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1. Introduction

With the improvement of industrial techniques and requirements 
for productivity, plenty of high-integrity and complex-structured 
electromechanical systems (EMSs) have been widely employed and 
utilized. The performance of the equipment can be further enhanced 
with a higher integration, which necessitates a better understanding 
of the failure degradation law of key components. For the design of 
a highly integrated system, reliability theory has attracted consider-
able researches in recent years to study the failure relationship among 
systems and components with the lifetime of products as the main 
research object. Specifically, many strategies have been proposed for 
the sake of reliability model establishment, such as block diagrams 
[1], Markov analysis (MA) [2], simplified equations [3] and fault trees 
(FTs) [4]. An FT is a powerful tool for reliability modeling that uses 
binary decision diagrams (BDDs). As an extension of an FT, a Baye-
sian network (BN) describes the relationship of failure events with a 

directed acyclic graph (DAG) as well as conditional probability tables 
(CPTs), as proposed by Pearl [5], achieving significant development 
in system reliability and safety analyses. In addition, Cai et al. [6] 
evaluated the reliability of a blowout preventer control system with a 
BN. A BN model was also established for wind turbines by Su et al. 
[7] to achieve a reliability analysis considering environmental factors 
and uncertainty. Mi et al. [8] presented a methodology to quantify the 
importance of common cause failures in the context of a BN and prob-
ability bounds analysis.

The uncertainty of the system is very important for the accuracy 
of the reliability estimation since it is difficult to attain a compre-
hensive knowledge of system failure. Specifically, in simulation and 
experimental processes, according to Ref. [9], uncertainties can be 
divided into three sources:

Uncertainties in parameterization.1)	
Uncertainties in modeling.2)	
Uncertainties in experiments.3)	
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Sensitivity analysis measures how changes in system inputs affect outputs. Previously, a large amount of sensitivity analysis re-
search was relevant to the precise probability that is regarded as an ideal condition of engineering. Due to insufficient test samples 
and the low accuracy of test data, system reliability with hybrid uncertainty is difficult to be described as a precise value. As a 
profusion of highly integrated electromechanical equipment is applied in modern life, it is impossible to apply sufficient resources 
to eliminate the stochastic property of every component, which necessitates the identification of highly sensitive components to 
efficiently reduce imprecision. Hence, based on the theory of imprecise probability, imprecise sensitivity analysis has become a 
popular research topic in the last decade. In this paper, a method for uncertain system reliability and imprecise sensitivity analysis 
is proposed based on a Bayesian network, a probability box and the pinching method. The feasibility and accuracy of the combined 
method are fully verified through the evaluation and analysis of a numerical example and a case study of an electromechanical 
system, and the highly sensitive components that heavily influence the imprecision of system outputs are accurately identified.
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Celem analizy czułościowej jest badanie w jakim stopniu zmiany danych wejściowych systemu wpływają na dane wyjściowe. 
Dotychczasowe badania z wykorzystaniem analizy czułościowej były związane z dokładnym prawdopodobieństwem postrzega-
nym w inżynierii jako warunek idealny. Przy niewystarczającej wielkości badanej próby i niskiej dokładności danych testowych, 
niezawodność systemu o hybrydowej niepewności trudno opisać w sposób dokładny. Biorąc pod uwagę fakt, że we współczesnym 
świecie wykorzystuje się duże ilości wysoce zintegrowanych urządzeń elektromechanicznych, niemożliwa jest alokacja wystarcza-
jących zasobów w celu wyeliminowania właściwości stochastycznych każdego elementu. Oznacza to, że aby zredukować niedo-
kładność, konieczna jest identyfikacja komponentów o wysokiej czułości. Dlatego też popularnym przedmiotem badań ostatniej 
dekady stała się niedokładna analiza czułości, bazująca na teorii niedokładnego prawdopodobieństwa. W artykule zapropo-
nowano metodę analizy niezawodności niepewnego systemu jak również niedokładnej analizy czułościowej w oparciu o sieć 
bayesowską, pole prawdopodobieństwa i metodę pinch point. Możliwość wykorzystania i dokładność metody zostały w pełni 
potwierdzone na podstawie przykładu liczbowego jak również studium przypadku systemu elektromechanicznego; proponowana 
metoda pozwoliła na poprawne określenie wysoce czułych elementów systemu, które w dużym stopniu wpływają na niedokładność 
danych wyjściowych układu.

Słowa kluczowe:	 sieć bayesowska; pole prawdopodobieństwa; analiza czułości; analiza niezawodności.



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 3, 2020 509

Science and Technology

However, to reduce the effects of uncertainty, it is more advanta-
geous to take the intuitive uncertainty quantification metrics and the 
adjustment of the reliability analysis into prior consideration.

