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1. Introduction

The reality of the production environment is inseparably con-
nected with disruptions, which negatively impact the executed proc-
esses, thus leading to disorganisation [14]. The key uncertainty fac-
tors include the occurrence of technological machine failure. From the 
practical point of view, prediction of failure times is an issue of fun-
damental importance, as it enables implementing preventive activities 
in a way that does not interfere with the current production process. 
Failure time prediction is frequently in use in ​​Time-Based Mainte-
nance (TBM), and in response to the growing demand, specialised 
IT solutions aimed to support this strategy are developed [5, 16, 37]. 
It is crucial that these tools employ effective prediction algorithms, 
drawing from reliable historical data and thus providing the basis for 
a reliable analysis of machine failure and proper adjustment of main-
tenance activities [6, 13, 40].

The literature analysis shows that numerous studies have been de-
voted to the prediction of disruption in the production process. Those 

studies primarily concern the development of effective methods for 
countering failure, as well as absorb their impact [3, 33]. Preventive 
activities frequently correspond with the principles of Time-Based 
Maintenance [13, 25], as well as activities representing Conditioned-
Based Maintenance [1, 30]. The development of scenarios and opera-
tional strategies is also a very popular trend [26, 27, 34, 35, 39].

Failure prediction methods proposed in the literature are catego-
rised into several groups:

methods based on probability distribution,––
methods using typical performance indicators,––
alternative failure prediction methods,––
methods based on real data.––

The vast majority of the solutions proposed in the literature are 
based on probability distribution analysis [8, 15, 24, 2], which con-
siders typical distributions and their combinations, such as: uniform 
distribution [17, 2], normal distribution [8] or exponential distribution 
[24, 30]. The primary purpose of distribution analysis is to define the 
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time of failure occurrence. Solutions based on combinations of typi-
cal distributions are also proposed in the literature, for instance, in the 
2010 study [15] the authors propose combinations of normal, trian-
gular and exponential distributions to describe the problem of failure 
occurrence. Admittedly, most of the proposed solutions consider the 
problem in a purely theoretical manner, and as such, disregard the crit-
ical aspect of prediction: the use of historical data on machine failure 
rate. Furthermore, researchers fail to provide a sufficient justification 
for a given probability distribution selection.

Another trend visible in the literature is employing key perform-
ance indicators (KPIs) used in maintenance for failure prediction, 
such as:

Mean Time To Failure (MTTF)–– ,
Mean Time Between Failures (MTBF)–– ,
Mean Time To Repair (MTTR)–– .

The KPIs listed above are employed in numerous studies [9, 12, 
21, 20], predominantly directly, in other cases indirectly – as esti-
mators for the purpose of Weibull distribution [21]. In research, the 
authors follow predefined scenarios and the indicators ​​are specified ​​
from preset ranges, which ensures that the failure events occur at a 
desired frequency (frequently or rarely) and are eventually analysed 
from the perspective of the consequences of failure occurrence [12]. 
Sometimes the use of KPIs is supported by the use of appropriate 
statistical methods [30]. The use of methods applying performance in-
dicators typical for ​​maintenance is substantiated by the fact that these 
parameters provide large amounts of information on the technological 
machines in use. Nevertheless, the acquisition and use of parameters 
in question is largely in the theoretical domain: the published studies 
fail to perform verification of the proposed solutions with the real data 
on machine failure rates [9, 20].

With respect to ​​alternative methods of failure prediction, sever-
al solutions are particularly worth highlighting, e.g. the methods in 
which all machine failures are accumulated into one and evaluated by 
means of the MTTR and MBL (Machine Breakdown Level) param-
eters [18], the methods where the failure rate is determined from the 
analysis of the machine loading time distributions [31], those in which 
the prediction of machine failure is carried out with the application 
of artificial neural networks [4], or the well-established time series 
models [38]. During the verification of the proposed solutions, how-
ever, test data is employed, which, furthermore, stems from the use of 
simplifying assumptions adopted by the researchers.

