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develop the condition monitoring and fault diagnostic techniques for 
the gearboxes.

Most of the modern gearbox fault diagnostic methods utilize vi-
bration analysis to extract the fault features, and then make decision 
according to sophisticated signal processing techniques or expert 
knowledge of diagnosticians [1, 2, 6, 9, 18, 33]. For instance, Feng 
et al. [10] successfully introduced the Vold-Kalman filter into time-
frequency analysis to extract fault features of the planetary gearbox 
under unstable operation conditions. Tang et al. [28] firstly presented 
a novel fault detection method to identify the categories of gearbox 

1. Introduction

High transmission ratio, strong load-bearing and high efficiency 
makes modern gearboxes are always considered to be critical compo-
nents in various industrial applications, such as wind turbine genera-
tor system, helicopter main speed reducer, aerospace engineering and 
etc [27, 38]. In real practice, however, gearboxes will inevitably be 
subjected with dynamic heavy-duty loads under complex operating 
conditions, making the breakdown or even accidents of the engineer-
ing system [3, 4, 8, 32, 39]. Therefore, it is of great significance to 
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Gearboxes are key transmission components and widely used in various industrial applications. Due to the possible operational 
conditions, such as varying rotational speeds, long period of heavy loads, etc., gearboxes may easily be prone to failure. Condition 
Monitoring (CM) has been proved to be an effective methodology to improve the safety and reliability of gearboxes. Deep learning 
approaches, nowadays, further enable the CM with more powerful capability to exploit faulty information from massive data and 
make intelligently diagnostic decisions. However, for most of conventional deep learning models, such as Convolutional Neural 
Network (CNN), a large amount of labelled training data is a prerequisite, while to obtain the labelled data is usually a labori-
ous and time-consuming job and sometimes even unattainable. In this paper, to handle the case of only a limited labelled data is 
available, a modified convolutional neural network (MCNN) is proposed by integrating global average pooling (GAP) to reduce 
the number of trainable parameters and simplify the architecture of deep learning model. The proposed MCNN improves the tra-
ditional CNN’s ability in fault diagnosis with limited labelled data. Two experimental gearbox datasets are utilized to demonstrate 
the effectiveness of the proposed MCNN method. Compared with traditional deep learning approaches, namely LSTM, CNN and 
its variant methods, the experimental results show that the proposed MCNN with higher discrimination and generalization ability 
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Przekładnie stanowią kluczowe elementy układów napędowych i jako takie znajdują szerokie zastosowane w przemyśle. Ze wzglę-
du na warunki eksploatacji, takie jak różne prędkości obrotowe czy długie okresy pracy pod dużym obciążeniem itp., przekładnie 
mogą łatwo ulegać uszkodzeniom. Udowodniono, że monitorowanie stanu skutecznie poprawia bezpieczeństwo i niezawodność 
przekładni. Podejścia oparte na uczeniu głębokim umożliwiają ponadto monitorowanie stanu z większym wykorzystaniem in-
formacji o błędach pochodzących z dużych zbiorów danych i podejmowanie inteligentnych decyzji diagnostycznych. Jednak w 
przypadku większości konwencjonalnych modeli uczenia głębokiego, takich jak splotowe sieci neuronowe (convolutional neural 
networks, CNN), wymagana jest duża ilość etykietowanych danych uczących, których pozyskanie jest zwykle zadaniem praco- i 
czasochłonnym, a czasem wręcz niemożliwym do wykonania. W niniejszej pracy, przedstawiono zmodyfikowaną splotową sieć neu-
ronową (modified convolutional neural network, MCNN), która rozwiązuje problem dostępności danych etykietowanych poprzez 
zastosowanie globalnego uśrednienia względem kanałów (global average pooling), co pozwala na zmniejszenie liczby możliwych 
do wyuczenia parametrów i uproszczenie architektury modelu głębokiego uczenia. W porównaniu do tradycyjnych sieci CNN, 
proponowana sieć MCNN zwiększa możliwości diagnozowania błędów przy ograniczonych danych etykietowanych. Skuteczność 
proponowanej metody wykazano na przykładzie dwóch zbiorów danych doświadczalnych dotyczących błędów przekładni. Wyniki 
eksperymentalne pokazują, że, w porównaniu z tradycyjnymi metodami uczenia głębokiego, takimi jak LSTM, CNN oraz warianty 
tej ostatniej, proponowane podejście MCNN daje większe możliwości rozróżniania i uogólniania podczas klasyfikacji i diagnostyki 
błędów w przypadku ograniczonej dostępności etykietowanych danych uczących.

