurate results [22, 24]. 

As discussed, performance optimization and 
hardware ageing modelling are crucial to maintain 
high efficiency of the propulsion system and to 
monitor health condition of the critical components. 
Usually, only selected parameters are remotely 
monitored. The limited data acquisition requirement 
allows minimization of costs associated with the in-
stallation of additional sensors in hardly accessible 
turbine locations. In addition, the benefit of install-
ing advanced sensors to monitor system perform-
ance and components health status must be balanced 

against the risk of gas turbine downtime due to sensor malfunctions 
and potential secondary damages of gas turbine components caused 
by sensor failure itself. A scenario of gas turbine life-cycle optimiza-
tion with several operational parameters used as input to advanced 
models estimating online gas turbine performance and components 
ageing has been presented by Baker Hughes team [28]. The team con-
cluded that algorithm’s prediction accuracy together with data quality 
and proper expertise are important to model accurately long-term gas 
turbine behavior and to provide correct maintenance insights to on-
site operators [28]. 

To ensure consistently high accuracy required, data exploration of 
each input and corresponding data processing is required [17]. While 
main gas turbine control parameters are redundant and transducer out-
puts are processed by the control software according to robust selec-
tion criteria and technical board approved logic, some parameters are 
obtained directly from a single sensor and hence a predictive model-
ling may help to create a baseline for consistency check. 

2. Presentation of the problem 

This paper discusses the use of machine learning (ML) algorithms 
to estimate chosen parameter (in this case, the secondary flow pres-
sures, particularly the HP recoup pressure) with respect to the main 
gas turbine control parameters in order to troubleshoot instrumenta-
tion anomalies or detect deviations from the expected baseline. The 
primary goal is to predict long-term HP recoup pressure and hence 
enable consistent performance prediction and potential early detec-
tion of components degradation. 

The HP recoup pressure is an adjustable parameter, that enables 
balancing of net axial loads exerted on thrust bearing and ensures op-
eration within desired threshold. The control method and applicable 
system have been described and patented by Badeer [2]. 

The presented research is based on data obtained from 4th gen-
eration LM2500 gas generator (LM2500+G4) coupled with a 2-stage 
High Speed Power Turbine Module GE Challenge competition [19]. A 
cross section of LM2500 gas turbine is shown on Fig. 1. The LM2500 
is an industrial derivative of the General Electric (GE) CF6 aircraft 
engine (engine originally developed for aviation purposes and then 
refurbished for stationary operation) [3, 14]. This study focuses on 
PGT25+G4 gas turbine delivering 34 MW with thermal efficiency of 
41% [5].

The presented study shows analytical comparison of the gas 
turbine engine pressure parameter prediction with respect to other 
operational (numerical) and geometrical (categorical) parameters. 
Categorical parameter is represented by separately provided pressure 
orifice size, available only for limited number of gas turbines. The 
orifice plate is built in the HP Recoup pressure line to allow flow rate 
measurement and is causing an irrecoverable pressure loss [30]. The 

Fig. 1. Researched industrial & marine gas turbine configuration, based on [8]
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potential impact of the orifice size on the researched HP Recoup pres-
sure parameter prediction has been also studied.

3. Mathematical modelling and models implementa-
tion

Since turboshaft engine consists a close-loop system, by design, 
researched recoup pressure is mutually depended on other turbine en-
gine parameters. This feature makes it suitable for multistep predic-
tion, as the best model can be identified in such condition [31]. 

3.1.	 Mathematical models 

Typical starting point for all machine learning challenges are 
linear models. This include linear regression (logistic regression in 
instance of models with categorical values included) with linear coef-
ficients κ = (κ1, κ2, …, κn) and biases assigned to each of the input 
variables to minimize the output sum of squares between the training 
labels and predictions via linear approximation:

	 κ̂ =Æ minκ = −
κ

κX y2
2 	 (1)

where Xκ = y is linear equation with coefficient κ and κ̂  is predicted 
value.  

