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1. Introduction

1.1.	 Tank chemical reactors

The basic device for the implementation of the batch processes 
are tank reactors. Batch processes are widely used in many branches 
of economy e.g. food, chemistry, pharmacy, semiconductors, biogas 
plants and so on. Due to the time-varying, non-linear and uneven na-
ture of this process, it is very difficult to determine the exact mathe-
matical model of these processes, which necessitates their monitoring. 
For this reason, to ensure a high level of reliability and trouble-free 

maintenance of tank reactors it is necessary to effectively monitor the 
processes taking place inside them.

A tank chemical reactor is, in the simplest sense, a vessel adapted 
to carry out a specific chemical reaction in it. On an industrial scale, 
the construction of a reactor and the parameters of its process should 
ensure optimal economic results. Chemical reactors and the processes 
taking place in them are usually an essential element of a technologi-
cal process aimed at producing a specific chemical product. Any other 
processes in such a sequence should be assigned a rather auxiliary 
role, consisting either in preparatory activities or in separating the 
products of the reaction and separating from them the component, 
the obtaining of which is the aim of production operations. Produc-
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Monitorowanie procesów przemysłowych jest ważnym elementem zapewniającym właściwą eksploatację urządzeń i wysoki po-
ziom niezawodności procesów. Prezentowane badania dotyczą zastosowania metod głębokiego uczenia w obszarze eksploatacji 
zbiornikowych reaktorów przemysłowych. W procesach przemysłowych opartych na reakcjach chemicznych zachodzących we-
wnątrz procesowej tomografii ultradźwiękowej (UST). Opracowano nowatorski algorytm wykorzystujący jednocześnie wiele kla-
syfikacyjnych splotowych sieci neuronowych (CNN) do generowania monochromatycznych obrazów 2D. Aby osiągnąć kompromis 
między liczbą sieci a liczbą wszystkich możliwych wyników pojedynczej sieci, zaproponowano podział obrazu wyjściowego na 
klastry 4-pikselowe. W związku z tym liczba wymaganych CNN została czterokrotnie zmniejszona i istnieje 16 różnych wyników z 
jednej sieci. Nowy algorytm został najpierw zweryfikowany przy użyciu danych symulacyjnych, a następnie przetestowany na da-
nych rzeczywistych. Dokładność rekonstrukcji obrazu przekroczyła 95%. Wyniki uzyskane przy użyciu nowego algorytmu klastro-
wego CNN zostały porównane z pięcioma popularnymi algorytmami uczenia maszynowego: płytką sztuczną siecią neuronową, 
maszyną liniowego wektora wsparcia, drzewem klasyfikacji, klasyfikacją średniego k-najbliższego sąsiada i naiwnym Bayesem. 
Na podstawie tego porównania stwierdzono, że nowo opracowana metoda wielu splotowych sieci neuronowych (MCNN) generuje 
obrazy o najwyższej jakości.
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tion and economic results usually depend on the correct operation 
of a chemical reactor. The chemical process occurring in the reactor 
overlaps, to varying degrees and in different proportions, the proc-
esses of mass, momentum and heat transfer. This usually gives a very 
complicated picture of the total process. The description of these total 
complex processes can often be simplified if one of the mentioned 
processes plays a dominant role in it and the others can be omitted. 
The most often such a dominant elementary process is the transport 
of mass or energy. Effective monitoring of these types of processes 
requires non-invasive methods that include tomography.

In the reactor classification prepared according to the type of 
reagent cluster state, we distinguish two basic reactor groups - ho-
mogeneous and heterogeneous. In heterogeneous reactors, gas and 
solids, gas and liquid, solids and liquids can react with each other. 
The presented studies concern the monitoring of industrial two-phase 
processes of solids and liquids (crystallization) and liquids and gases 
(detection of gas bubbles in liquids or suspensions).

A specific type of chemical reactors are bioreactors. Bioreactors 
comply with the same rules as chemical reactors. The difference, how-
ever, lies in the complexity of the system which is a living organism. 
Biological reactions are more sensitive and less stable, and therefore 
require more attention to process control and analysis of more factors 
than chemical reactions. In order to ensure the proper operation of 
bioreactors, it is necessary to use an effective method of monitoring 
industrial processes. In this context, the issues of monitoring biologi-
cal processes deserve attention [1,24,34].