In the works of Davenport et al. and Kempa et al. [8, 19], the 
authors note that performing computations on actual sets of process 
data is of paramount importance. These suggestions represent a nov-
elty approach to failure prediction. They point out the necessity to 
develop methods focusing on the practical use of historical data on 
technological machine failure. Although studies implementing such 
solutions may be found in the specialist literature, their number is still 
negligible [33]. Nonetheless, they represent a clear trend in the area 
of ​​failure prediction.

Despite the fact that several methods have been proposed, no 
solutions towards the practical use of historical data on the failure 
of technological machines have yet been developed. In addition, in 
the production environment the typical modus operandi is to propose 
implementation of extensive and high-priced monitoring systems, 
while in the field of TBM strategies, the data is obtained from all 
maintenance departments. Therefore, this study provides a novel ap-
proach to machine failure prediction in multi-machine manufacturing 
systems that employs an algorithm performing an in-depth, elaborate 
analysis of actual production data, thus enabling the prediction of fu-
ture machine breakdowns and implementation of effective preventive 
measures. This method constitutes an alternative to those character-
ised in the preceding paragraphs as it makes use of data obtained from 
maintenance services to achieve the intended objective – identifica-

tion of the potential moment of failure. The innovation of our method 
consists in its incorporation of elements of survival analysis theory in 
technological machine failure analysis enabling statistical inference 
based on historical data.

2. Failure prediction with elements of processing times 
analysis 

2.1.	 Machining times as duration

In its essence, failure prediction is the determination of the time 
and degree of certainty for the occurrence of failure of a given tech-
nological machine; to this end, elements of Survival Analysis, also 
referred to as Duration Analysis [11, 23], may be put to use.

When employing Duration Analysis it is essential to precisely 
specify the essence of the studied process, which should meet the fol-
lowing conditions [11]:

Changes to the analysed unit are made between discrete 1.	
states.
Changes of states occur at any time and are not fixed in time.2.	
Changes are reversible or irreversible (relative to the form of 3.	
the process).
Changes are predetermined by the current state of the proc-4.	
ess.
Certain factors affect the process – the analysis enables their 5.	
detection.

Considering these determinants of the Survival Analysis, it ap-
pears that technological machine failure is a process that meets these 
requirements. Machine failure can occur at any time and is a change 
between two states – the functioning and breakdown. In addition, 
damage to the machine is a reversible change – once repaired, it re-
turns to its original state, being defined by the state in which the de-
vice is. There are also a number of factors that can affect the process 
under scrutiny and can be identified by means of Duration Analysis 
[36]. In the case of machine there is a need to consider the duration 
time as a time of undisturbed machine operation. In the consequence, 
the failure time of machine can be determined. An additional advan-
tage of this technique is the ability to determine failure patterns (time 
characteristics of failures), especially when the historical data do not 
allow the use of typical inference techniques [33].

Let T be a non-negative random variable representing the time 
of failure (duration) of the technological machine, whose value is in 
the range (0; ∞). In addition, f(t) is a function of probability density, 
where t > 0 and F(t) is a cumulative distribution function of the ran-
dom variable, T – a non-decreasing function that indicates that the 
object will experience the event in time (0; t]:

	 ( ) ( )F t P T t= < .	 (1)

Based on the cumulative distribution function F(t), the survival 
function S(t) can be defined as:

	 ( ) 1 ( ) ( ) ( )
t

S t F t P T t f s ds
∞

= − = ≥ = ∫ ,	 (2)

which gives the probability of undisturbed machine work until t. It, 
furthermore, determines the probability that a failure will not occur 
until t. The selected function is an ideal solution for the determina-
tion of patterns of correct machine operation and, as a consequence, 
also its failure. The survival and cumulative function are shown in 
Figure 1.
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In order to determine the particular functions presented above, 
appropriate historical data describing the failure of the technological 
machine should be obtained and incorporated in the models. Their 
analysis provides a great amount of critical information that can be 
used in the further prediction process.

