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Common cause and load-sharing failures-based reliability analysis 
for parallel systems

Analiza niezawodności systemów równoległych w sytuacji 
jednocześnie występujących uszkodzeń wywołanych 

wspólną przyczyną oraz uszkodzeń elementów 
dzielących obciążenie

For parallel system reliability, the mean time to failure of parallel system under common cause failure (load-sharing failure) is 
shorter than that of the system without common cause failure (load-sharing failure). The traditional calculation approaches of 
mean time to failure of parallel systems do not consider the possible effect of common cause and load-sharing failure. However, 
it may result in the poor accuracy of mean time to failure of parallel system and pose a threat to system reliability. This paper not 
only considers the effect of common cause failure with stress strength, but also investigates the joint effect of the load-sharing and 
common cause failures. Besides, the joint failure model of three-dependent-component parallel system are established, and the 
corresponding properties are analyzed. Finally, a numerical example is used to illustrate the proposed method.

Keywords:	 system reliability, mean time to failure, common cause failure, load-sharing failure, parallel system.

Gdy mowa o niezawodności systemu równoległego, średni czas do uszkodzenia, w przypadku uszkodzenia wywołanego wspólną 
przyczyną (lub uszkodzenia elementów dzielących obciążenie) jest krótszy niż dla systemu, w którym nie występują tego typu 
uszkodzenia. Tradycyjne metody obliczania średniego czasu do uszkodzenia systemów równoległych nie uwzględniają potencjal-
nego wpływu uszkodzeń wywołanych wspólną przyczyną oraz uszkodzeń komponentów dzielących obciążenie. Może to skutkować 
małą dokładnością tak obliczanego średniego czasu do uszkodzenia systemu równoległego i stanowić zagrożenie dla jego nie-
zawodności. W prezentowanej pracy rozważano nie tylko wpływ uszkodzenia wywołanego wspólną przyczyną dla modelu typu 
wytrzymałość-obciążenie, ale również wpływ jednocześnie występujących uszkodzeń wywołanych wspólną przyczyną i uszkodzeń 
elementów dzielących obciążenie. Poza tym opracowano model, w którym omawiane dwa typy uszkodzeń występują jednocześnie 
w systemie równoległym składającym się z trzech zależnych elementów oraz przeanalizowano właściwości takiego systemu. W 
artykule przedstawiono przykład numeryczny, który ilustruje zastosowanie proponowanej metody.

Słowa kluczowe:	 niezawodność systemu, średni czas do uszkodzenia, uszkodzenie wywołane wspólną przyczy-
ną, uszkodzenie elementów dzielących obciążenie, system równoległy.

1. Introduction

A. Background
Today’s systems are becoming more complex and more sophisti-

cated, and the problems of system reliability are drawing an increas-
ing attention. Common cause failures are critical risk contributors in 
complex technological systems as they challenge multiple redundant 
systems simultaneously. Common cause failures can contribute sig-
nificantly to the overall system unreliability [9]. Therefore, it is im-
portant to incorporate common cause failure into the system reliability 
analysis. Alizadeh et al. [1] introduced the impact of common cause 
failure on the system reliability using Markov analysis technique. Zuo 
et al. [23] analyzed the system failure suffering common cause failure. 
Fan et al. [2] developed a new model for common cause failures con-
sidering components degradation based on mathematical framework 
of Stochastic Hybrid Systems. Levitin [5] adapted the universal gen-
erating function method of multistate system reliability analysis to in-
corporate common-cause failures. Pourali [7] presented presented the 
importance of considering common cause failure in reliability, avail-
ability, and maintainability analysis for industrial and commercial 
mission-critical facilities and high-reliability organizations. Vaurio 

[11] incorporated common-cause failures into system analysis by an 
implicit method and discussed the possible limitations and extensions. 
Wang et al. [13] incorporated effects of probabilistic common cause 
failures into system reliability analysis. Wang et al. [14] proposed an 
explicit method and an implicit method to analyze the reliability of 
systems. Xiao and Gao [15] proposed efficient simulation methods 
to assess the system reliability with input uncertainty. Xiao et al. [16] 
presented a data simulation approach to estimating the system failure 
probability in the presence of stochastic constraints. Yuan [17] ex-
tended the pivotal decomposition method for system availability and 
failure frequency from the case where components are statistically 
independent to that where components are also subject to common-
cause failures.