To rationally control the maintenance processes of technical facili-
ties, including reactors, it is necessary to know about the state of these 
objects. To this end, various monitoring methods are used. Monitoring 
allows you to solve important maintenance problems, which include 
maximizing reliability and process diagnostics [40]. Tomography is 
a cheap and non-invasive method of monitoring, but in industry, this 
method does not always allow obtaining high resolution images. For 
this reason, research is needed that will lead to the method of industri-
al tomography, which will guarantee high-resolution cross-sectional 
images of the examined objects. This article refers to a new method of 
ultrasonic tomography using deep learning algorithms [19].

1.2.	 Tomographic methods and algorithms

Tomography is used in the areas where obtaining good image 
quality involves the use of a non-invasive monitoring method [9]. 
There are many types of tomographic methods, including: computed 
tomography (CT) [3,29], radio tomographic imaging (RTI) [5], elec-
trical impedance tomography (EIT) [30,31], electrical capacitance 
tomography (ECT) [4,16,17,22,42] or ultrasound tomography (UST) 
[45].

UST enables non-invasive visualization of the interior of the test-
ed object based on measurements of the time of sound propagation 
between different points on the perimeter of the tank. The presence of 
inclusions in the object changes the time of fly of sound waves. On 
this basis, the cross-sectional image of the tested tank can be repro-
duced. The main problem of UST is the difficulty of building a physi-
cal model that would be able to take into account the full complexity 
of acoustic phenomena occurring in a relatively small space [8]. This 
causes problems in implementing classic tomographic methods. This 
work is our first attempt to verify the hypothesis that a properly con-
structed neural network is able to solve the inverse problem in ultra-
sound tomography. Positive results obtained in this work give hope 
that some problems related to modeling can be bypassed by means of 
convolutional neural networks (CNN) [38].

Considering the number and frequency of publishing new scien-
tific studies on innovative industrial solutions - the UST method is 
relatively less widespread. In the field of industrial applications, most 
innovations are created in the areas of electrical impedance tomog-

raphy [13,32], electrical capacitance tomography (ECT) [27,28,35] 
and magnetic resonance imaging [23,15]. Progress is made both in 
the field of hardware (sensors, computer distributed systems) and in 
the field of reconstruction algorithms for tomographic images. The 
classic methods of solving the inverse problem in the tomography in-
clude Gauss Newton’s (GN) method. Compared to machine learning 
methods, the GN method is more universal, which means that it can 
be used in commercial tomographs on a wider range of applications. 
When it comes to problems for which machine learning algorithms 
can be trained, the GN method is rather less precise and increasing 
precision of GN method requires the usage of iterative methods, 
which significantly slows the algorithm.

Among the statistical methods of machine learning, the follow-
ing methods have been successfully applied in the reconstruction of 
tomographic images, especially in electrical tomography: elastic net, 
lasso (least absolute shrinkage and selection operator), least-angle re-
gression (LARS) [6], k-nearest neighbors (KNN), naive Bayes, mul-
tivariate adaptive regression splines (MARS), classification tree, sup-
port vector machine (SVM), gradient boosting machine (GBM) [21], 
principal component or partial least square regression [22]. There is a 
general trend that the importance of predictive algorithms is growing 
in industrial applications [41,12,14,20,10].

Due to the specific conditions of the functioning of industrial 
systems, the use of electrical tomography is not always possible. In 
situations where the tested object cannot be completely isolated from 
the influence of other sources of electric current or when the tested 
environment is dielectric, ultrasound tomography (UST) can be used.  
There is evidence in the literature of the effective use of UST in medi-
cine which may indicate the existence of unused potential of ultra-
sound process tomography [36].