While continuous numerical inputs for the model are normalized 
(as discussed later in this article) to prevent data range discrepancies 
from affecting the resultant model, additional options are available to 
prevent high coefficients from being assigned to selected parameters, 
while keeping the others small (and effectively eliminating them from 
the prediction process). This is implemented by imposing additional 
penalty parameter on the size of coefficient in the cost function cal-
culation process. For ridge regression (also known as Tikhonov based 
regression or L2) the penalty is assigned to a sum of squared weights. 
For LASSO (Least Absolute Shrinkage and Selection Operator or L1) 
regression penalty value is only assigned to the sum of absolute values 
of the model weights (which can allow removal of redundant feature 
from the model), while elastic net model allows utilization of both 
routines at the same time. This process forces linear model weight to 
remain small, which typically leads to less overfitting [34]. The pen-
alty value is tuned to obtain minimum testing set prediction error:

	 κ̂ = − +min
κ

κ α κ
1

2 2
2

1m
X y

j
	 (2)

where mj is a number of samples, α is constant and 1κ  is ℓ1-normal 
to coefficient κ. 

LASSO/ridge/elastic net CV models have additional cross valida-
tion routines built into them to automatically split the entire dataset 
into all possible train/test combinations to allow model generalization 
on the entire dataset, while maintaining dataset split. This happens on 
the expense of model performance as cross validation split of 5 will 
require training of 5 models, rather than one. LassoLarsIC is compu-
tationally cheaper alternative to this process. 

Bayesion Ridge Regression models provides a probabilistic es-
timate for a regression problem. The model utilizes multiple param-
eters to obtain similar regularization pattern to ridge regression. The 
parameters are estimated by maximizing the marginal log likelihood. 
Bayesian Ridge Regression provides a different weight set than those 
obtained using Ordinary Least Squares method: 

	 p pκ λ κ λ| |( ) = ( )− 0 1,  	 (3)

where λ is Gaussian distribution for probabilistic model of output pa-
rameter κ. 

Kernel models allow for dataset dimensionality modification/re-
duction, which allows model to create an artificial hyperspace split 
between model parameters, which can result in better model perform-
ance. This method can be applied on models such as Support Vector 
Machine (SVM), which can be used for either classification (Support 
Vector Classifier or SVC) or regression (Support Vector Regression) 
tasks. SVM works by finding a set of optimum linear split in high 
dimensional space, using a subset of training points in the decision 
function (support vectors). While different kernels can be used to 
achieve optimum model performance nonlinear kernels are computa-
tionally expensive, especially for large datasets. 

Random Forest Model consists of multiple decision trees (with 
exact decision tree numbers determined based on hyperparameter tun-
ing), which are averaged to classify target feature properly. During 
construction of each tree a node split is randomly generated to best fit 
random sub-sample of the features. The randomness results in in-
crease of forest classifier bias, but, due to averaging, the model vari-
ance also decreases. This compensates the adverse effect leading to 
higher quality prediction. The algorithm processes original dataset by 
proposing a randomly generated shallow trees, usually bootstrapping 
(randomly sampling with replacement) original dataset for to augment 
original training dataset. Once trained, a prediction is made for every 
tree in the forest and individual estimates are combined to achieved 
optimum testing set performance. For regression problem (no cate-
gorical feature included) the overall result is a mean of individual pre-
dictions. For classification problem (orifice size included) each tree 
provides a weighted confidence for each class, which are then aver-
aged across all trees. The result is the class with the highest confi-
dence to minimize general mean-squared generalization error L for 
the numerical prediction ŷi  and its corresponding true label yi :

	 ˆL y y
i

N
i i= −( )

=
∑

1

2 	 (4)

The binary nature of the Random Forest Model can be partially 
compensated by iteratively reducing the error rate for each of the 
created trees, by building regression tree on negative gradient of a 
loss function, quite similarly to neural network training process. This 
method is called gradient boosted decision trees (GBDT) [25,38]. It 
works by processing a small number of decision trees (which in this 
instance are base learners) and using a learning rate to adjust tree defi-
nition to minimize aggregation of the loss function ( ), ( )i iL y F x , by 
reducing individual tree error: 

	 ( )( )*

1
min ,

N
i i

T i
T arg L y F x

=
= ∑ 	 (5)

Artificial Neural Networks (ANN) model training process, often 
called Deep Learning (for 3 hidden layers or more). Typical neural 
network relies on a predefined input and output vector and inner 
stacked layers utilizing mathematical transformations of input data as 
shown on Fig. 2. ANNs work by processing input vector through a set 
of linear functions followed by nonlinear activation (recently almost 
popular being Rectified Linear Unit or ReLU) in a process called feed 
forward propagation. This is followed by loss (for a single batch) and 
cost (for entire dataset) value computation based on predefined cost 
function. Then, for each weight, a gradient with respect to specific 
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parameter is computed using a chain rule and cost value. Finally, all 
weights are updated sequentially using process called backpropaga-
tion. 