Load-sharing is always an essential nature in parallel system. 
Huang et al. [3] presented a general closed-form expression for life-
time reliability of load-sharing redundant systems. Liu [6] developed 
a model to calculate the reliability of a load-sharing system which 
is composed of non-identical components each having an arbitrary 
failure time distribution. Paula et al. [8] analyzed the optimization in 
redundant system considering load sharing. Jiang et al. [4] formulated 
two load optimization models to identify the optimal loading strategy. 
Sutar et al. [10] modeled the load sharing phenomenon in a k-out-of- 
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0 ( ) 1x
yf y dy =∫  when y  is not more than x  forever. However, y  

could be more than x . Thus, 00 ( ) 1x
yf y dy≤ <∫ . Based on relative 

mathematical knowledge, we can get 3 2
s sp p< . Obviously, condition-

al failure probability of three-dependent-component parallel system 
under common cause failure is less than two-dependent-component 
parallel system, which shows that we could decrease system condi-
tional failure probability by increasing a redundant component.

For a parallel system under common cause failure with n  compo-
nents, if statistical average of system conditional failure probability 

satisfies 0 0( ) ( )
nxn

s x yp f x f y dy dx+∞  =   ∫ ∫ , where x  denotes stress, 

three properties could be deduced.
Property 1: conditional failure probability of three-dependent-

component parallel system under common cause failure is less than 
two-dependent-component parallel system, where (0, )x∈ +∞ .

Proof: 
2

2
0 0( ) ( )x

s x yp f x f y dy dx+∞  =   ∫ ∫ , 
3

3
0 0( ) ( )x

s x yp f x f y dy dx+∞  =   ∫ ∫  . 

Because 
3 2

0 00 ( ) ( ) ( ) ( )x x
x y x yf x f y dy f x f y dy   < <      ∫ ∫ , based on 

relative mathematical knowledge, we could deduce 
3 2

0 0 0 0( ) ( ) ( ) ( )x x
x y x yf x f y dy dx f x f y dy dx+∞ +∞   <      ∫ ∫ ∫ ∫ . That is 

3 2
s sp p< .

Property 2: conditional failure probability of k-dependent-com-
ponent parallel system under common cause failure is less than (k-1)-
dependent-component parallel system, where (0, )x∈ +∞ .

Proof: 
1

1
0 0( ) ( )

kxk
s x yp f x f y dy dx

−+∞−  =   ∫ ∫ ,	

 0 0( ) ( )
kxk

s x yp f x f y dy dx+∞  =   ∫ ∫ . According to property 1, we can 

deduce 1k k
s sp p −< .

Property 3: system conditional failure probability approaches 0 
when n  approaches infinity, that is to say, lim 0n

s
n

p
→+∞

≈ .

Proof: 0 0( ) ( )
nxn

s x yp f x f y dy dx+∞  =   ∫ ∫ , because 0 ( ) 1x
yf y dy <∫  

, 

0( ) ( )
nx

x yf x f y dy 
  ∫ approaches infinitesimal when n  approach-

es infinity. Thus, 0 0( ) ( ) 0
nx

x yf x f y dy dx+∞   ≈  ∫ ∫ ,  that is to say, 

lim 0n
s

n
p

→+∞
≈ .