Hao et al. localized the fetal abdominal standard plane from ultra-
sound recordings using CNN [7]. In that case, the accuracy of the sys-
tem reached 90%. Zhang et al. proposed a diagnosis system based on 
the two-layer CNN architecture for the classification of breast tumors 
[43]. The accuracy of the system they developed was 93.4%. Ma et al. 
classified thyroid nodules based on ultrasound, using two CNNs si-
multaneously. The average classification efficiency was 83.02% [21]. 
In other medical studies, Arevalo et al. classified changes in breast 
cancer from hand-segmented mammography films using CNN. They 
managed to achieve an accuracy of 82% [2].

The above and other examples of successful combination of UST 
and CNN in medical applications have given rise to targeted research 
on effective technics for reconstructing tomography images based on 
the measurements of the time-of-flight of the ultrasonic waves  in an 
industrial tank.  The non-destructive UST method supported by deep 
learning algorithms is suitable for monitoring industrial processes oc-
curring not only inside closed reactors but also flow processes inside 
complicated pipe systems.

1.3.	 Convolutional neural networks

CNN has in recent years become the leading topic of technical 
progress in many areas [37].Due to the high ability to recognize spe-
cific features visible on CNN images, they are often used in various 
classification problems [26,6]. Other areas of CNN application include 
image classification [25], video analysis, natural language processing, 
city monitoring, industrial cameras and all kinds of devices providing 
images made with ordinary photographic techniques [44]. Creating 
images obtained by resolving the inverse problem, such as tomo-
graphic images, is a relatively new area of application for CNN and is 
therefore difficult [18,11].

CNNs are good in mapping complex nonlinear functions. For this 
reason, the number of attempts to use deep learning algorithm for im-
age reconstruction in  EIT/ERT (electrical impedance tomography/
electrical resistance tomography)  is increasing [39]. 
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Attempts are also made to create hybrid methods, an example of 
which is a real-time reconstruction algorithm that produces high-qual-
ity sharp EIT absolute images by combining the D‑bar algorithm with 
subsequent CNN processing [19].

1.4.	 Research objective and novelties

The main goal of the research presented in this article was to de-
velop a new algorithm capable of reconstructing monochrome (bina-
ry) 2D images of ultrasound tomography, regardless of the size, shape, 
location or number of inclusions hidden in the examined object.

High accuracy of imaging is achieved thanks to splitting the out-
puts for multiple CNNs. The higher speed of the algorithm is reached 
thanks to the use of 4-pixel clusters approach. Instead of training 
CNN networks for all 1024 pixels, there are only 256 networks to 
train, one for each cluster. As a result, we get a 4-fold increase in the 
speed of the algorithm, preserving reasonably small number of pos-
sible outcomes of the CNNs.

Fig. 1a shows the scheme of the algorithm based on the structure 
of an ordinary CNN with 496 inputs and 1024 binary outputs (0, 1). 
In Fig. 1b, for comparison, proposed multiple CNN scheme is shown. 
Each of the 256 CNNs generates a numerical classifier {1..16} at the 
output, which is the cluster identifier. Then, each cluster is converted 
to a 4-pixel monochrome pattern with dimensions of 2×2 (Table 1).

This article consists of 4 sections. Section 1 presents the 
state of art regarding tomographic methods and algorithms used in 
the reconstruction of tomographic images. Specific examples of UST 
applications combined with deep learning are presented. Section 2 
contains a detailed description of the test stand, the data used, the mul-
tiple CNN algorithm, as well as information on the learning process. 
Section 3 presents examples of reconstructions obtained by using the 

multiple CNN method. In addition, the quality of this method was 
compared with 5 other classical machine learning algorithms.

2. Hardware, Algorithms and Methods

2.1.	 The hardware

The research used a tomographic system developed by the au-
thors of this publication. Fig. 2a shows the mesh of lines indicating 
measurements of the speed of the sound wave. The densities of the 
lines at the periphery of the tank cross section are determined by 32 
transducers. Fig. 2b demonstrates the test stand. Based on measure-
ments from this stand, effective algorithm for generating simulation 
data was developed.

The tomograph is built on the STM32F103VCT6 processor (Fig. 
3a) which is responsible for the managing of a measurement sequence 
and setting transducers in the transmitting or receiving mode. Measure-
ment data acquisition system cooperates with dedicated transducers, as 
shown in Fig. 3b. Measurements data  can be transmitted to the PC in 
real time (Fig. 3c).