Słowa kluczowe:	 zmodyfikowana splotowa sieć neuronowa, globalne uśrednienie względem kanałów, inteligent-
na diagnostyka błędów, przekładnia przemysłowa.
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failures on the strength of hierarchical instantaneous energy density 
dispersion entropy (HIEDDE) and dynamic time warping (DTW). 
However, for these approaches based on vibration analysis, large 
amounts of signal processing efforts and abundant expert diagnostic 
experience are generally required to extract and analyze fault charac-
teristics from the measured vibrations.

Fig. 1. Data-driven fault diagnosis framework.

Thanks to the recent advanced progress made by artificial intel-
ligence and machine learning techniques, intelligent fault diagnosis 
receives an increasing research attention in the field of condition 
monitoring and fault diagnosis [12, 13, 25, 39, 43]. Methods, such 
as artificial neural network (ANN), back-propagation neural network 
(BPNN) and support vector machine (SVM) have become research 
focus. For instance, Tyagi et al. [29] successfully constructed a hybrid 
artificial neural network (ANN) classifier for gearbox diagnosis. The 
hybrid classifier consists of data preprocessing with discrete wave-
let transform (DWT), genetic algorithm (GA) and back-propagation 
neural network (BPNN). Zhang et al. [42] developed a multivariable 
ensemble-based incremental support vector machine (MEISVM) and 
applied it into the compound failure detecting of roller bearings. De-
spite their successes, the outstanding performance of the intelligent 
diagnostic methods alike heavily count on the accuracy of the manu-
ally extracted and selected features. This typical route of intelligent 
method is shown in the upper half in Fig. 1. For this route, advanced 
signal processing techniques are usually required for data pre-process-
ing. Moreover, for the shallow learning model (such as BPNN, SVM) 
employed for gearbox fault diagnosis, the diagnostic ability of the 
model is relied heavily on the quality of the extracted fault features. 
Unfortunately, for the cases of large amount of measured industrial 
data with unguaranteed data quality, its diagnostic capability will nat-
urally exhibit insufficient with the increase of the data amount.

To tackle these issues, deep learning route shown in the lower 
half in Fig. 1 with the structure of deep learning model of multi-layer 
nonlinear modelling solutions, comes into the recent research focuses 
and provides a straightforward end-to-end learning process from the 
measured input signal to the output diagnostic results, which com-
pletely eliminate the challenges of manual feature extractions and se-
lections [13, 44]. Deep learning methods utilize the deep architectures 
to constitute hierarchical feature representations to discover the dis-
tributed feature representations of data. Due to its powerful capability 
of perception, self-learning, modelling and characterization, recent 
years have witnessed the tremendous progress of deep learning tech-
niques in various fields, mainly including image processing, speech 
recognition and fault diagnosis. For examples to fault diagnosis, Yu et 
al. [37] exploited stacked denoising auto-encoder (SDAE) and gated 
recurrent unit neural network (GRUNN) to enhance the capability of 
anti-noise and the adaptive ability to time-varying rotational speed 
during the fault diagnosis of the planetary gearbox. Liu et al. [22] 
automatically extracted features from vibration signal by combining 
batch normalization with deep belief network (DBN), which achieves 
more precise performance than DBN and other conventional ap-
proaches in wind turbine gearbox diagnosis. Furthermore, Other deep 
neural network such as deep residual network (DRN) [40], recurrent 
neural network (RNN) [21], generative adversarial networks (GAN) 
[26], long short-term memory networks (LSTM) [19, 36] and espe-

cially convolutional neural networks (CNN) are seriously and widely 
investigated in gearbox fault diagnosis. Specifically, to CNN, Chen 
et al. [7] applied CNN to adaptively learn fault features and classify 
fault patterns with extreme learning machine (ELM) for mechanical 
faults. Jiao et al. [17] developed a deep coupled dense convolutional 
network (CDCN) to diagnose the faults of planetary gearbox, which 
could relieve gradient vanishing in deep architecture and realize two-
stage information fusion. 