Uncertainty is currently divided into two types: epistemic (reduci-
ble) uncertainty and aleatory (irreducible) uncertainty [10, 11]. Aleatory 
uncertainty, determined by the random properties of a system, cannot 
be reduced, whereas the probability distribution can be derived easily 
by classic probability theory. However, epistemic uncertainty caused 
by the lack of knowledge of system mechanisms and samples cannot 
be eliminated by classic probability methods. Although the effects of 
epistemic uncertainty can be diminished through mass testing data and 
a deep understanding of system mechanisms, experts have not reached 
a consensus on dealing with epistemic uncertainty at present except 
for taking its quantification under initial consideration. The theory of 
evidence was first proposed by Dempster and then further promoted 
by Shafter, so it is called D-S evidence theory [12]. Basically, it can 
be interpreted as a generalization of Bayesian probability, assigning 
a number between 0 and 1 to the degree of belief supporting a certain 
proposal [13]. The details of the definitions refer to references [13–15]. 
Miscuri et al. [13] utilized an evidence network, which is the combina-
tion of the BN and evidence theory, and critical networks for security 
vulnerability assessment. In addition to evidence theory, probability 
bounds theory (PBA), also known as the probability box (p-box), is an-
other popular uncertainty quantification metric. Based on precise prob-
ability theory, the p-box is divided into parametric and nonparametric 
types. The parametric p-box assumes that the probability distributions 
of the variables are known, and the possible cumulative distribution 
functions (CDFs) of the variable are in the same distribution. However, 
for the nonparametric p-box, the CDFs can be any CDF between the 
lower and upper probability bounds. Mi et al. [16] constructed a p-box 
to characterize the uncertainty of a multistate system with CCF. Feng 
et al. [17] evaluated sensitivity by utilizing the p-box as the quantifica-
tion metric and a survival signature as the reliability modeling method. 
Meanwhile, Schöbi et al. [18] proposed interval-valued Sobol indices 
as an extension of classic definition by modeling the uncertain input 
parameters through parametric p-boxes. In short, the p-box is suitable 
for illustrating the epistemic uncertainty caused by insufficient sam-
ples, while it is more beneficial to consider evidence theory for the 
uncertainty caused by low data accuracy [19]. As Ref. [20] concludes, 
for any event U F∈  ，the upper and lower probability bounds respec-
tively correspond to the belief function Bel(U) and plausibility func-
tion Pl(U), in which we can find the mutual conversion of evidence 
theory and p-box in the mathematical form.

Sensitivity analysis (SA) quantifies the influence of input uncer-
tainty variation on the system output uncertainty. The purpose is to 
determine the main source of the system uncertainties. SA provides 
a basis for uncertainty reduction and can improve the robustness of 
the model prediction. Traditionally, SA methods for precise probabil-
ity distribution have been developed rapidly, and various approaches 
have been proposed, such as regional sensitivity analysis [21] and 
matrix-based metrics [22].

However, there are still few publications for imprecise sensitivity 
analysis (ISA) [18]. Sankararaman & Mahadevan [23] and Krzykacz-
Hausmann [24] described a global SA in the presence of Bayesian 
hierarchical models. Ref. [25] introduced Sobol indices for ISA. In 
addition, Helton et al. [26], on the basis of evidence theory, discussed 
the variance-based algorithm. The pinching method, proposed by Fer-
son [27], compares the variation in output uncertainty when part of 
the input variables has eliminated the uncertainty as a precise value, 
interval or probability distribution.

In response to the necessity of ISA studies of uncertain system re-
liability, this paper proposes a method to establish a reliability model 
with a BN, using the pinching method [27] to complete sensitivity 
analysis with the imprecision characterized by the p-box. Then, the 
high-sensitivity components and subsystems can be identified by 

ranking the indices. This approach is introduced as a new solution 
that implements the Bayesian network and pinching method for re-
liability and sensitivity analysis. A numerical example and an EMS 
case are detailed and analyzed by the proposed ISA approach to verify 
its feasibility. Hence, this article is organized as follows. Section 2 
introduces the reliability, uncertainty, and sensitivity analysis theories 
involved in the following cases. Using an example of an uncertain 
system, details of the reliability modeling and sensitivity analysis are 
described in Section 3. In Section 4, the proposed method is applied 
to an EMS. Conclusions are provided in Section 5.