The transducers performs measurements using one piezoelectric 
unit using the absorption method. The transducer can work both as a 
transmitter and an ultrasonic wave receiver. The transducer has an in-
tegrated signal processing system and a microcontroller with a built-in 
A/C converter. By using a programmable digital potentiometer, the gain 
of the received signal can be regulated. The PCB transducer also pro-
vides the option of filtering out the signal using an active filter. A small 
diode is used to signal the operating status of the device. 

Control and reading of measurements made by the transducer 
is carried out via the CAN 2.0A bus. Due to the special design, the 

Fig. 1. Comparison of algorithms for methods CNN (a) and MCNN (b)

Fig. 2.	 (a) - A mesh of measurements carried out by 32 transducers arranged 
around the tank; (b) - View of the test stand [33]

Fig. 3.	 (a) - Controller running on the STM32F103VCT6 processor; 
(b) - View of composite 32 PCBs of ultrasound transducers; (c) - Block 
diagram of the system

Fig. 4. Design of the active measuring transducer: (a) motherboard; (b) as-
sembly
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transducers can be installed in close proximity to each other. 
RJ-12 cables were used to make the communication buses and 
to provide power supply. Each transducer was divided into two 
parts - digital and analog. The task of the digital part is to send 
the measurement results to the tomographic controller. The ana-
log part of the transducer was adapted to work with a 40 kHz 
piezoelectric unit (Fig. 4a and 4b).

2.2.	 Algorithms and Methods

In order to solve the inverse problem, classification con-
volutional neural networks (CNNs) were used. During the re-
search, it turned out that a single convolution network powered 
by 496 measurements and generating 1024 binary elements 
learns very long and the obtained results are not good enough. 
The novel element of the presented solution is to use CNN to 
classify 4-pixel clusters.

During a single measurement series, each of the transducers acts 
as an emitter, while the other transducers receive ultrasound signals at 
that time. When the number of transducers is 32, the number of meas-
urements can be calculated as (322 – 32). Since the time the sound 
wave needs to travel from A to B is the same as from B to A, the 
number of measurements M can be reduced by half. Hence, we get 
the relationship (1).

	
2

2
n nM −

= 	 (1)

where n  is the number of transducers.

So the measurement vector establishing the MCNN input set that 
consists of 496 measurements. Each measurement means the so-called 
sound wave flight time between a specific pair of transducers. To en-
sure correct measurements, a reference measurement in an inclusion-
free environment should be performed before actual measurements 
can begin. This is to determine the background values. Inclusions dis-
tort measured times, so that images can appear on the basis of contrast 
to the background. Based on different measurements of times, the lo-
cations and size of inclusions are determined.

An industrial tank filled with tap water played the role of the ex-
amined object. Various objects were immersed in water, followed by 
ultrasonic measurements. Thanks to the knowledge of the location and 
dimensions of the immersed objects, as well as the knowledge of the 
number of all inclusions, it was possible to develop a simulation algo-
rithm that generated 20,000 learning cases. Fig. 5 shows a simula-
tion example of generating one of 20,000 measurement cases.

The left side of the drawing illustrates the exemplary cross-
section of the tank interior with visible inclusions. The right side 
is a graph of 496 measurements (horizontal axis), along with the 
corresponding transition times of ultrasound waves between pairs 
of transducers. In the simulation algorithm, Gaussian noise has 
been implemented with a distinct level for each measurement in 
the frame. The level of the noise was determined by the standard 
deviation set to 5% of the value of each measurement. The al-
gorithm based on convolutional neural networks was developed 
using the Deep Learning Toolbox of Matlab.

As mentioned before, each learning case consisted of 496 
input measurements and one monochrome output image with a 
resolution of 32×32. The number of measurements is the result 

of using 32 transducers.  The full matrix of measurements counts 992 
(32×31) measurements, of which half of the measurements concern the 
same transducers. Because the sound wave moves at the same speed 
regardless of the direction ( 1 2 2 1v v− −= ), the measurement matrix tend 
to be symmetrical one. Therefore by averaging symmetrical measure-
ments we obtain 496 inputs for one measurement cycle. The 32×32 
monochrome image can be represented by a 1024-point vector with 
binary values 0 or 1. The method of converting pixels into clusters is 
shown in Fig. 6.