2.2.	  The use of historical data

To determine the failure characteristics, it is necessary to define 
the suitable data source, i.e. production maintenance departments – 
since these cells collect the information in question [3, 10]. The data 
on the history of maintenance and repair of technological machines in 
manufacturing enterprises are most commonly recorded by means of 
the following solutions:

paper documentation – typically in the form of Maintenance ––
Cards and Service Books,
IT software coupled with dedicated spreadsheets (Fig. 2),––
data acquisition directly from technological machines, using ––
SCADA (Supervisory Control And Data Acquisition) and MES 
(Manufacturing Execution Systems).

Fig. 2. An example of service data recorded in a computer spreadsheet

All of the data collection methods above share a common feature 
– each provides information that, when properly processed, can be 
employed in Survival Analysis for the prediction of machine failure.

The data contained in the documentation are historical failure 
times. For a given technological machine Mj, they are given as TMj:

	 1 2{ , ,..., }Mj nT t t t=  [hours],	 (3)

where: ti – i-th time of failure.

An example dataset for M1 historical failure times is expressed by:

	 1 {4,8,20,16,10,28,43,15,24,2,...}MT = [hours].

The use of data contained in relevant datasets TMj enables the de-
termination of potential failure times of a given machine, saved in 
dataset FTMij: 

	 1 2{ , ,..., }Mj Mj Mj MjnFT ft ft ft= ,	 (4)

where: ftMji – failure time of machine j,
j	   – the number of the considered machine.

For each time ftMji the probability of failure is given in the set 
PMj.

	 1 2{ , ,..., }Mj Mj Mj MjnP p p p= ,	 (5)

where: pMji – the probability of machine failure j, given that:

	 0
0

Mij
Mij

ft
p

≠
∧ ≠

.	

Therefore, the result of the prediction will be the pairs (pMji, ftMji) 
that define the probability and the failure time of machine Mj.

2.3.	 The proposed time-based machine failure prediction 
algorithm

In order to predict the probability of failure and the time of failure, 
a four-step algorithm was developed to analyse and properly imple-
ment the collected repair history data.

Step 1 of the proposed algorithm defines the machine for which 
the prediction process is carried out, as well as acquires the historical 
data from in the set TMj (Fig. 3).

At step 2, the imported data are saved: the failure times of ma-
chine Mj by means of an appropriate sequence:

Fig. 1. Cumulative distribution function F(t) and survival function S(t)

Fig. 3. Failure prediction algorithm
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	 1{( , )} ,i i k n i Mjt d t T≤ ≤ ∈ 	 (6)

where: ti – the time between successive failures,
di – number of cases.

In addition, at this step the data is arranged in an increasing order 
{ti}1≤k≤n:

	 1 20 ... nt t t< < < < ,	 (7)

Subsequently, the acquired data are filtered and outliers (repre-
senting atypical values) removed (Fig. 4). Then, the basic statistics for 
the collected data (minimum, maximum, average deviation, quartile 
range) are determined.

Step 3 is crucial for the inference process because it is at this stage 
that the survival function, characterising the considered failure proc-
ess of the analysed machine, is determined. By ordering machine fail-
ures according to the increasing occurrence times and by determining 
the number of cases for each such occurrence, the survival function 
of a given process is determined. The obtained function conveniently 
determines duration patterns (failure occurrence) and allows to deter-
mine failure characteristics of the defined machine. The application 
of Kaplan-Meier estimation, on the other hand, produces the survival 
function, determined from the relationship:

	 S t
for t t

r d
r

for t ti i

it ti

∧

≤

=

<
−

<







∏

( )
,

,

1 1

1
	 (8)

where:	 ri – the number of all breakdowns, given by:

	
k

i j
j i

r d
=

= ∑ . 	 (9)

Subsequently, the survival function is determined, which allows 
to determine (with defined probability level) the undisturbed machine 
operation times (Fig. 5).