Even though various successful cases on the applications of CNN 
in fault diagnosis have been reported, the works generally employed 
massive labelled measured samples to train a deep network. Neverthe-
less, it is difficult to acquire an enough number of labelled samples 
in real industrial application, especially for certain faulty scenarios 
which seldomly occur. Recently, transfer learning may be promising 
in this problem, and some works about transfer learning-based fault 
diagnosis have been reported [15]. The unsupervised domain adapta-
tion is the major branch of this framework [5, 14, 34]. By adapting the 
feature distribution between two domains, the diagnostic model can 
generalize well to the unseen conditions where no labelled data can be 
used for model training. Although these methods avoid to use labelled 
data in target domain, a large amount of unlabelled data (similar to 
the data in source domain) are generally necessary. In addition, due 
to the complicated and deep multi-layer structures, the parameter op-
timization of CNN model may lead to a huge computational burden. 
In this scenario, promoting the precision of diagnosis, accelerating 
the training speed of CNN as well as boosting the generalization abil-
ity and robustness under the small number of labelled samples be-
come a critical issue to research. To this end, in this paper, a modified 
convolutional neural network (MCNN) for the fault diagnosis was 
proposed in which the global average pooling (GAP) is introduced 
into the internal structure of CNN model to replace the traditional 
fully connected layer where the majority of parameters for training 
are contained. By doing so, compared with traditional CNN, it ena-
bles the MCNN an improved capability to deal with fault classifica-
tion problem with limited labelled samples. The MCNN is validated 
by two gearbox datasets from PHM 2009 conference data challenge 
and measured experimental data at University of Electronic Science 
and Technology of China. The experimental results demonstrate the 
advantages of the proposed MCNN method in accuracy of fault classi-
fication, time-saving of training model, more important, the method is 
more effective for fault diagnosis under condition of limited number 
of labelled samples. 

The structure of the paper is arranged as follows. In section 2, the 
basic theory of CNN is briefly described.  The method of MCNN is 
introduced in section 3. In section 4, the two experimental application 
of proposed method is analysed. Finally, the summary is concluded 
in section 5.  

2. Methods

2.1.	 Traditional architecture of CNN

As one of the most representative deep learning algorithms, CNN 
is a combination of convolutional computation and deep structure, 
which is generally composed of three parts, i.e., input layer, the fea-
ture descriptor and the classifier. The feature descriptor consists of 
multiple convolution layers, activation layers, pooling layers. The in-
put signal is mapped to the feature space of the CNN hidden layers 
to extract the features of the input data. The classifier is composed of 
one or several fully connected layers, namely a multi-layer perceptron 
classifier, for fusion and classification of the extracted features. The 
input layer of CNN is to pre-process multidimensional data, usually 
referring to one-dimensional data, two-dimensional data, or three-
dimensional data. As the core of CNN, the convolution layer, contain-
ing multiple convolution kernels, is to perform feature learning and 
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where the interregional of ( )iy  is { }1, 2, m… , m  is the number of 
classifications, and θ  is the assemblage of the arguments of the model.