Considering that deep neural networks, especially convolutional 
neural networks for image processing, (utilizing a combination of 
convolutional, pooling and dense neural networks) usually consist of 
10+ layers, it is useful to represent given neural network via high level 
representation. The example of 3 hidden layer network with 4 nodes 
in each layer, 3 inputs and 2 outputs has been shown on Fig. 3. 

This high level, generalized representation is often used 
in Deep Learning frameworks such as Keras, PyTorch. While 
Scikit-learn offers simple neural network implementations, 
those frameworks, while working on top of low level backends 
(Tensorflow), offer much more flexibility and significant reduc-
tion in training and inference (model implementation) time, 
typically due to effective processing routines for direct imple-
mentation on CPU/GPU (and recently, TPU).

3.2.	 Models Implementation

Models obtained in the following analysis were devel-
oped using Python 3.6, modules such as Numpy/Pandas (data 
processing), Scikit-learn (machine learning) and Keras/Tensor-
flow (Artificial Neural Networks) frameworks. Model was it-
eratively developed, with certain analysis thresholds established 
through set of tests. 

In order to properly establish acceptability threshold for 
model’s results a benchmark method has been proposed. It con-
sists of three metrics used to compare results of applied machine 
learning models: Mean Absolute Percentage Error (MAPE), 
Root-Mean-Square Error (RMSE) and Coefficient of Determi-

nation (R2). The three parameters have been chosen as they represent 
a basis for qualitative and quantitative comparison of the researched 
methods. MAPE metric allows valuable insight into the absolute mag-

nitude of the error, while RMSE provides additional in-
tuition into scaled residual size. R2 score represents a 
statistical measurement of model fit into predicted da-
taset. Target feature mean has been assumed as baseline 
prediction, resulting in RMSE of 0.83, MAPE of 9.24% 
and R2 score of 0 (per R2 score definition). 

The first step in predictive modelling is data explora-
tion, which allowed to limit the number of features used as 
predictive maintenance system input. Data cleaning pipe-
line implementation allowed dataset feature size reduc-
tion from 4568 columns to 382. Any parameter with more 
than 3% missing data has been removed. For remaining 
parameters missing data has been replaced with median 
for all other features. Additionally, all outliers (exceeding 
+/− 6 Sigma deviation) were removed (entire data row 
removal) to prevent errors further on in the analysis. 

Furthermore, categorical geometry feature – flow 
orifice size – has been provided and added to the dataset. 

Subsequent analysis has shown that geometry have significant predic-

Fig. 2.	 Overview of Artificial Neural Network (ANN) densely connected architecture with 2 hid-
den layers

Fig. 3.	 An example high level representation on densely connected neural network. For the pur-
pose of analyzed research 3 hidden layer network with up to 20 inputs, up to 100 nodes 
for each layer and 1 output has been used

Fig. 5.	 Data normalization techniques: a) N=2000 normally distributed input dataset; 
b) centering procedure applied on the dataset (dimensional mean subtracted 
from each datapoint); c) Standard deviation-based normalization of centered 
data; d) Principal Component Analysis (PCA) applied on the initial dataset; e) 
Whitening transformation applied on input dataset

Fig. 4.	 Distribution of the target feature (gas turbine pressure) 
with fitted normal distribution. As input dataset (after 
initial preprocessing) consisted of multiple serial num-
bers, the resultant dataset is multinomial. No ensemble 
subgrouping has been used due to sufficient model pre-
dictive capacity
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tive power and as such all rows, where geometrical data was not avail-
able, were dropped. Resultant target feature (pressure) distribution is 
shown on Fig. 4.