The determined survival function is implemented at step 4, where 
the obtained results serve to determine the elements of searched sets:

– 	 potential times of machine failure FTMj,
– 	 probability of machine failure PMj.

Fig. 6 shows the principles of ​​statistical inference based on the 
survival function. Predictions of failure times ftMji are determined for 
specified probability levels pi.

Since the probability of undisturbed machine operation (pi) is de-
termined from the survival function, therefore, machine failure prob-
ability pMji is given by:

	 1Mji ip p= − ,	  (10)

where:	 pMji – machine failure probability,
	 pi – undisturbed machine operation probability.

Determining the searched machine failure probability pMji  enables 
the determination of the searched ftMji, and, consequently, determining 
the pairs (pMji, ftMji). The calculated data are collected in sets PMji  and 

FTMji. Step 4 is iterative and is, therefore, repeated depending on the 
user’s decision regarding the number of probability levels to consider. 
The implementation of the algorithm should be repeated for other 
technological machines whose failure rate is investigated.

3. Experimental verification of the proposed algo-
rithm

3.1.	 Data used in verification

The step preceding the model verification, presented below, was 
the acquisition and implementation of data describing the charac-
teristics of the executed technological processes and the failure rate 
of technological machines. As mentioned before, the investigations 
reported in this study were based on actual production data, which 
specifically consisted of 12 production tasks performed at 12 work 
stations, arranged in manufacturing cells. The prevailing manufactur-
ing process carried out in production is subtractive machining. Table 1 
below lists technological processes at selected production jobs.

Fig. 4.	 Box chart for sample data (Me – median, Q1 and Q3 – quartiles 1 and 
3, OUT – outliers) 

Fig. 5.	 An example of Survival Function determined using Kaplan-Meier esti-
mation

Fig. 6.	 Determining the failure time based on the adopted value of survival 
probability
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The actual data used in the verification process were employed in 
the following scope:

– 	 technological machine failure data were used as input data 
for the prediction algorithm verification,

– 	 data on executed manufacturing processes were used in 
simulation tests to assess the effectiveness and validity of 
the proposed algorithm considering real production con-
ditions (including technological machinery failure).

3.2.	 Failure time prediction

The proposed algorithm was verified by means of an appropriate 
script compiled in a programming language R. The successful verifi-
cation was followed by the use of the historical data in the process of 
statistical inferring with respect to the potential breakdown times of 
machines at particular workstations. The machines constituting the 
stock of the machine tools were labelled as follows:

Laser 1 – machine −	 M1,
Laser 2 – machine −	 M2,
CNC press – machine −	 M3,
CNC band saw – machine −	 M4,
Metalworking station – machine −	 M5,
MIG welder – machine −	 M6,
TIG welder – machine −	 M7,
Drilling machine – machine −	 M8,
Milling machine – machine −	 M9,
Turning lathe – machine −	 M10,
Metal shearing machine – machine −	 M11,
Punching machine – machine −	 M12.

In the paragraphs below, the exemplary execution of the verifica-
tion process is presented for machine M6, in which case the historical 
data included 121 observations

Prior to the initiation of the prediction process, the prepared 
script was fed with appropriate commands – preparing the software 
working environment; this was followed by specifying the machine 
number and importing the data from the *.CSV file. By importing the 
data into the set TM6, (the variable) stored in the workspace, facilitated 
sorting the considered observations in ascending order, as well as fil-
tering the data by means of the box plots (Fig. 7). In addition, basic 
statistics were determined (Fig. 8).