The Fig. 6 distinguishes three sample clusters with identifiers: 1, 51 
and 137, as well as the method of changing pixels into the array of clus-
ters. For example, cluster [1] contains pixels [1, 2; 33, 34]. After trans-
forming pixels → clusters, a matrix of 1024 pixels with dimensions of 
32×32 is reduced to a 16×16 matrix composed of 256 clusters.

Formally, a distinct block of four pixels from a full image can be 
expressed as (2):

	 32

1 33

n n
n

n n

x x
B

x x
+
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 
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 

	 (2)

assuming that n is an odd number. This block is transformed into a 
cluster with a number ( )nk B  (3):

	 ( ) ( )1 11 %32 16 1
2 32n

nk B n − = − + + 
 

	 (3)

Table 1.	 Pattern indexes pi = {1,2,…,16}

pi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pattern

Fig. 5.	 A measuring case generated with the simulation method with a graph showing 
the times of sound waves moving between transducers

Fig. 6. The way to convert 1024 pixels into 256 clusters
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where %a b  means the remainder of division a by b for ( )1a n= − , 
32b =  and ⌊ ∙ ⌋ is the floor function.

Since the clusters have dimensions of 2×2 that means that there are 
42 16=  combinations of binary patterns for each cluster. The possible 

binary patterns of clusters are presented in Table 1.
Transforming pixels into clusters reduces number of output vari-

ables to 256. We were decided to train 256 separate CNNs, each of 
which generated a value from 1 to 16, corresponding to the given cluster 
pattern. So in this case we are talking about multiple convolu-
tional neural networks (MCNNs), where each of the distinct CNN 
solves the classification problem. Table 2 shows the structure of 
the convolutional neural network. Each of 256 CNNs has the 
same structure including 15 layers. 

CNNs work in the same way as typical convolutional net-
works used for image recognition with the input vector of 496 
measurements converted into a 31x16 matrix. 

Table 2.	 The structure of the convolutional neural network

Fig. 7 shows the course of training the CNN, which task was to 
classify the pattern for cluster No. 137. It was noted that the cluster 
No. 137 is a case that makes reconstruction more difficult than other 
clusters - hence the choice. The mini-batch size for CNN was set to 
64. Validation frequency was 30 and number of epochs was 10.

Validation accuracy equals 95.9%. Accuracy is calculated as the 
ratio of accurately guessed classifiers to all validation cases. Maxi-
mum iterations limit was 2960. Training finished because it reached 
final iteration, not due to the lack of a decrease of the validation error 
in the next 6 iterations.

Fig. 6 corresponds with Fig. 8. It shows training progress through 
loss indicator for cluster No. 137. The Validation loss is calculated as 
the ratio of incorrectly guessed classifiers to all validation cases.

By analyzing the shapes of the graphs presented in Fig. 7 and 8 we 
can conclude that the CNN learning process for the cluster No. 137 
proceeded correctly. The initial, large increase in accuracy and the 
subsequent lack of fluctuations indicate the lack of overfitting. Also, 
the validation loss at 0.1398 allows us to conclude that CNN has a 
high generalization capability.

The above results are confirmed in Table 3, where selected itera-

tions, from the CNN learning process for the cluster No. 137, are pre-
sented. Base Learning Rate is variable and decreases with subsequent 
epochs. The algorithm updates the learning speed by reducing the 
Learning Rate, multiplying it by a specific fractional learn-rate drop 
factor within a certain number of epochs.

Table 3.	 Training CNN for cluster No. 137 on single GPU

3. Results and discussion

3.1.	 Reconstructions with simulation data

Fig. 9 presents 5 cases of reconstruction, made by applying our al-
gorithm on    simulation data for the ultrasound tomography. In order 
to make an objective assessment of the quality of the reconstruction, 
the accuracy indicator was used (4):

	 100%cNAccuracy
N

= ⋅ 	 (4)

where: Nc – number of pixels reconstructed correctly, N – total 
number of pixels.