2. Preliminaries

2.1.	 Bayesian network

A BN consists of a DAG and CPTs, representing the direct de-
pendency probability relationships among the variables [28]. Fig. 1 
shows a simple BN, where the texts in the circles refer to certain fail-
ure events, and the directed arrows indicate the relationship of events. 
In the graph, nodes with only outputs are named root nodes, whereas 
leaf nodes have only inputs. Therefore, the clear and brief form to 
illustrate the propagation of failures is the advantage of a DAG. For 
constructing CPTs in the reliability and safety field, when the logic 
relation of parent nodes is AND, it means that the child event could 
be true only if parent events are true. Moreover, if the logic relation 
is OR, the child event will be true as long as one parent event is true. 
Notably, to optimize the calculation, CPTs should follow some format 
specifications. In this paper, “F” refers to the fail state of the compo-
nent and “T” refers to the normal state. As a proposition regarding 
whether the given component state is true in the CPT table, “1” means 
true, and “0” means false. It is assumed that X1 is in series with X2 
and that X3 is in parallel with Y. As shown in Table 1 and Table 2, the 
tables that describe the marginal probability distribution of Y and T 
are CPTs, and the two tables depict the logic relation of AND and OR, 
respectively.

Fig. 1. A simple BN

The reasoning of the BN consists of forward and backward infer-
ence, also termed as predictive and diagnostic analysis, respectively. 
The former infers the marginal probability of any node in the condi-
tion of a given parent node’s prior marginal probability mass function 
(PMF) and conditional PMFs of other child nodes in the network.

Table 1.	 CPT of intermediate node Y

X1 X2
Y

F T

F F 1 0

F T 0 1

T F 0 1

T T 0 1
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Assuming that a set of random variables { }1,..., nX X  is composed 
of the system failure events corresponding to each node in a BN, the 
joint distribution can be calculated by the following formula:

	 { } ( )1
1

,...,
n

n i i
i

P X X P X π
=

=∏  	 (1)

where iπ  is the parent node of iX . For the BN shown in Fig. 1, 
the joint probability distribution is given by Eq. (2):

{ } ( ) ( ) ( ) ( ) ( )1 2 3 3 1 2 3 2 1, , , , , ,P T Y X X X P T X Y P Y X X P X P X P X=  

(2)

Using Eq. (1), the marginal probability distribution of iX  
can be presented as:

	 { } { }1,...,
i

i n
except X

P X P X X= ∑  	 (3)

With R  defined as the reliability of the system, the reli-
ability of the system shown in Fig. 1 can be presented as:

	 { }1 2 31 , , ,Y,T
except T

R P X X X= − ∑  	 (4)

2.2.	 Probability box

For a system with aleatory uncertainty, precise probability 
distributions can be used to quantify the degree of uncertainty, 
such as exponential, Weibull, and lognormal distributions. Conse-
quently, classic probability theory exhibits favorable performance 
for quantitative issues of aleatory uncertainty. However, due to the 
incomplete knowledge of the system mechanism and the sample data, 
epistemic uncertainty always exists in the system. Furthermore, the 
classic probability method is not the appropriate evaluation approach 
because of the probability parameters defined as the intervals. To pre-
cisely measure the system uncertainty, the p-box is a solution provid-
ing a clear view of the epistemic uncertainty of a random variable and 
has been widely applied to quantify and represent the uncertainty in 
risk analysis [29] [10]. A nonnegative random variable X describes the 
lifetime of a component. FL (t) and FU (t) are CDFs of variable X on 
real number R, and F (t)=P{X ≤ t}. Suppose F is a set of nondecreas-
ing functions that map R into [0,1], where FL (t) and FU (t) are the 
lower and upper bounds of F. Then, a p-box is defined by a probability 
family that matches the constraints FL (t) ≤ F(t) ≤ FU (t) and F(t)∈F 
[10]. For reliability R(t)=1-F(t), the p-box ℜ  reflects the survival 
probability and is defined as:

	 ℜ = ( ) ∀ ∈ ( ) ≤ ( ) ≤ ( ){ }R t t R R t R t R tL
U,  	 (5)

For example, suppose the random variable Xwb follows a Weibull 
distribution, the shape and scale parameters are set as β=3 and 
η=[10,40], respectively, and the parameters for the lognormal distri-
bution XLogn are σ=0.4 and μ=[6,8]. As shown in Fig. 2, the p-boxes 
describe the reliability bounds by RL(Xwb), RU (Xwb), RL(XLogn) and RU 
(XLogn), and the uncertainty can be quantified as the regions of Swb and 
SLogn. The area of epistemic uncertainty space enclosed by the upper 
and lower bounds can be converted from graphs to numerical form 
via Eq. (6):

( )( ) ( )( ) ( ) ( )s
0 0 0 0

1 1 .U U U
L L LS F t dt F t dt R t dt R t dt ET ET

+∞ +∞ +∞ +∞
= − − − = − = −∫ ∫ ∫ ∫

 
(6)

where ETU and ETL represent the maximum and minimum mean life-
times of the system, respectively. Eq. (6) quantifies the variation of 
system reliability with epistemic uncertainty, providing an index for 
uncertainty reduction. Moreover, the index is calculated for SA in the 
next subsection.