The key step of our failure prediction algorithm is the de-

termination of the survival function, ( )S t
∧

, with the application of 
Kaplan-Meier estimation, which was enabled by including the “SUR-
VIVAL” library in the script. A further course of the step function was 

Fig. 7. Box plots – before and after data filtering 

 Table 1. Examples of technological processes contained in production data

Product No.
(job) Operation No. Workstation Operation tsij [hours] toij [hours]

1

10 Laser1 Cutting sheets 0.25 0.042

20 Laser2 Laser-cutting pipes and profiles 0.20 0.017

30 CNC Press Edge bending 0.13 0.018

40 Drilling machine Drilling holes 0.17 0.017

50 Metalworking Metalworking 0.08 0.017

60 MIG welder MIG welding 0.13 0.092

3

10 Laser2 Laser-cutting pipes and profiles 0.15 0.005

20 CNC band saw Band-saw cutting 0.10 0.008

30 Milling machine Milling 0.27 0.050

40 Drilling machine Drilling holes 0.17 0.017

50 Metalworking Metalworking 0.08 0.033

60 MIG welder MIG welding 0.13 0.033

70 Turning lathe Turning 0.33 0.092

5

10 Laser1 Laser-cutting metal sheets 0.27 0.012

20 Metal shearing machine Metal shearing 0.10 0.004

30 CNC band saw Band-saw cutting 0.10 0.017

40 CNC press Edge bending 0.17 0.025

50 Drilling machine Tapping 0.13 0.100

60 Metalworking Metalworking 0.08 0.033

70 MIG welder MIG welding 0.13 0.033

80 Turning lathe Turning 0.33 0.108
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calculated automatically from the produced observation sequences. 
The result was a survival function in the form of a stepped curve at 
95% confidence.

Determining the course of the searched function, ( )S t
∧

, triggers 
the next step of the algorithm: the prediction of the failure time of the 
considered machine at the defined probability level (Fig. 9). As the 
probability of undisrupted machine operation can also be read from 
the chart, an additional legend with explanations was generated. In the 

case of calculations for the given machine M6 (and other machines), 
the following probability levels were considered:

	 p1 = 0.75;     p2 = 0.50;     p3 = 0.25.

The values of the considered levels have been chosen so as to 
determine: low, medium and high level of risk of the machine being 
affected. Therefore:

	 pM61 = 1 – p1 = 0.25;     pM62 = 1 – p2 = 0.50;     pM63 = 1 – p3 = 0.75;

Fig. 9. Failure prediction based on the survival function

In this way, the probability of occurrence and times of potential 
failures were calculated, and can be expressed as pairs:

(pM61, ftM61) = (0.25, 8 hours),
(pM62, ftM62) = (0.50, 24 hours),
(pM63, ftM63) = (0.75, 48 hours).

As a result, sets PM61 = {0.25, 0.50, 0.75} and FTM61 = {8, 24, 48} 
[hours] were determined.

The proposed algorithm was used to the same extent in other tech-
nological machines. Due to the nature of the metalworking worksta-
tion (M5) the prediction process was not carried out. The calculated 
failure times are given in Table 2.

The results obtained from the executed algorithm were employed 
in the subsequent part of the verification process, consisting in the 
simulation of production under technological machinery failure con-
straint.

3.3. Production simulation under uncertainty

The plan of the study described in this paper assumed the verifica-
tion of the introduced algorithm in the real production environment in 
order to validate its applicability under machine failure uncertainty, 

which is characteristic of authentic industrial conditions. This was 
done in a two-stage experiment:

Nominal production schedules were produced based on the 1.	
actual production data. Next, corresponding robust schedules 
were prepared by implementing service times as indicated by 
the results of the executed algorithm.
The production process was modelled according to the devel-2.	
oped schedules and examined to indicate the schedule of the 
shortest production completion time under the constraint of 
machine failure.

3.3.1. Scheduling production

Different job scheduling methods to follow at individual worksta-
tions were evaluated by means of 4 established dispatching rules:

FCFS (First Come First Service).1.	
EDD (Earliest Due Date).2.	
SPT (Shortest Processing Time).3.	
LPT (Longest Processing Time).4.	

It was assumed that the products were made in 50-piece batches, 
and the objective function of the schedule was to minimise the make-
span – Cmax.