2.2.	 A discussion on the shortcoming of the CNN

LeNet, as the pioneering and widely used architecture of CNN, 
basically established by convolutional layers, pooling layers and ful-
ly-connected layers. Most of researches for fault diagnosis utilized 
the simplified and improved LeNet-5 (containing 5 convolutional lay-
ers). For CNN with LetNet architecture, though it has been widely 
acknowledged, a large amount of training data for a proper modelling 
is a prerequisite and this may be largely attributed to the architecture 
of the LeNet with numerous network parameters. Specifically, in this 
architecture, the last set of feature maps are flattened into one-dimen-
sional feature vector, and each feature is connected to each neuro in the 
first fully-connected layer. In this manner, the extracted features will 
be mapped into label space. However, it should be noted that, even at 
the end of feature maps, considerable amount of network parameters 
still exists and need to be trained. As a result, it makes the proper 
training of the model with small of amount of data becomes a tough 
issue. To give an intuitive presentation and quantitative analysis, three 
famous CNN architectures in computer vision, i.e., LeNet-5, AlexNet 
and VGG-16, as examples, the distributions of parameters between 
front convolutional block and later fully-connected layers are shown 
in Table 1. It is clear that the vast majority of parameters are distrib-
uted in the fully-connected layers. Consequently, to remove or modify 
the complex part of the model by reducing the number of trainable 
parameters within the CNN structure, at the same time as large as pos-
sible to remain the feature extraction representation results, can be a 
promising solution to improve the capability of the model, especially 
enabling the model to deal with small amount of labelled data samples 
which will be beneficial to the real engineering practice.

2.3.	 Global average pooling (GAP)

The novel global average pooling (GAP) [20] is, therefore, in-
troduced in this section with which fully connected layers of CNN is 
superseded. For each feature map at the end of pooling layers, we take 
the average value of each feature vector directly maps to a category 
label or an output node. This process was called global average pool-
ing. The original fully-connected layers are replaced. By doing so, 
a tremendously reduction of the number of parameters needed to be 
trained is realized and the computational burden of training the model 
is decreased. More important, though it simplified the CNN model, 
it still completely remains the key convolutional layers and therefore 
the ability of feature representation still remained.  Furthermore, it 
gives an extra capability to the model to deal with the training prob-
lems with small amount of data samples. The detailed illustrations of 
the traditional fully-connected layers and global average pooling layer 
are shown in Fig. 2.

extraction from the input signal. Each convolution kernel corresponds 
to a weight matrix and a bias vector, similar to a neuron of a feed-
forward neural network. The convolution kernels sweep through the 
input features with a pre-set stride, and obtain the activated feature 
maps in the receptive field.  

Supposing that the input signal, and the filer w Rn , the convolu-
tion process can be depicted as:
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By introducing nonlinear activation function into the network 
model, the ability of feature representation will be further enhanced. 
The generally utilized activation functions include sigmoid, tanh, rec-
tified linear units (ReLU), etc. These functions are listed in equation 
(2). Among them, ReLU is one of the most noteworthy functions with 
efficient gradient descent ability and avoiding gradient explosion and 
disappearance during the training process:
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After the convolutional operations, the output feature maps are 
delivered to the pooling layer for down-sampling. The widely used 
max-pooling is to divide the feature maps into a series of blocks with-
out overlapping and extract the maximum value in each block as the 
eigenvalue of the window while discarding other points. The max-
pooling process can be defined as equation (3):
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where ( )( )k
iX t  represents the feature map after convolution operation 

of the kth  neuron at the thi  layer, l  denotes the width of a local area for 
max-pooling,  ( )( )1

k
iX i+  is the output feature map after max-pooling.

The fully connected layers are located at the last part of CNN with 
the purpose of nonlinearly combining the extracted features and map-
ping them into output labels. The softmax function is used at the final 
output layer to calculate the probability distribution for each label, 
whose mathematical expression can be described in equation (4):
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Table 1.	 The distributions of parameters in CNN with three typical archi-
tectures

Architecture
Parameters distribution (%)