Besides, ( )xF x  and ( )yF y  denote stress distribution function and 
strength distribution function. We suppose parallel system is com-
posed of n  components. Reliability of parallel system 
under common cause failure is  

R f y dy f x dx F xs y
x n

x y
n

= − 
















= −  −∞−∞

+∞
∫∫ 1 1( ) ( ) ( ){{ }−∞

+∞
∫ f x dxx ( )

 
[13], where (0, )x∈ +∞ .

According to above model, reliability of two-dependent-com-

ponent parallel system is R F x f x dxs y x( ) ( ) ( )2 1
2

= −  { }−∞
+∞
∫  , 

and reliability of three-dependent-component parallel system is 

R F x f x dxs y x( ) ( ) ( )3 1
3

= −  { }−∞
+∞
∫ . Now we need to compare them. 

m system through the accelerated failure time model. Wang et al. [12] 
presented three policies for load assignment among unequal strength 
components and compared three of these policies. Ye et al. [18] devel-
oped a model for a load sharing system where an operator dispatches 
work load to components in a manner that manages their degradation. 
He assumed degradation is the dominant failure type, and that the 
system will not be subject to sudden failure due to a shock. Yang et 
al. [19] proposed a novel approach for assessing a systems’ reliability 
with dependency structures, load sharing, and damage accumulation 
and reversal. Zhao et al. [20] presented a reliability modeling and 
analysis framework for load-sharing systems with identical compo-
nents subject to continuous degradation. Zhang et al. [21] proposed 
a new reliability analysis method for the load-sharing k-out-of-n: F 
system based on the load-strength model. Zhang et al. [22] presented 
a two-component load-sharing system. And the failure rates of the two 
components are time dependent and load dependent. 

B. Motivation
Undoubtedly, above researches has contributed to the develop-

ment of reliability of parallel system. Some of them propose excellent 
methods to calculate the mean time to failure of system, rest of them 
help to investigate the reliability of system under common cause fail-
ure or load-sharing failure respectively. However, lots of researches 
often ignore the joint of common cause and load-sharing failure in 
terms of the failure analysis of the parallel system with stress strength. 
Some parallel systems often happen simultaneously common cause 
and load-sharing failures. The results tend to be over positive than 
factual information. In this paper, for parallel systems, common cause 
failure model with stress strength and joint failure model of load-shar-
ing and common cause failures are established respectively. Based on 
these models, the results are more approaching to the realistic situa-
tion considering the mean time to failure of parallel systems under 
common cause and load-sharing failures.

The rest of this paper is organized as follows. Section 2 analyzes 
the reliability model with stress strength under common cause failure. 
The reliability model under common cause and load-sharing failure 
is presented in section 3. Section 4 utilizes a numerical example to 
testify the validity of the proposed model. Finally, the conclusions of 
this paper are given in Section 5.

2. Reliability analysis with stress strength under com-
mon cause failure

Generally, x  and y  denote stress and strength respectively, 
( )xf x  and ( )yf y  denote stress probability density function and 

strength probability density function respectively. We suppose par-
allel system is composed of n  components. The probability of all 
components failure in the system is system conditional failure prob-
ability, so statistical average of system conditional failure probabil-

ity under common cause failure is 0 0( ) ( )
nxn

s x yp f x f y dy dx+∞  =   ∫ ∫  
where (0, )x∈ +∞ . We utilize the model to calculate conditional fail-
ure probability of two-dependent-component and three-dependent-
component parallel system respectively, and compare ultimate con-
sequence.

According to above model, conditional failure prob-
ability of two-dependent-component parallel system is

2
2

0 0( ) ( )x
s x yp f x f y dy dx+∞  =   ∫ ∫ , and conditional failure 

probability of three-dependent-component parallel system is
3

3
0 0( ) ( )x

s x yp f x f y dy dx+∞  =   ∫ ∫ . Now we need to compare them. 