2.3.	 Sensitivity analysis of reliability

It has been shown that increasing the quantity and improving 
the accuracy of samples can reduce the epistemic uncertainty, but 
this is difficult to achieve for every component in a complex sys-
tem. System reliability SA [30] [26] identifies the high-sensitivity 
components and optimizes their uncertainty properties to enhance 
equipment performance and save resources. Therefore, a variety of 
SA metrics have been developed for better performance to solve 
practical engineering issues.

In engineering practice, since the precise distribution is always 
unknown, an interval value is used for uncertainty prediction, and tra-
ditional SA methods are invalid due to the imprecise form of input 
variables. Ferson [27] proposed the p-box to characterize this uncer-
tainty, which merges interval analysis and classic probability theory 
and treats aleatory and epistemic uncertainty separately on the basis of 
maintaining their features. The p-box permits a comprehensive uncer-
tainty analysis, and this fact obviates some of the complexity that af-
flicts traditional Monte Carlo approaches to sensitivity analysis based 
on similar ideas. Based on the uncertainty definition by the p-box, the 
sensitivity index eS  can be computed by Eq. (7):

Table 2.	 CPT of leaf node T

X1 X2
T

F T

F F 1 0

F T 1 0

T F 1 0

T T 0 1

Fig. 2. P-boxes of Weibull and lognormal distributions
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(A)=1
( )e

unS
un B

−                    (7)

where B is the initial value of the epistemic un-
certainty and A is the uncertainty index when 
the input epistemic uncertainty is reduced. 
Moreover, ()un  represents the uncertainty 
quantification method, which can be described 
by the p-box graph and calculated through the 
size of the uncertainty space enclosed by the 
probability bound; the details can be seen in 
Section 2.2.

To identify highly sensitive components, 
the pinching method should be initially used to 
reduce the uncertainty of each component, fol-
lowed by evaluating and ranking the sensitivity 
indexes obtained by Eq. (7). It should be noted 
that, unlike the variance-based index, the uncer-
tainty reduction will not add up to 100% after 
all the input variables eliminate the uncertainty.

There are multiple possibilities to pinch 
uncertainty. Different pinching strategies provide diverse sensitivity 
values but will not affect the ranking of the values. The three different 
strategies are listed as follows [27]:

(i) replace an input with a point value,
(ii) replace an input with a precise distribution function, or
(iii) replace an input with a zero-variance interval.

Considering that aleatory uncertainty is easy to model by clas-
sic probability theory but hard to eliminate, this work selects strategy 
(ii) to pinch the uncertainty, which focuses on the characterization 
of aleatory uncertainty and the elimination of epistemic uncertainty. 
Due to the unknown target parameter value after pinching uncertainty, 
different target values used in the SA cause changes in index values, 
which is termed the deviation. To reduce the effect of deviation, a new 
sensitivity index that takes the means of all sensitivity index values is 
proposed and is shown as Eq. (8):

	
0

(A )1= 1
( )

sl i
mean

s i

unS
l un B=

−∑  	 (8)

where ls is the sampling value of the random variable parameter.

3. Reliability sensitivity analysis for an uncertain sys-
tem

3.1.	 Analysis process

In this section, a comprehensive work for reliability sensitivity 
analysis is presented, and there are 3 steps for the ISA of system reli-
ability, as shown in Fig. 3.

Preprocessing: The aim of this step is to determine the distribu-i	
tion of pinched variables and construct the input vectors. Fur-
thermore, based on the failure mechanism of the system, the BN 
model needs to be prepared for forward inference to evaluate 
system reliability.

Uncertain system reliability analysis: Via the inference of the ii	
BN, the probability distribution families of system reliability in 
the case of pinched input variables and initial inputs are obtained. 
Next, a p-box is employed to quantify the uncertainty and visu-
alize it. The uncertainty quantification index is defined as the size 
of the region enclosed by probability bounds.

Sensitivity analysis: Because of the deviation of the sensitivity, iii	
computation of the mean of sensitivity values as the ultimate in-
dex of sensitivity assessment is applied to reduce the effect of de-
viation, which briefly indicates the highly sensitive components 
in the system.

The detailed analysis process will be described in the following 
sections.

3.2.	 Preprocessing

3.2.1.	 Input vectors

Assume that a system consists of lc components in lt different 
types, where the index of a component is defined as i, k refers to the 
type index, and that they match the constraints k∈{1,2,…,lt} and 
i∈{1,2,…,lc}. For example, k

if expresses the failure probability of 
component i with type k. The input vector in the condition that no 

variable is pinched is written as the initial vector 1
1= ,..., ,..., t

c
lk

i lF f f f 
   . 