The task scheduling tool employed in the study was LiSA, a 
software package for solving job scheduling problems typical of real 
production environments (flow-shop, job-shop or open-shop), which 
makes use of algorithms in imposing a set of constraints and evalua-
tion criteria [7]. Fig. 10 shows an example schedule solved with the 
use of LPT dispatching rule.

Fig. 10. Nominal schedule – LPT dispatching rule

Fig. 8. Basic statistics generated by the developed script

Table 2.	 Technological machine failure times obtained from prediction

Failure time [hours]

Machine pMj1 = 0.25 pMj2 = 0.50 pMj3 = 0.75

M1 8 16 40

M2 8 24 32

M3 8 16 24

M4 8 24 104

M5 – – –

M6 8 24 48

M7 8 16 40

M8 8 24 48

M9 8 16 40

M10 8 24 40

M11 8 16 40

M12 8 16 32
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Potential technological machine failure was accounted for in the 
schedules by the implementation of service buffers of 0.5 hours, aimed 
to protect schedules against disruptions and providing the necessary 
inspection or servicing time. Buffers were incorporated in the sched-
ules in accordance with the indications of the algorithm (Table 2). It 
was assumed that failure may only occur after the processing time 
block (processing of jobs). Should there be a technological operation 
in a given place of the schedule – it would be moved right (immedi-
ately after the buffer), thus maintaining the order of tasks indicated in 
the nominal schedule. An example of a robust schedule with imple-
mented service buffers is shown in Fig. 11 (buffers are represented by 
white blocks).

Fig. 11. Production schedule including service buffers

The times of completion of all jobs (makespan) in the nominal and 
robust schedules are presented in Table 3.

The completion times of all jobs obtained from the test schedules 
were elongated in every case when time buffers were incorporated. 
This resulted in the elongation of the objective function Cmax in each 
reported case. The average time difference between the nominal 
and robust schedule amounted to 6.75 h. It may be, therefore, con-
cluded that accounting for technological machine failure causes that 
the production will extend over approximately one additional shift. 
Expressed in percentage, the elongation ranged from 8.5% for the 
robust schedule with the LPT priority rule, to 16.7% for the FCFS 
schedules. The makespans of particular robust schedules are given 
in Fig. 12 below.

To evaluate whether the implemented buffers should be incorpo-
rated in the schedules, thus leading to the production schedule elon-
gation, the second stage of the verification process was carried out: 
simulation of production under uncertainty. This step indicated which 
of the schedules – nominal or robust (produced by the proposed algo-
rithm) – fulfils the objective function, i.e. minimisation of completion 
of all production tasks.

3.3.2.	 Production simulation under machine failure constraint

The second stage of the experiment was carried out in the Enter-
prise Dynamics simulation environment, which is one of the leading 
solutions in simulating various processes. This platform enables rep-
resenting a range of processes, including production, storage, supply 
chain management, transport systems, and its capacity for modelling, 
simulation and visualisation earmarks it for controlling dynamic proc-
esses [14, 16, 22]. Putting to use the available elements of the environ-
ment, a model was made for the production execution analysis in the 
considered production system (Fig. 13).

Fig. 13. The production system model developed in the ED environment

Given the failure rate of technological machines, MTTF and 
MTTR values ​​were defined for each of them, by modifying the prop-
erties of a given block. The MTTF parameter values ​​were defined 
using uniform probability distribution so that the failures occurred at 
any time – from the commencement of processing jobs on a machine 
until its completion. The MTTR parameter was determined by gamma 
distribution, as it was indicated to be the best fitting by the results from 
the statistical analysis of historical data on machine repair times. The 
MTTF and MTTR parameters for individual machines are presented 
in Table 4. Note that due to the ED simulation environment – the times 
describing the distribution parameters were given in seconds.