Convolutional block Fully-connected layer

LeNet-5 2.8 97.2

AlexNet 3.8 96.2

VGG-16 10.6 89.4



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 1, 202066

Science and Technology

2.4.	 Modified CNN

The structure of MCNN consists of input layers, convolutional 
layers, max-pooling layers, dropout layers, global average pooling 
layers. The deep network has a total of 19 layers. We utilize 5 con-
volutional layers to learn features from raw data (follow the architec-
ture of LeNet-5). The ReLU function is employed as the activation 
function. A max-pooling layer is performed after per convolution op-
eration. Since the number of last sets of feature maps is equal to the 
category labels or output nodes where the global average operation 
will be performed. Thus, an additional convolutional layer, called task 
specific layer, is added to revise the number of the out-feature maps. 
The number of convolutional kernels in the task specific layer equals 
to the category labels. The detailed structure and parameter setting of 
MCNN constructed in this paper are illustrated in Fig. 3. Referring 
to the literature [41], larger values, such as 128 and 64, are selected 
as the kernel sizes for the front two convolutional layers to capture 
essential features and reduce high frequency noise for 1D vibration 
signal. With the increase of network depth, the number of kernels also 
increase from 16 to 256, which helps to learn hierarchical feature rep-
resentation. It worth noting that, as a regularization approach, dropout 
layers are integrated after each specific layer to prevent overfitting.

In the following comparative analysis, the same construction and 
parameters in the feature descriptor are chosen in the traditional CNN 
in order to conduct a fair comparison. The following flatten layer is 
employed for transforming the high dimensional feature maps to one-
dimension feature vector.  Afterwards, 3 fully connected layers are 
established to integrate local information with class discrimination in 
convolutional blocks and map the learned distributed feature repre-
sentation to the sample label space.  The detailed CNN and MCNN 
structures can be seen in Fig. 3.

2.5.	 The intelligent fault diagnosis framework with MCNN

In this paper, an intelligent fault diagnosis framework for gearbox 
with MCNN is proposed and listed in figure 4. There are 3 steps in 
total: (1) data processing, (2) train the MCNN model, and (3) fault 
diagnosis of gearbox.

(a) Data processing
Measured vibration signals are collected from accelerators and 

directly input into the fault diagnostic framework without any manual 
feature extraction and selection. In this way, an end-to-end fault diag-
nostic framework is realized and the loss of data information caused 
by human interventions or advanced signal processing techniques are 
minimized. According to the generally used sample size of deep learn-
ing researches [30, 41], the raw signal is partitioned into a series of 
fixed-length segments by shifting the window with a constant stride, 
and then the training and testing data sets are selected from the whole 
measured vibrations without repetition.

(b) MCNN Model learning
Model training consists of two stages: forward calculation and 

loss backward propagation. In the forward calculation stage, training 
samples are fed into the MCNN model and predicted outputs. Then, 
the loss between the predicted outputs and the real outputs are back-
ward propagated to optimize the network parameters layer by layer. 
The method of the optimizer utilized is stochastic gradient descent 
(SGD) technique. The optimization process can be represented as:

	 θ θ θ= − ∇ ( )( ) ( )· * ¸ J x yi i; ;            (5)

where θ  is the collection of network param-
eters, ( )ix  and ( )iy  represent the input sample 
and corresponding label, J (∙) is the loss func-
tion, η is the learning rate and ∇θ  denotes the 
gradients.

(c) Fault diagnosis of gearbox
After completing the training of the MCNN 

model, the diagnostic model is deployed for 
fault classification. And the testing samples are 
fed into the model for validation. The diagnos-
tic accuracy of model is defined to evaluate the 
performance of the network.

	
( ) ( ):

:
ˆx x D y x y x

Accuracy
x x D

∈ ∧ =
=

∈
    (6)

where D  is the set of test data, x  is the input 
sample, ( ) y x  is the truth label of x , ( )ŷ x  is 
the label predicted by the diagnosis model.