Then, as Section 2.3 describes, when k
if  is pinched, the epistemic 

uncertainty of the i-th component with type k. is hypothetically elimi-

nated. Hence, suppose k
if  is the distribution k

if  after pinching. 
Moreover, k

if  will be replaced by k
if  in the initial input vector. The 

input vector F will be renewed and written as k
iF , where 

1
1= ,..., ,..., t

c
lk k

i i lF f f f 
  . For instance, in the case of 2

5f  being 

pinched, the 2
5F matches the equation 2 1 2 5

5 1 5 13= ,..., ,...,F f f f 
  

. Be-
cause the target of pinching is just a hypothesis, diverse target param-
eters lead to different input vectors, obviously affecting the ISA re-
sults, which is called deviation. Therefore, k

if  is sampled with sample 
value ls for comprehensive analysis results and defined by target pa-

rameter θ j j ls( ) < ≤( )0  as ,
k

i jf . Similarly, k
if  is replaced by ,

k
i jf  

for an input vector, where 1
, 1, , ,= ,..., ,..., t

c
lk k

i j j i j l jF f f f 
  . Similar to the 

above example, when =10000sl  and the target parameter is ( )400θ , 

the input vector is written as 2 1 2 5
5,400 1 5,400 13= ,..., ,...,F f f f 

  
.

3.2.2	 BN modeling

According to Section 3.2.1, the input vector ,
k

i jF  when the prob-
ability distribution of component i  is pinched, uncertainty is obtained. 

Fig. 3. The analysis process of this work
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Subsequently, the following matrix D can be used to illustrate the rela-
tionships of each DAG node shown as Eq. (9):

	
1, 1,

1, 22,

dm dm

dm dm

d d
D

d d

 
 =  
 
 



  



 	 (9)

where da,b=1 means the arrow in the DAG moves from node a to node 
b. When there is no connection between a and b, da,c=0. After matrix 
D is obtained from the BN model, referring to Table 1 and Table 2, 
the CPTs of the child nodes in the DAG can be listed in the form of a 
column vector to participate in the forward inference.

3.3	 Uncertainty system reliability analysis

Combining Eq. (3) with Eq. (1), the marginal probability distri-
bution of child nodes can be written as:

	 P P i
i p

n CPTn{ } = ( )
=
∏ π 	 (10)

where n is the child node, πi is a parent node, and p is the number of 
parent nodes. Therefore, P{n} represents the marginal probability of 
the failure events of child nodes. Similarly, P{πi} are the marginal 
probabilities for parent nodes. This formula accomplishes BN for-
ward inference and deduces the system reliability.

Eq. (10) can be used to compute marginal probability when input 
variables are precise probability distributions. However, uncertainty 
exists in the parameters of ,

k
i jF , and it is necessary to sample the param-

eters. Assume the sample value for BN inference is lbn. Consequently, 
the input vector after sampling is 1

, , 1, , , , , ,= ,..., ,..., t
c
lk k

i j m j m i j m l j mF f f f 
   

. 
{ }, ,

k
i j mP n  can be written as:

	 P n CPT F Di j m
k

n i j m
k

n
i nk

, , , ,{ } = × ×( )
=
∏ 	 (11)

where { }, ,
k

i j mP n  is the probability of the event represented by the 
child node n . , ,

k
i j mF  should add zeros to expand the size and be as-

signed during the iterations. The reliability can be written as:

	 { }, , , ,=1k k
i j m i j mR P A−  	 (12)

3.4.	 Sensitivity analysis

The pinching method is applied to analyze the sensitivity by 
eliminating the epistemic uncertainty of a variable and computing the 
change in the output uncertainty. To overcome the deviation issue of 
determining different target parameters θ(j), the size of the area that 
is enclosed by the upper and lower bounds of the p-box should be 
calculated as the uncertainty quantification index. Then, based on the 
computed uncertainty index, the sensitivity index can be obtained by 
definition in Eq. (8).

3.5.	 Numerical example

In this section, a complex nonrepairable system from Ref. [31], 
composed of thirteen components with five different types, is de-
scribed to demonstrate the effectiveness of the proposed method. 
Note that numbers in the solid line and the lower right corner denote 
the type of the component and the serial number, respectively, while 

Roman numerals and English letters represent subsystems. Table 3 
gives the type of probability distributions and parameter ranges of 
each component, where η and β are the scale parameter with the hour 
unit and the nondimensional shape parameter of the Weibull distribu-
tion, respectively. Meanwhile, the λ of the exponential distribution 
represents its mean value with the same unit as η.

Based on the definitions described above, the DAG shown in 
Fig.  5 could be transformed into the following matrix by Eq. (13) 
and Eq. (14).