High predictive power of the model has been ensured by ranking 
remaining features based on Pearsons’s correlation coefficient cal-
culated between each of 380 analyzed parameters and target feature. 
Feature independence has been ensured by analyzed the relationship 
between pairs and picking only sensors, which would allow physics-
based explanation and higher correlation value with target feature. 
This approach has been chosen (instead of proceeding with typical 
correlation tests like Pearson’s or Chi-Squared) to streamline data-
set reduction through project approval board. This allowed reduction 
of input dataset to 45 features. As such remaining 45 features were 
additionally tested with random forest feature estimator. Combined 
feature mark considered both regression correlation and random for-
est estimator mark. Best 20 features were used in the further analysis 
and combined with geometry categorical feature. Random 5% of the 
dataset were retained as model test set.

Input data set could be normalized in order to allow more effec-
tive computation paradigm and better convergence for neural network 
processing. Typical normalization steps consist of combination of ze-
ro-centering/normalization. Similarly, Principal Component Analysis 
(PCA) is used as an efficient way of both data normalization and di-
mensionality reduction. Finally, data whitening transformation ensures 
that mean data mean value is concentric with coordinate system origin 
point as well as that all the axis in the dataset have the same variance. 
These normalization methods have been presented on Fig. 5. Due to 
variable nature of turbine operating parameters input dataset has not 
been normalized. This approach has been tested on validation dataset 
and has shown more consistent results then normalizing input data. 

For each of the predefined model combination data has been pre-
processed to better fit specified model, then a test/train split has been 
created using random number seed and test set size of 0.25 (25% of 
the dataset was retained for testing) followed by classifier training, 
model storage and result view for postprocessing. Example of Linear 
Regression model implementation is shown on Figure 6. It shows Lin-
ear Regression model implementation. 

Fig. 6. Example of mathematical model implementation: Linear Regression 
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4. Machine Learning Simulation and Results Discus-
sion 

In order to properly establish acceptability threshold for model’s 
results a benchmark method has been proposed. It consists of three 
metrics used to compare results of applied machine learning models: 
Mean Absolute Percentage Error (MAPE), Root-Mean-Square Error 
(RMSE) and Coefficient of Determination (R2). The three parameters 
have been chosen as they represent a basis for qualitative and quan-
titative comparison of the researched methods. MAPE metric allows 
valuable insight into the absolute magnitude of the error, while RMSE 
provides additional intuition into scaled residual size. R2 score rep-
resents a statistical measurement of model fit into predicted dataset. 
Target feature mean has been assumed as baseline prediction, result-
ing in RMSE of 0.83, MAPE of 9.24% and R2 score of 0 (per R2 
score definition). 

Figure 7 shows an example of HP Recoup pressure parameter 
prediction postprocessing using Deep Learning model with 5-fold 
cross validation. Similar plots were created for each of the other 31 
algorithms evaluated in this article. Figure 7 shows test set target fea-
ture range sorted ascending and its corresponding prediction using 
optimized Deep Learning model (as an example). 
The figure shows that while model error is gener-
ally consisted throughout entire model, the error 
increases significantly for certain feature inputs 
across entire target feature range. To prevent 
single set of measurements from triggering false 
negative alarms for the customer due to large 
model error it has been decided to smooth out the 
overall outcome using rolling average of the last 
100 predicted values. 

The result error has been shown on the chart 
in red and represents +/−MAPE band for the 
used rolling average window. As shown, it sig-
nificantly reduces a single misprediction impact 
on overall maintenance system with a drawback 
of increase in system response time (up to 500 
minutes of real time operations, depending on the 
parameter recording frequency). As overall sys-
tem architecture is still being adjusted, the exact 
approach to filter out outlier predictions is not yet 
fully defined.

Altogether, 11 Scikit-learn machine learning models have been 
trained and used for comparison purposes followed by Keras (with 
Tensorflow backend) Artificial Neural Network (ANN) sequential 
dense models. Each model training process has been proceeded with 
extensive hyperparameter/parameter tuning on reduced dataset. 

First, linear models, such as Linear Regression, Ridge Regres-
sion Model,Ridge Cross-Validation Regression Model, Kernel Ridge 
Regression, Lasso Regression, Lasso Cross-Validation and Elastic 
Net Model have been tested followed by Bayesian Ridge Regression 
Model (based on Bayes’ theorem, that was applied to aviation gas 
turbines [4]). Then, more recently developed machine learning mod-
els, such as Support Vector Regression Model, Random Forest, and 
Gradient Boosting were analyzed. Finally, Artificial Neural Networks 
(ANN) with up to 3 hidden layers have been tested to allow compari-
son of established machine learning models to Deep Learning model. 