Fig. 3. An illustration of CNN and MCNN: (a) CNN; (b) MCNN

Fig. 2.	 An illustration of fully connected layer and global average pooling 
layer. (a) fully-connected layer; (b) global average pooling layer



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 1, 2020 67

Science and Technology

3. Experimental studies

3.1.	 Description of dataset from 2009 challenge dataset of 
the Prognostics and Health Management (PHM) society

The 2009 challenge dataset from Prognostics and Health Man-
agement (PHM) society is first used to validate the proposed MCNN 
[23]. The datasets are measured from the gearbox shown in Fig.5. 
Fig. 5 (a) illustrates the constitution of the fixed shaft gearbox and the 
position of accelerometers and tachometer. The gearbox consists of 3 
shafts, 4 spur gears and 6 bearings, as is shown in Fig. 5 (b). Vibration 

signals of the spur gear with 8 health conditions, 5 shaft speed condi-
tions including 30, 35, 40, 45 and 50 Hz, under the same amount of 
high load are collected. The Table 2 lists the specific 8 failure modes 
of the gearbox. These experiments can fundamentally cover the fre-
quently occurred faults in gearbox. These faults are artificially intro-
duced to machines so as to simulate diverse health conditions. The 
sampling frequency is 66.67 kHz. There are 533312 points under each 
fault mode and operation condition, hence 6144 data points with a 
4096 stride are collected for one sample to guarantee that there is 
abundant fault information for each sample. There are 5208 samples 
in total. The time waveforms for each health condition are shown in 

Fig. 4. The intelligent fault diagnosis framework with MCNN

Table 2.	 Descriptions of detailed fault patterns

Label
Gear Bearing Shaft

32T 48T 80T 96T IS:IS ID:IS OS:IS IS:OS ID:OS OS:OS Input Output

1 G G G G G G G G G G G G
2 C G E G G G G G G G G G
3 G G E G G G G G G G G G
4 G G E Br B G G G G G G G
5 C G E Br In B O G G G G G
6 G G G Br In B O G G G Im G
7 G G G G In G G G G G G Ks
8 G G G G G B O G G G Im G

IS = input shaft; :IS = input side; ID = idler shaft; OS = output shaft; :OS= output side. G: good; C: chipped; E: eccentric; Br: broken; B: 
ball; In: innerrace; O: outer race; Im: imbalance; Ks: keyway sheared.
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Fig. 6. The training and testing data set are randomly selected from the 
whole dataset without repetition. The number of samples in the train-
ing is selected as 128, 256, 512, 1024, and 4096 successively, while 
the number of testing sets is 1000. 

3.2. Description of data from the Driv-
etrain Diagnostics Simulator (DDS) 
test rig at UESTC

The second dataset is from the Drivetrain 
Diagnostics Simulator (DDS) test rig at Uni-
versity of Electronic Science and Technology 
of China (UESTC). The layout of the test rig is 
shown in Fig. 7. The accelerometer is mounted 
on the one-stage planetary gearbox for the col-
lection of vibration signals. The structure of the 
one-stage planetary gearbox is shown in Fig. 8 
(a), which is constituted by a sun gear, 4 planet 
gear, planet carrier and ring gear. Four different 
kinds of faults in the sun gear of the one-stage 
of the planetary gearbox is shown in Fig. 8, in-
cluding tooth wear, tooth broken, tooth missing 
and root crack. For each sun gear health condi-
tion, 6.39 seconds of data is collected under 2 
different loads (0A, 1.3A) and 3 different rota-
tional speeds (30Hz, 40Hz and 50Hz), with the 

sampling frequency of 30.72 kHz. 196,608 points are collected for 
each health condition under each operation condition, and 2048 data 
points with a 1000 stride are cut for each data sample. Fig. 9 shows 
the typical original vibration waveforms for each health condition. 

Therefore, 49 samples are generated, and two sets of samples 
with different sizes are randomly selected, one of which is set 
as the training set while another is set as the testing set. We set 
the number of samples in the training set to 128, 256, 512, 1024, 
and 4096 in turn, and the sample size in the testing set is 800.

3.3.	Comparative methods

The proposed MCNN will be compared with other intel-
ligent fault diagnostic methods, including (1) support vector 
machine (SVM) [35], (2) random forest (RF) [11], (3) long 
short-term memory (LSTM) [19], (4) CNN [41], (5) CNN with 
l2-norm [24], (6) CNN with batch normalization (BN) [31]. 
among them, RF and SVM are two of the most commonly used 
models in machine learning. RF, containing multiple decision 
trees, is a classifier that uses multiple trees to train and predict 
samples. SVM is a nonlinear kernel classifier that categorizes 
the data based on supervised learning. LSTM is a time-cycle 
neural network. L2-norm and BN are two different regulariza-
tion algorithms, which can effectively improve the performance 
of CNN and prevent overfitting.