The model developed for the purpose of this study included the 
modification of job orders on particular machines (in accordance with 
the schedules implementing the particular dispatching rules FCFS, 
EDD, SPT and LPT).

When assessing the results of simulations, the following stability 
indicators were used:

– 	 elongation of completion time of all jobs ΔCmax given 
by:

	 ΔCmax = Cmax – C’max , 	 (11)

where:	 ΔCmax – elongation of completion time of all 
jobs,

	 Cmax – nominal schedule makespan,Fig. 12. Makespan Cmax – completion time of all jobs

Table 3.	 Obtained values of Cmax 

Dispatch-
ing rule

Completion time of all jobs – makespan Cmax [hours]

nominal schedule robust schedule elongation [%]

FCFS 43.68 52.44 16.7%

EDD 42.59 49.42 13.8%

SPT 48.92 55.75 12.3%

LPT 49.10 53.69 8.5%
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	 C’max  – actual (executed) schedule makespan.

– 	 relative elongation of makespan ECmax, determined from 
the relationship:

	
max

max

max
C

CE
C

=
′ ,	 (12)

where:	 ECmax – relative elongation of makespan.

Table 5 shows the results of the simulation under the SPT dis-
patching rule. For each simulation, the obtained stability indicators 
confirmed the effectiveness and applicability of the proposed algo-
rithm. Both the values ​​of elongation of completion time of all jobs, 
ΔCmax, and the relative elongation of makespan, ECmax, showed that 
the schedule accounting for potential technological machine failure 
indicates a more feasible completion time of all jobs.

For other simulated conditions, the applicability of the solutions 
proposed in this publication was also confirmed, as validated by mean 
of the performance indicators from individual simulations listed in 
Table 6.

The obtained values ​​clearly indicate that the schedule incorporat-
ing service buffers gives a more feasible completion time of all jobs.

Table 4.	 Technological machine failure times obtained from the prediction 
results

Failure metrics

Machine MTTF MTTR

M1 Uniform(0; 66323) Gamma(3075; 1.62)

M2 Uniform(0; 31691) Gamma(2700; 2.07)

M3 Uniform(0; 57877) Gamma(2491.8; 2.79)

M4 Uniform(0; 12013) Gamma(2773.2; 1.88)

M5 – –

M6 Uniform(0; 85475) Gamma(3421.2; 2.43)

M7 Uniform(0; 30024) Gamma(3352.8; 1.96)

M8 Uniform(0; 80687) Gamma(2377.2; 2.45)

M9 Uniform(0; 24012) Gamma(2884.8; 1.64)

M10 Uniform(0; 60624) Gamma(2609.4; 1.85)

M11 Uniform(0; 756) Gamma(3169.8; 2.16)

M12 Uniform(0; 19800) Gamma(3015; 1.78)

Table 5.	 Stability indicators – order of jobs according to the SPT rule

Sim. No.
Executed schedule

(simulation)
C’max [hours]

Elongation and relative elongation of completion times  
of all jobs

nominal schedule robust schedule

Cmax
[hours] ΔCmax [hours] ECmax 

[–] Cmax [hours] ΔCmax [hours] ECmax 
[–]