The results of analysis are shown on Fig. 8 and 
9 and summarized in Table 1. The most effec-
tive prediction has been achieved using Random 
Forest Regression model (0.018 RMSE, 0.122% 
MAPE and 0.9995 R2). Results acquired for the 
model, which included additional geometrical 
information (orifice size), were 0.01% higher 
(measuring the Coefficient of Determination, 
R2) than for the same model without additional 
data. Lower R2 results were achieved with Gra-
dient Boosting Regression and simple Deep 
Learning model with 3 layers of Artificial Neu-
ral Networks (ANN). These models, however, 
achieved higher MAPE results (above 0.6% and 
1.2% respectively). The first linear model that 
showed high R2 value was Support Vector Re-
gression model achieving 0.155 RMSE, 1.258% 
MAPE and 0.965 R2 (additional geometrical 
data did not result in significant accuracy in-
crease). 

Random Forest Model has achieved highest 
performance using 80 estimators, while Gradi-
ent Boosted model shown lowest error rate with 

245 estimators (and hinge at approximately 50 estimators). 
As mentioned briefly in the previous chapter, in case of Artificial 

Neural Networks (ANN) models, training process consists of calcu-
lation of predefined loss function for given outputs and calculating 

Fig. 7.	 Deep Learning model results. Due to large number of available datapoints (rows) Rolling Average 
of 100 samples (RA100) has been used to better visualize model results

Fig. 8.	 The Root-Mean-Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) compari-
son for chosen Machine Learning models. Models with additional geometrical parameter (orifice 
size) are marked with asterix (*)



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020 397

Science and Technology

partial derivatives across different layers for all 
weights (parameters representing connection 
strength between nodes) and biases (parameters 
used to adjust the model output to fit best data 
set). Recent years have shown increase in model 
efficiency through implementing new design of 
activation functions (including ReLU, used in 
this analysis), initialization methods, regulariza-
tion methods, learning rate adjustment (includ-
ing ADAM, also used in this thesis) and input 
sampling (SGD) while GPU/TPU based increase 
in computation power significant reduction in 
training time. While computer disc memory size 
consistently increases, introduction of Batch 
Gradient Descent allows training on theoreti-
cally infinite size dataset by subsampling it into 
smaller pieces capable of fitting into memory. 
As such Deep Learning allows user to oper-
ate and generalize much larger problems and 
enables end-to-end solution generation for any 
machine learning problem. This contrasts with 
machine learning models such as SVC, which 
are limited by memory size and can only oper-
ate on user predefined features. 

Different size of 3 hidden layers have been 
tested within a range of 25-100 and an incre-
ment of 25 for each layer. Optimum perform-
ance has been obtained for a network with 25 
nodes in the layer 1, 25 nodes in layer 2 and 100 
nodes in layer 3.

Initially team considered utilization of ad-
ditional categorical feature, HP Recoup pres-
sure orifice size. The analysis has shown that it 
did not play significant role in case of complex 
models’ application, such as Random Forest or 
Gradient Boosting. At the same time most of 
the linear models showed significantly higher 
R2 results for models with additional data. For 
example, Lasso Regression had 5.6% R2 score 
higher while Kernel Ridge Regression (general-
ly one of the least performing models) achieved 
54.9% difference.  

Presented approach has been validated on 
gas turbines with operational range very simi-
lar to the training data, which partially skews 
presented results up. Expansion of available 
dataset for additional gas turbines with further 
hyperparameter tuning should increase model 
generalization capability while maintaining its 
high accuracy. Furthermore, analysis consid-
ered multivariate approach for single output, 
which results in time series information loss 
and relatively high point-to-point model results 
variation discovered during data postprocessing. 
Variation could be handled by simple methods 
like rolling average. Further increase in model 
accuracy can be achieved by extracting data 
sequence information. For example, Recurrent 
Neural Network could be used on top of prelim-
inary model (ML/DL) results to reduce target 
feature variation and increase accuracy.