The related architecture parameter settings of the other 
methods are listed as follows. (1) RF: the number of trees and 
random feature subset are separately set as 500 and m . (2) 
SVM: radial basis function (RBF) is introduced as the ker-
nel function of SVM, besides, the arguments of RBF and the 
penalty factor are intelligently optimized by genetic algorithm 
(GA). The maximum generation and the number of populations 
in GA is set to 50 and 20 respectively. And the searching range 
of parameters in SVM is set to [0, 100]. (3) LSTM: By refer-
ring to [19], the dimension of hidden layer is 128 and two RNN 
layers are stacked. (5) CNN: the architecture and parameter set-
tings have been listed in 2.3. (6) CNN with l2-norm: l2-norm 
regularization is introduced to the parameters of CNN with a 
weight of 1e-2. It should be noted that the popular statistical 
features in time domain and frequency domain [11], such as 

Fig. 5.	 The gearbox in the 2009 Challenge Data of PHM society: (a) Schematic dia-
gram; (b) Overview of the gearbox

Fig. 6.	 Collected vibration signals of 8 machine conditions: (a) spur1 (b) spur2 (c) spur3 
(d) spur3 (e) spur5 (f) spur6 (g) spur7 (h) spur8.

Fig. 7. DDS test rig
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root mean square, kurtosis, skewness, etc, are used as the input 
for shallow methods, i.e., SVM and RF, while the raw signal are 
sent to deep methods, i.e., LSTM, CNN and its variant methods, 
MCNN, due to the adaptive feature learning ability.

4. Results and discussions

The results of two case studies versus different number of 
training samples for diverse methods are given in Figs. 10 and 
11. Each result is an average of 10 random repeats, the average 
value and variance of classification accuracy of testing samples 
are shown in figures.

Deep and shallow learning structure comparison: As 
we can see in the Fig. 10, when sufficient training samples are 
provided, diagnostic models based on deep learning perform su-
perior to the shallow machine learning methods, and all the in-
telligent diagnostic methods have achieved good classification 
results and it indicates that deep network structure has stronger 
feature learning ability than shallow network architecture.

Training sample size comparison: When the size of the 
samples decreases, the performance of traditional deep learn-
ing approaches presents a dramatic decline. CNN shows a 
worst sharp decrease in classification accuracy and it reveals 
that CNN is prone to over-fitting and has a weak generalization 

ability with small training sample size. BN and 
L2-norm are two frequently-used algorithms to 
prevent CNN from over-fitting. As is shown in 
the chart of Fig. 10, BN with CNN indeed has 
some improvements, compared to basic CNN, 
under small sample conditions. 

Comparisons with the proposed MCNN: 
As is shown in Fig. 10 and Fig. 11, MCNN 
exhibits a significant improvement in terms 
of fault classification accuracy compared with 
other models. Compared with CNN, CNN with 
L2-norm, and CNN with BN, MCNN increases 
classification accuracy with 51.3%, 50.9%, 
33.7% respectively when using the number of 
training samples with 128. This remarkable im-
provement indicates that, with introduction of 
GAP into the network structure, the proposed 
MCNN exhibits superior advantages in feature 
learning and generalization with small number 
of training samples. It enables the proposed 
MCNN method can be a promising tool to deal 
with the real-world challenge for fault diagnosis 
with only limited labelled data available.

It also should be noted that classical ma-
chine learning algorithms, such as RF and 

Fig. 9.	 Collected vibration signals of 5 machine conditions: (a) healthy(b) tooth broken(c) 
tooth crack (d) tooth missing (e) tooth wear.