Individual cases in Fig. 9 were sorted according to the 
number of inclusions. The first case concerns a single, large 
inclusions. Its accuracy is the highest and amounts to 99.32%. 
With the exception of samples 3 and 4, one can see a regularity 
that the more inclusions, the worse the accuracy of the map-
pings. This is a typical phenomenon in tomography, which can 
be observed not only in relation to UST, but in EIT and ECT as 
well.

Fig. 8. Training progress through loss indicator for cluster No. 137

Fig. 7. Training progress through accuracy for cluster No. 137
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The general observation of the reconstructed samples 
shows that in all cases MCNN correctly reflects the size 
and location of the inclusions. Slightly more difficult are 
the cases of reconstruction many small objects. Sample 5 in 
Fig. 9 shows that despite some imperfections, one can still 
correctly determine both the location and size of the objects hidden 
in the tank.

Table 4 presents a comparison of the results of a single cluster (No. 
137) reconstruction. Because the comparison was for a single cluster, 
not for the whole image, there was no need to use multiple CNN or 
multiple ANN. 

All six methods listed in Table 4 have 496 measurements at the in-
put, and at the output a classifier generating the numbers pi = {1,2, ..., 
16}. Cluster 137 is located in the central part of the observation field, 
which means that it is remote from all transducers. In the case of using 
CNN, the reconstruction accuracy of the cluster No. 137 is about 2.7% 
lower than the average accuracy of all reconstructed images listed in 
Fig. 9, hence the classification for that particular cluster seems to be 
slightly more difficult than for others. For comparative reconstruction 

of the cluster No. 137, the following classification technics belonging 
to the group of machine learning methods were used: Convolutional 
Neural Network (CNN), Artificial Neural Network (ANN), Linear 
Support Vector Machine (LSVM), Classification Tree, Medium k-
Nearest Neighbor classification (KNN) and Naive Bayes.

Fig. 10 shows confusion matrices of the cluster No. 137 for two 
types of neural network: deep CNN (a) and shallow ANN (b) (Table 
4, ID 1-2). Fig. 11 shows confusion matrices for four statistical ma-
chine learning methods (Table 4, ID 3-6). The comparison of the ac-
curacy indicator showed that the method based on CNN algorithms 
is the most exact.

Cases correctly reconstructed are marked in green. They are located 
along the diagonal of the matrix. The number of validation cases used 
to test accuracy was 4999.

Fig. 10 and 11 should be analyzed in relation to Table 1. The most 
accurate reconstruction concerned 
cluster No. 1 (pi=1 in Table 1). 

It is a cluster without inclusions, 
completely white. This cluster oc-
curs most often at any reconstruction 
because it depicts the background. 
Cluster No. 2 is the second most ac-
curate classification (pi=2 in Table 1). 
This cluster contains one black pixel 
in the lower left corner of the 4-pixel 
area. This cluster can be used for re-
construction of small inclusions, or for 
imaging the edges of larger inclusions. 
It can be seen that, for the rest of the 
cluster, the CNN confusion matrix has 

Fig. 10. Confusion matrices for: (a) – deep CNN, (b) – shallow ANN

Fig. 11. Confusion matrices for: (a) SVM, (b) Fine Tree, (c) KNN, (d) Naive Bayes

Fig. 9. Simulated reconstructions using MCNN
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the most correct hits, as evidenced by the high numbers along the 
diagonal (Fig. 10a). 

Analyzing the results of classical confusion matrices, it should be 
taken into account that erroneous cases do not have to mean a total 
mistake in the means of quality of full image. For example two dis-
tinct patterns of clusters can differ only by one pixel, thus the whole 
image can still be reconstructed relatively correctly despite the mis-
take in classification.

3.2. Reconstructions with real data

Fig. 12 shows the test stand that was used to verify the MCNN 
algorithm based on real measurements. The measurements obtained 
from this setup were processed using MCNN trained on the simulation 
generated data. An adjustable frame was mounted on top of the bucket 
filled with tap water, allowing variable arrangement of vertical air-filled 
plastic tubes.