	
1,1 1,22

1,22 22,22

=
d d

D
d d

 
 
 
 
 



  



 	 (13)

Table 3.	 Probability distributions with epistemic and aleatory uncertainty 
of 5 types of components

Type Distribution Parameter (with epistemic uncer-
tainty)

1 Weibull η β1 11 68 1 86 2 08= =. , . , .[ ]

2 Exponential λ2 1 07 1 33=[ ]. , .

3 Weibull η β3 32 12 2 51 1 38= =. , . , .[ ]

4 Weibull η β4 42 99 3 41 2 51= =. , . , .[ ]

5 Exponential λ5 2 01 2 28=[ . ], .

Fig. 4. A block diagram of a nonrepairable system [31]

Fig. 5. BN of the system
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where	

1,14 2,14

3,15 4,15

5,16 6,16

7,17

8,18 9,19

10,20 11,20 12,20 13,20

15,21 16,21 17,21 18,21

14,22 21,22 20,22

1

1

1

1

1

1

1

1

else 0

d d

d d

d d

d

d d

d d d d

d d d d

d d d

= =


= =
 = =
 =
 = =
 = = = =
 = = = =

 = = =


=

 	 (14)

Furthermore, the CPT of each intermediate node in Fig. 5 can be 
established according to Section 3.3. For example, Table 4 shows the 
CPT of leaf node A based on the standards and specifications detailed 
in Section 2.1.

Note that it is more advantageous to express CPTs in a matrix 
form to simplify calculations. However, since subsystems II, III, IV, 
V, VI, and VII are not logical AND gates or OR gates, the CPT of node 
B must be listed separately. As shown in Table 5, CPTB is a column 
vector with a length of 26×1.

Fig. 6 depicts the reliability p-box of each type component un-
der different input vectors in the system according to the method de-
scribed in Section 3.3. The impact of the components with the same 
connection methods, as well as failure probability distributions, can 
be considered equivalent. Therefore, simplification should be taken 
into prior consideration in reliability modeling. From the results 
shown in Fig. 7, we find that the probability bounds of the system 
reliability obtained by the uncertainty pinching of the same type of 
components completely overlap. Thus, we can conclude that for sen-
sitivity analysis, the components with the same type and connection 
are of equivalence. Hence, only one component for each type needs to 
be selected to perform SA.

Fig. 8 depicts the p-box of the system reliability when the uncer-
tainty of the random variables X1, X3, X7, X9 and X10 are pinched. 
Compared with the initial bounds, the bounds after pinching are 
slightly contracted. However, there may exist crossover and overlap-
ping parts for the curves shown in Fig. 8, and it is difficult to compare 
the uncertainty space of p-boxes directly. Hence, it is more beneficial 
to define an index to quantify the uncertainty space of the system to 
further quantify the sensitivity. Therefore, measuring the size of the 
upper and lower areas is an appropriate method for uncertainty quan-
tification. The ISA approach was described in Section 3.4.

With different values of the target parameter θ(j), the sensitiv-
ity of the component will change differently, which is denoted as the 
deviation. Fig. 9 shows the sensitivity deviation of components with 
different types. It is clear that the sensitivity of the type 5 components 
is significantly higher than others, which means that the uncertainty 
reduction in type 5 components will cause the greatest influence on 

the uncertainty of system reliability. However, 
the sensitivity of type 3 and type 4 components 
are much lower than other types, and it is hard to 
identify the type with the lowest sensitivity due 
to the sensitivity variation. According to Section 
2.3, the influence of deviation can be reduced by 
the proposed method by calculating the mean 
value with Eq. (8). Fig. 10 shows a bar plot of 
the sensitivity of the components, and it can be 
clearly observed that the type 5 components are 
the most sensitive. Conversely, type 3 compo-
nent X7 is the most insensitive component.

4. Case study

4.1.  Description of the case

In Section 3, a comprehensive method is proposed for analyzing 
the reliability and sensitivity of the system, and a numerical example 
is introduced to detail the steps of the method. However, in a practi-
cal engineering system, the degradation of the components directly 
causes the working efficiency reduction, and the lack of sample data 
will also lead to the existence of uncertainty and nonlinear charac-
teristics in a system. In this section, the proposed method is used to 
analyze the reliability and sensitivity of the electromechanical system 
in Ref. [10]. Fig. 11 shows the schematic of this electromechanical 
system, which is composed of a control system, a power supply sys-
tem, a powertrain system, and a hydraulic system. More specifically, 
the control system includes two control modules connected in parallel 
to perform the start-stop control of the main valve and control execu-

Table 4.	 CPT of subsystem A

1 2
A

F T

F F 1 0

F T 1 0

T F 1 0

T T 0 1

Table 5.	 CPT of subsystem B

II III IV V VI
B

F T

F F F F F 1 0

T F F F F 1 0

F T F F F 1 0

… … … … … … …

T F T T T 0 1

F T T T T 0 1

T T T T T 0 1

Fig. 6.	 Reliability p-box of different component types (X1, X3, X7, X8 and X10 
refer to component types 1-5, respectively).
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tion of the hydraulic subsystem. Meanwhile, the powertrain system 
is a key subsystem, which includes a turbine, a reducer and a pump. 
For the power supply subsystem, two valves are included in the emer-

gency work mode, while only one main valve 
is contained in the main working mode. Based 
on the relationships among the components, the 
fault tree of the system can be plotted as shown 
in Fig. 12.