Fig. 10. Diagnosis results of PHM09 gearbox using different sample sizes with 7 methods

Fig. 8. The gearbox in DDS. (a) Schematic diagram; (b) 5 health conditions of sun gear
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SVM, are shallow structure methods and are capable of 
handling small sample size. From the Fig. 10, RF and 
SVM are also performed better than most of the deep 
learning methods, such as LSTM, CNN and its vari-
ant methods, when the number of training samples are 
128 and 256 respectively. Nevertheless, the proposed 
MCNN, though with the limited training samples of 128 
and 256, it still achieves a higher diagnostic accuracy 
than RF and SVM. The traditional shallow methods of 

RF and SVM rely more on the quality of the 
artificial feature extraction. The classical sta-
tistical features in time-domain and frequency-
domain are utilized in this paper [11]. These 
features have a certain sensitivity and resolving 
power for different faults, whereas, they possess 
distinct fault description capabilities for differ-
ent application objectives. However, MCNN is 
a framework based on deep learning with re-
markable adaptive feature learning capabilities. 
Experimental results illustrate that MCNN still 
achieves superior performance even under small 
sample conditions. Similar conclusions can also 
be demonstrated in Fig. 11.

In order to visually verify the effectiveness 
of the MCNN algorithm, t-distributed stochastic 
neighbour embedding (t-SNE) is applied to re-
duce the dimension of learned features for visu-
alization. The features in the 5th convolutional 
layers are used for analysis, since this layer is 
the end of feature descriptor in traditional archi-
tecture and the learned features should be highly 
abstract and separable. Taking the data from 
2009 PHM as an example, the results of feature 
visualization for CNN and MCNN versus small 
numbers of training samples (128, 256, 512) 
are shown in Fig. 12. It is clear that the features 

learned by MCNN are well clustered compared with the counter-
part of CNN cases. For different number of samples, the features of 
CNN are mixed and overlapping, such as the spur 7(orange)   and 
spur8 (red) and the traditional CNN fails the classification of these 
two kinds of faults. Again, the visualized results tell that the proposed 
MCNN features remarkable feature representation ability with limited 
number of training samples.

In addition, the training time for each training epoch and the mem-
ory usage during the training progress of the 2 datasets with different 
methods are recorded and presented in Table 3. As exhibited, for each 
training epoch, MCNN utilizes less computational time as well as low 
memory footprint.  Compared to CNN, the computational times per 
training epoch of MCNN have been reduced by 0.168 seconds and 
0.193 seconds. The memory footprint of MCNN have been reduced 
by 31.5MB and 28MB respectively in the two datasets. 

5. Conclusion

In this work, a modified convolutional neural network that replac-
ing the fully-connected layers with the global average pooling scheme, 
is proposed to reduce the number of trainable model parameters. The 
improved architecture possesses higher precision, less computational 
burden, superior generalization ability with limited training samples. 
Moreover, a MCNN-based intelligent fault diagnosis framework is 
presented. In order to assess the performance of the proposed method, 
the case studies on two industrial gearboxes are conducted from three 
aspects including the classification accuracy, the features visualiza-
tion and the computational efficiency. These results demonstrate the 

Table 3.	 Time cost and memory footprint by different approaches

Approaches
PHM2009 dataset DDS dataset

Time(sec/epoch) Memory (MB) Time(sec/epoch) Memory (MB)

CNN 0.915 383.1 0.873 232

CNN+l2 0.961 388.6 0.905 236

CNN+BN 0.914 410.3 0.909 243

MCNN 0.747 351.6 0.68 204

Fig. 12. Features visualization in PHM2009 dataset with CNN and MCNN

Fig. 11. Diagnosis results of DDS planetary gearbox using different sample sizes with 7 methods



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 1, 2020 71

Science and Technology

superiority of MCNN, compared to shallow machine learning meth-
ods i.e. SVM and RF and other popular deep learning approaches, 
such as CNN and its variant methods. Specifically, MCNN achieves 
the 51.3% and 24.6% improvements in the aspect of classification 
accuracy for two dataset with limited training data, i.e., 128 train-
ing samples. The impressive performances, achieved by the MCNN, 
show a broad prospect for intelligent fault diagnosis in the industrial 
gearbox.
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