Fig. 13 presents the results of reconstructions based on real meas-
urements. Five cases were tested, which involved a varying number of 
objects immersed in water. For real reconstructions, reference images 
were developed based on geometric measurements. 

Then the pattern images were applied to a 32×32 pixel matrix. In 
this way, accuracy was estimated based on relationship (4). Case 1 in-
cludes a single centrally located object equidistant from all 32 transduc-
ers. The reconstruction of this case is clear. The object has been cor-
rectly located, but its shape and dimensions are not reflected with high 
accuracy. In the tomographic image, the object has a larger diameter and 
its shape is not rounded.

Case 2 concerned a single object located close to the tank wall. Also 
in this case the position of the inclusions has been correctly illustrated, 
but the shape and dimensions are not perfect. In addition, the image of 
the object is heterogeneous. In fact, these are 2 objects located close to 
each other. This can be a problem during identifying the real number of 

inclusions.
Case 3 shows the reconstruction of two objects spaced apart. 

As in previous cases, the complaints concern the shape and size 
of reconstructed inclusions. In addition, one of the objects is rep-
resented as two separate objects that are close together, one of 
which is much larger than the other.

Cases 4 and 5 show reconstructions of 3 and 4 inclusions lo-
cated near the walls of the tank, respectively. Assumptions from 
the observations are similar to those in previous cases. It is worth 
noting, however, that although the shapes and dimensions of the 
objects are not properly reconstructed, their location is deter-
mined relatively precisely and the reconstructed image is actually 
noise free.  Based on the conducted experiments, it seems that the 
UST system works similarly regardless of the number of inclu-
sions and irrespectively from the distance of hidden objects from 
the transducers.

4. Discussion

Because UST is a method rarely used in process tomography, it is 
reasonable to ask about the reasons for this. The answer is undoubtedly 
complex, but the main reasons are two.

The first reason is due to the difficulties in developing the appro-
priate physical model of sound’s interaction [8]. The second reason is 
the imperfections of data processing algorithms. This work focuses on 
algorithms, although the UST tomograph used was designed and made 
by electronic engineers in Netrix SA laboratories. The developed hard-
ware system proved to be good enough to provide sufficient quality data 
for efficient processing by the deep learning and training algorithm of 
a multi-convolutional neural network (MCNN) system. The developed 
method is a new proposal in the field of tomographic algorithms, and al-
though it cannot be said that its use will always outweigh the effective-
ness of other known methods, in all tested cases the MCNN algorithm 
proved to be the most effective.

Tracking the progress of research on algorithms, it can be seen that 
the unequivocal indication of one method that definitely outweighs the 
other methods of imaging efficiency in each case is impossible. Re-
viewing the research results presented by scientists, it can be stated 
that they depend on specific restrictions related mainly to the details 
of the research object. It is also known that for the algorithm to work 
properly, measurements must provide data on sizes and formats closely 
tailored to given requirements. This fact is the basic barrier hindering 
the construction of universal tomographs, suitable for a wide range of 
applications.

In these studies, experiments were conducted using a bucket of wa-
ter in which plastic pipes were immersed. Simulation algorithms were 
validated based on the data obtained from measurements at the test 
stand (Fig. 2b). Thanks to simulation cases, including both precise ref-
erence images and their corresponding measurements, it was possible to 

Fig. 12. Stand for collecting real data

Fig. 13. Real data reconstruction using MCNN
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compare the effectiveness of several selected algorithms (CNN, ANN, 
LSVM, Classification Tree, KNN and Naive Bayes). The evaluation 
criterion was an objective indicator - Accuracy.

In addition to simulation tests, reconstructions of UST images were 
also made based on real data captured directly from the test stand. Due 
to the lack of precise reference images, a quantitative assessment of 
these cases was not possible. On the other hand, it was possible to visu-
ally compare the reconstruction with the arrangement diagrams of the 
inclusions in the individual cases studied. It turned out that despite the 
expected noise resulting from the presence of many unsteady factors 
accompanying processes carried out in complex electronic systems, the 
obtained reconstructions are legible and basically correctly reflect the 
positions of the inclusions relative to the examined cross-section. This 
is particularly important taking under consideration the binary specifi-
city of imaging. The binary nature of imaging means that every error is 
visible in the image as an incorrectly displayed pixel what is a relevant 
issue due to small resolution of the image. 