1 56.10

48.92

-7.18 0.87

55.75

-0.35 0.99

2 53.88 -4.96 0.91 1.87 1.03

3 54.09 -5.17 0.90 1.66 1.03

4 56.91 -7.99 0.86 -1.16 0.98

5 52.60 -3.68 0.93 3.15 1.06

6 55.50 -6.58 0.88 0.25 1.00

7 56.43 -7.51 0.87 -0.68 0.99

8 55.88 -6.96 0.88 -0.13 1.00

9 53.48 -4.56 0.91 2.27 1.04

10 54.04 -5.12 0.91 1.71 1.03

11 58.31 -9.39 0.84 -2.56 0.96

12 52.97 -4.05 0.92 2.78 1.05

13 54.20 -5.28 0.90 1.55 1.03

14 55.33 -6.41 0.88 0.42 1.01

15 55.98 -7.06 0.87 -0.23 1.00

16 56.01 -7.09 0.87 -0.26 1.00

17 53.53 -4.61 0.91 2.22 1.04

18 56.51 -7.59 0.87 -0.76 0.99

19 55.18 -6.26 0.89 0.57 1.01

20 56.49 -7.57 0.87 -0.74 0.99

21 52.37 -3.45 0.93 3.38 1.06

22 57.52 -8.60 0.85 -1.77 0.97

23 54.86 -5.94 0.89 0.89 1.02

24 55.04 -6.12 0.89 0.71 1.01

25 54.83 -5.91 0.89 0.92 1.02
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Figures 14 and 15 summarise the obtained values ​​of the consid-
ered indicators, which further confirm the applicability of the pro-
posed algorithm. 

From the results of the verification and analytical works, it can 
be seen that the algorithm under scrutiny indicates a more feasible 
production completion time in the conditions allowing for the risk 
of technological machinery failure. This is evidenced, for instance, 
by the fact that for the robust schedule, the ECmax indicator values 
are close to 1, while the value of the indicator ΔCmax, is approximate 
to 0, which means that the makespans of production in the robust 
schedules are consistent with those obtained as a result of produc-
tion simulation.

4. Summary and conclusions

Machine failure prediction has been widely investigated in nu-
merous scientific studies. Various approaches have been proposed for 
the determination of information regarding the failure of technologi-
cal machines. Reliable and well-developed preventive maintenance 
job schedules are critical to effective maintenance, particularly in the 
case of Time-Based Maintenance strategies.

This paper focuses on the development of a prediction algorithm 
using typical historical data recorded by maintenance departments. 

The proposed algorithm is an alternative solu-
tion to failure prediction, whose innovation, 
and primary advantage, consists in the imple-
mentation of Kaplan-Meier estimation to deter-
mine the characteristics of failure occurrence in 
time for individual technological machines of 
the production system, which in turn supports 
TBM activities. In light of these key features of 
the proposed prediction tool, it becomes clear 
that the collection of reliable data on machine 
failure becomes of crucial importance; it is 
only the adequate historical data sample size 
and quality that may produce reliable and fac-
tual results.

Our algorithm responds to and represents 
the tendency for the growing implementation 
of IT tools in the work of maintenance de-
partments. Considering its potential scope of 

applications, it was developed as a computer program so that it is 
compatible with other established solutions. The verification of the 
proposed algorithm allowed to determine the potential failure times 
of technological machines. For the considered machines determined 
failure times were different, which means that each of them has its 
own failure occurrence characteristics. That confirmed the rightness 
and need of the TBM strategy implementation in the technical objects 
maintaining. The obtained data are also extremely important in the as-
pect of production under uncertainty. The simulation tests carried out 
in the second part of the publication prove that the use of the results 
of the proposed algorithm in the production planning allows to obtain 
stability of processes and determine deadlines close to the real end 
time of production.

The investigation works reported in this paper confirm the effec-
tiveness of the developed prediction algorithm and indicate the need 
for the preventive measures to provide information on machine failure 
in order to improve the stability of executed processes.
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Table 6.	 Mean values ​​of the considered performance indicators

Priority 
rule

Executed 
schedule

(simulation) 

maxC′ [hours]

Elongation and relative elongation of completion times of all 
jobs

nominal schedule robust schedule

Cmax
[hours]

maxC∆  
[hours]

maxCE

[–]

Cmax
[hours]

maxC∆
[hours]

maxCE
 

[–]

FCFS 49.87 43.68 -6.19 0.88 52.44 2.57 1.05

EDD 47.90 42.59 -5.31 0.89 49.42 1.52 1.03

SPT 55.12 48.92 -6.20 0.89 55.75 0.63 1.01

LPT 53.14 49.10 -4.04 0.92 53.69 0.55 1.01

Fig. 15. Relative makespan elongation ECmax
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