To introduce the method and simplify the 
calculations, the following assumptions are 
made for system reliability modeling:

1)	  A component or subsystem has the 
same failure probability distribution as its cor-
responding assembly component.

2)	  Components and subsystems whose 
failures rarely occur or do not cause system fail-
ure are negligible.

Assume that the failure probability of the 
basic components follows the Weibull distribu-
tion and lognormal distribution, respectively, 
according to the mechanical and electrical 

characteristics of the system. Additionally, based on accelerated life 

Fig. 7. Reliability p-boxes of components

Fig. 8. P-boxes with diverse inputs pinched ((b) is the time interval [1.4, 1.5] of (a))

Fig. 9. Deviation of sensitivity

Fig. 10. Mean sensitivity of 13 components
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testing and field data analysis, Table 7 lists the life distribution and 
life interval of different subsystems and components of the above-
mentioned system [10].

4.2.  System reliability modeling

Since it is necessary to obtain both the DAG and CPTs for the 
construction of a BN, the DAG can first be obtained and shown as 
based on the fault tree in Fig. 12. Meanwhile, owing to the forward 
reasoning requirement of a BN, it is essential to provide the matrix 
form of the DAG denoted as D , where the element di,j in the matrix 
can be represented by Eq. (15).

	

1,10 2,10

3,11 4,11 5,11 12,11

6,14 7,14

8,13 9,13

13,12 14,12

10,15 11,15 9,15

1

1

1

1

1

1

else 0

d d

d d d d

d d

d d

d d

d d d

= =


= = = =
 = = = =
 = =
 = = =

 =

           (15)

Additionally, the CPTs can be represented as the form of matrices 

1YCPT , 
2YCPT ,

3YCPT ,
4YCPT ,

5YCPT and CPTS  referred to by 
the specifications of CPTs corresponding to AND and OR relations 

Table 6.	 Number and description of the events in the system

No. Event description No. Event description

S Complex electromechanical 
system task failure 3X Turbine failure

1Y Control system failure 4X Reducer failure

2Y Powertrain system failure 5X Pump failure

3Y Power is not transmitted to 
the subordinate unit 6X Valve #1 failure

4Y Main work mode failure 7X Valve #2 failure

5Y Emergency work mode 
failure 8X Main valve failure

1X Control module #1 failure 9X Hydraulic system 
failure

2X Control module #2 failure

Table 7.	 Distribution parameters of basic units

No. Parameters No. Parameters

1X
β β
η η

1 2

1 2

= =2.769;
= =[4794.4,5381.5]

6X
µ
σ

6

6

=[7.2442,7.5700];
=0.1980

2X 7X
µ
σ

7

7

=[7.2442,7.5700];
=0.1980

3X
β
η

3

3

=6.02;
=[7439.4,7752.6] 8X

µ
σ

8

8

=[8.4287,8.5937];
=0.1003

4X
β
η

4

4

=1.935;
=[8459.8,9746.6] 9X

µ
σ

9

9

=[8.3428,8.4692];
=0.0768

5X
β
η

5

5

=8.33;
=[5851.9,5999.3]

Fig. 11. Functional block diagram of an electromechanical control system

Fig. 12. Fault tree of the electromechanical control system

Fig. 13. BN of the electromechanical control system
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Fig. 14.	 P-boxes of different types of components with pinched uncertainty and initial bounds ((b) is the time interval (4000, 
4500) of (a))

Fig. 15. Sensitivity deviation of each component

Fig. 16. Mean sensitivity of components 1 9X ~X
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described in Section 2.1. Particularly, for the system, since 6 7-X X  
and 1 2-X X  have the same probability distribution and are in the same 
connection, they can be regarded as equivalent according to Section 
3. ,

k
i jf  and ,

k
i jf  in the input vectors F  and ,

k
i jF  are obtained by 

the methods described in Table 7 and Section 3.2.1, where 7kl = ,
9cl =  and 10000sl = . The Bayesian forward reasoning and reliabil-

ity characterization can be performed according to Eq. (11) and Eq. 
(12). On the other hand, due to the uncertainty in the input vector, the 
system reliability is uncertain and can be characterized by the p-box 
described in Section 3.3.