The limitation of MCNN may be a relatively low reconstruction 
speed. Although the speed of calculations depends on many factors, the 
need for a large number of separately working CNNs means that the 
presented method may not be used in flow systems or systems with high 
dynamics of change inside the tested tank. Therefore, potential areas 
of application for UST systems with MCNN algorithms relate to static 
2-phase systems, e.g. tanks and reactors with liquid-solid phases, can 
be limited.

The advantage of MCNN is the ability to properly reconstruct the 
inclusion position and resistance to noise. Comparing the reconstructed 
images based on simulation and real data, it can be concluded that the 
algorithm effectively deals with noise. This is undoubtedly strength of 
MCNN especially due to the fact that the  neural networks was trained 
on simulation data which are much more easier to collect, in the amount 
necessary for training process, than the real measurement data. 

5. Conclusions

The article presents a new algorithmic method of deep learning, 
enabling accurate image reconstruction using ultrasound tomography 
(UST). Known and currently used methods of monitoring tank re-
actors are still burdened with problems resulting in a relatively low 
resolution of reconstructed images, hence it was necessary to take up 
the analyzed subject. The presented tomographic method contributes 
to improving the diagnostics of technical facilities such as reactors. 
It enables both early detection of process parameters deviations ena-
bling effective control and detection of hazards resulting in failure. In 
this context, a higher level of reliability can be achieved by using the 
developed algorithm.

An important achievement of the research is the noise-resistant 
algorithm based on multiple convolutional neural networks (MCNN), 
which, despite being trained on simulation data, effectively recon-
structs objects hidden inside the tank, regardless of their shape, quan-
tity, location or dimensions, based on real measurements. The factor 
that allows achieving good tomographic reconstruction is the training 
of many neural networks with one cluster output instead of one CNN 
with multiple outputs. Simulation experiments carried out for selected 
UST cases have shown that the newly developed MCNN method can 
be successfully used to generate 2D monochrome images based on the 
ultrasonic wave time-of-flight measurements.

In order to better verify the quality of the resulting solutions, the 
CNN was compared with five popular classification methods that 
could be used interchangeably (Table 4). The comparative analysis of 
the accuracy indicators for CNN, ANN, LSVM, Classification Tree, 
KNN and Naive Bayes showed that the newly developed algorithmic 
method of CNN most accurately reconstructs a single cluster of the 
image.

As a result of the tests, both based on simulation and real data, it 
can be concluded that the reconstructions correctly reflect the posi-
tion of the inclusions. Images obtained from real measurements show 
slightly too large inclusion diameters. Simulation data images do not 
have this error. The reason for problems in the correct representa-
tion of the inclusion shape is the low resolution of the output image 
(32x32). It is worth noting that the MCNN algorithm is able to equally 
well image objects located both in the center of the tank and close to 
its walls. The algorithm also has the advantage of being able to im-
age both single and multiple inclusions. It is worth noting that the 
obtained imaging efficiency exceeds 95%.

A way to increase the effectiveness of the algorithm could be to 
combine EIT methods with UST. This requires the installation of both 
types of sensors around the reactor under test: electrodes for EIT and 
transducers for UST. This idea requires some technical problems to 
be resolved to deploy a large number of different sensors in close 
proximity.

The topic of the research is up to date, which has been appro-
priately substantiated with reference to the present state of knowl-
edge. Thanks to the conducted research, it was possible to develop 
a tomographic algorithm, whose high resistance to noise allows for 
generating detailed images in real conditions. This was confirmed 
during special tests. The presented results are of key importance for 
the development of knowledge and innovation in the field of non-
invasive applications for monitoring methods of industrial facilities 
- especially tank reactors. It is planned to continue research towards 
the development of a hybrid method covering both the physical (EIT 
+ UST) and algorithmic layers.
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