Fig. 9. Coefficient of Determination (R2) comparison for chosen Machine Learning models. Models with 
additional geometrical parameter (orifice size) are marked with asterix (*)

Table 1.	 Comparison of RMSE, MAPE and R2 for researched Machine Learning models. Models with 
additional geometrical parameter (orifice size) are marked with asterix (*)

RMSE % MAPE R2 Score:

Random Forest Regression * 0,018 0,122 1,000

Random Forest Regression 0,019 0,125 0,999

Gradient Boosting Regression * 0,060 0,606 0,995

Gradient Boosting Regression 0,074 0,752 0,992

ANN 3 layers 50x75x50 neurons * 0,122 1,294 0,978

ANN 3 layers 25x100x25 neurons * 0,131 1,449 0,975

Support Vector Regression 0,156 1,259 0,965

Support Vector Regression * 0,156 1,259 0,965

ANN 3 layers 25x100x100 neurons * 0,159 1,803 0,956

ANN 2 layers 50x25 neurons * 0,175 2,013 0,952

Bayesion Ridge Regression * 0,220 2,270 0,930

Elastic Net Regression * 0,221 2,316 0,929

Lasso Regression * 0,221 2,315 0,929

LassoCV Regression * 0,221 2,315 0,929

LassoLarsIC Regression * 0,224 2,337 0,928

Ridge Regression * 0,224 2,335 0,928

Linear Regression * 0,224 2,336 0,928

Linear Regression 0,287 3,006 0,881

LassoLarsIC Regression 0,287 3,008 0,881

Ridge Regression 0,287 3,006 0,881

Bayesion Ridge Regression 0,287 2,998 0,881

Elastic Net Regression 0,288 3,030 0,880

Lasso Regression 0,288 3,037 0,880

LassoCV Regression 0,288 3,037 0,880

Kernel Ridge Regression 0,515 5,873 0,617

ANN 3 layers 25x25x100 neurons * 0,416 4,572 0,582

ANN 3 layers 50x100x100 neurons * 0,422 4,728 0,581

ANN 3 layers 50x25x75 neurons * 0,479 5,478 0,543

Kernel Ridge Regression * 0,646 7,606 0,398

RidgeCV Regression * 0,779 8,814 0,125

RidgeCV Regression 1,865 21,447 -4,023
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5. Conclusions

The presented study shows comparison of the gas turbine engine 
HP Recoup pressure prediction. It may be used for gas turbine pre-
dictive maintenance planning, potentially allowing gas turbine cost 
model improvement and optimization, as shown by Deloux et al. [9]. 
The applicability of numerical machine learning (ML) based predic-
tion models for gas turbine operating parameters prediction has been 
demonstrated. To specify acceptable model threshold a basic (target 
data average) benchmark has been proposed and used. In order to al-
low quantitative comparison between different models 31 machine 
learning algorithms have been tested, including Artificial Neural Net-
works, random forests, boosted random forest and SVC. Best results 
were obtained for random forest regression due to its quick gener-
alization capability enabling ensemble solution with relatively low 
computational power. Gradient boosting methods also have shown 
high accuracy due to residua minimization approach utilized in al-
gorithm design. Artificial Neural Networks or deep learning methods 
were also shown application potential, showing high accuracy results 
with only 3 hidden layers. While computational requirement for deep 
learning hyperparameter tuning are significantly higher than those of 
random forest regressor [15], ANN model can be easily tuned and 
adjusted for other, similar problems (transfer learning), while major-
ity of machine learning algorithms must be completely retrained for 
new purposes. 

Moreover, data tests showed that additional geometrical data 
(such as orifice size, available for chosen gas turbines in researched 
dataset) is not always crucial to improve prediction quality, although 
it improves overall accuracy of the model and should be used if avail-
able, if only to check for model overfitting. Relatively simple nu-
merical model result’s comparison leads to most appropriate model, 
that guarantees high accuracy. Currently Artificial Neural Networks 
(ANN) architectures could also offer valuable insight such as predic-
tion confidence, which would be critical for applications such as pre-
dictive maintenance.

Lastly, the developed methodology is applicable to any of the gas 
turbine parameter, when reference physics-based models and dataset 
from sufficiently large fleet are available to validate the accuracy of the 
data-driven algorithms developed. Achieved results showed that high 
accuracy may be obtained using the same input data, but with different 
machine learning algorithms after extensive hyperparameter tuning.
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