As shown in Fig. 14, there are several curves related to reliability 
bounds with each component pinched. It is obvious that component 

9X  has the most critical impact on p-box uncertainty space compres-
sion after reducing the epistemic uncertainty of 9 types of compo-
nents. However, it is difficult to distinguish the reduction effect of 
the other 8 components owing to the large number of curves crossing 
shown in Fig. 14. Hence, it is beneficial to further perform a sensitiv-
ity analysis of the system to resolve the aforementioned issues as well 
as obtain an accurate assessment indicator.

4.3.	 Sensitivity index and ranking

Based on Eq. (7) and the description of SA mentioned in Section 
3.4, the epistemic uncertainty space size of the 10 sets of probability 
bounds in Fig. 14 should be estimated according to Eq. (6). More-
over, since it is difficult to determine the distribution of the target 
probability, the sensitivity might be biased. Therefore, to sample the 
parameter interval to offset the effect of the bias as described in Sec-
tion 3.4, the sample size is chosen as =10000sl . As depicted in Fig. 
15, the ordinates, which refer to the sensitivity with the input vector 
of , j

k
iF , are denoted as the reduction ratio of the uncertainty space 

with a maximum value of 1. From the results, it can be noted that the 
sensitivity changes of subsystem 9X , i.e., the hydraulic system, are 
nonlinear and much higher than those of 1 8X ~X . Hence, the hydrau-
lic system is the subsystem with the greatest uncertainty effect on the 
electromechanical system, which means that as the uncertainty of the 
system reliability must be reduced, a comprehensive analysis of the 
hydraulic system should be considered first. In contrast, the curves of 

3 5 6 7X ,X ,X ,X  are almost close to the x-axis with a large distance to 
1 2 4 8 9X ,X ,X ,X ,X . Thus, it can be noted that 3 5 6 7X ,X ,X ,X and 3 5 6 7X ,X ,X ,X  have 

the least impact on the system uncertainty, where the evaluation for 
system uncertainty reduction should be given the lowest consideration 
or even be deemed negligible. Furthermore, it is difficult to rank the 
sensitivity of 1 8X ~X  since the curves are staggered with each other 
at similar amplitudes. Therefore, according to Eq. (8) and the method 
detailed in Section 3.4, we need to calculate the mean of each com-
ponent sensitivity shown in Fig. 15 and plot the bar graph as shown 
in Fig. 16. Specifically, as seen in Fig. 16, the sensitivity of 4X , i.e., 
the reducer, is slightly higher than that of 1 2,X X  and 8X  but much 
higher than that of 3X , 5X , 6X  and 7X . Additionally, both 3X  and 

5X  should be in the lower consideration of the system uncertainty 

reduction since their impact on the system uncertainty is just slightly 
higher than that of 6X  and 7X .

5. Conclusion

Sensitivity analysis has prominent application in the risk and reli-
ability analysis field to explore how changes in the inputs of the com-
ponent affect the outputs of the system. Nevertheless, the current SA 
study is mostly relevant to random variables with precise probability 
parameters, thus ignoring the existence of epistemic uncertainty. As 
industrial requirements increase, ISA theories have become popular 
solutions due to the inescapable imprecision in engineering. The tar-
get of the proposed method is to assess the reliability and sensitivity 
of mechatronic systems by considering the epistemic uncertainty and 
simultaneously accomplishing the sensitivity analysis.

In this paper, a pinching method was proposed to identify the sen-
sitive components in a complex system on the basis of the reliability 
model established by the BN, and epistemic uncertainty is manipu-
lated by the p-box. This method, on the basis of the BN reliability 
model, provides an alternative sensitivity index, unlike other methods 
such as Sobol indices [18], to successfully identify the components 
and subsystems with high sensitivity, which is an efficient way for 
engineers to reduce epistemic uncertainty. Moreover, compared with 
traditional Monte Carlo approaches, the brief concept and formulas of 
the p-box support a more intuitive SA and reduce the computational 
complexity. Two cases were applied to prove the feasibility, and we 
induce the sensitivity ranking via Fig. 10 and Fig. 16. Obviously, the 
accuracy of identifying the sensitive components is satisfactory. Par-
ticularly in the case of the electromechanical system from Ref. [10], 
the results show that the system epistemic uncertainty can be reduced 
by approximately 80% by pinching the uncertainty of the hydraulic 
system. Hence, efforts to reduce imprecision should primarily be 
made in hydraulic systems. During the analyses, this approach opens 
a new pathway based on the Bayesian network and pinching method 
in reliability sensitivity assessment, which indicates an efficient di-
rection for mitigating engineering efforts in uncertainty reduction. 
In addition, during the analysis process, we also encountered several 
shortcomings. The sensitivity deviation cannot be totally eliminated 
by calculating the mean value. Therefore, our future work will focus 
on the selection and comparison of various sensitivity indices to im-
prove the performance of the ISA method.
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