Because 0 ( ) 1yf y dy+∞
=∫ , we could get 00 ( ) 1x

yf y dy≤ ≤∫ . 
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0 ( ) 1yF x≤ ≤ , ( ) 1yF x =  when y  is not more than x  forever. How-

ever, y  could be more than x . Thus, 0 ( ) 1yF x≤ < , according to above 

analysis, we can deduce 1 1
3 2

−  { } > −  { }F x f x F x f xy x y x( ) ( ) ( ) ( )  . 

Based on relative mathematical knowledge, we could deduce
(2) (3)s sR R< . That is to say, reliability of three-dependent-compo-

nent parallel system is more than two-dependent-component parallel 
system. Thus, we could deduce that increasing a redundant compo-
nent would enhance system reliability.

For a parallel system under common cause failure with n  compo-
nents, if system reliability satisfies:	

	 R f y dy f x dx F xs y
x n

x y
n

= − 
















= −  −∞−∞

+∞
∫∫ 1 1( ) ( ) ( ){{ }−∞

+∞
∫ f x dxx ( )

 
, 	

where x  and y  denote stress and strength respectively, three proper-
ties could be deduced.

Property 4: Reliability of three-dependent-component parallel 
system under common cause failure is more than two-dependent-
component parallel system, where (0, )x∈ +∞ .

Proof: R F x f x dxs y x( ) ( ) ( )2 1
2

= −  { }−∞
+∞
∫ , 	

R F x f x dxs y x( ) ( ) ( )3 1
3

= −  { }−∞
+∞
∫ . Because ( ) 1yF x < , we could get 

3 2
( ) ( )y yF x F x   <    , and we could to deduce 

2 3
1 ( ) 1 ( )y yF x F x   − < −    . Thus, we could take a further step to de-

duce 1 1
2 3

−  { } < −  { }F x f x F x f xy x y x( ) ( ) ( ) ( ) . Based on relative 

mathematical knowledge, we get (2) (3)s sR R< .

Property 5: Reliability of k-dependent-component parallel sys-
tem under common cause failure is more than (k-1)-dependent-com-
ponent parallel system, where (0, )x∈ +∞ .

Proof: R k F x f x dxs y
k

x−( ) = −  { }−

−∞
+∞
∫1 1

1
( ) ( ) ,	  

R k F x f x dxs y
k

x( ) = −  { }−∞
+∞
∫ 1 ( ) ( ) . According to derivation way of 

property 4, we could deduce ( 1) ( )s sR k R k− < .

Property 6: Parallel system reliability approaches 1 when n  ap-
proaches infinity, that is to say, lim ( ) 1s

n
R n

→+∞
≈ .

Proof : R n F x f x dxs y
n

x( ) ( ) ( )= −  { }−∞
+∞
∫ 1 , ( ) 1

n
yF x  <  .Thus,

1 ( ) 1
n

yF x − ≈   and	

R n F x f x dx f x dxs y
n

x x( ) ( ) ( ) ( )= −  { } ≈ =
−∞
+∞

−∞
+∞

∫ ∫1 1  when n  ap-

proaches infinity.

3. Reliability analysis under load-sharing and common 
cause failures

We assume a system is composed of three same components. All 
components share whole system load and failure rate of each compo-
nent is 3λ , when system works normally. Failure rate will become 

2λ with one component failed. When two components fail, failure 

rate will become 1λ . When there is one component working in the 
system, the common cause failure rate is 1cλ , when there are two 
components working in the system, the common cause failure rate 
is 2cλ , and when all of the three components are working normally, 
the common cause failure rate is 3cλ . We have merely one mainte-
nance device which repairs randomly one failed component once, and 
other failed components must wait until last one has worked normally. 
With one component failed, 3µ  denote mean time to maintenance 
and maintenance rate respectively. With two components failed, 2µ  
denote mean time to maintenance and maintenance rate respectively. 
With three components failed, 1µ  denote mean time to maintenance 
and maintenance rate respectively. According to the above assump-
tion, we can describe the state transition figure of three-dependent-
component parallel system under common cause and load-sharing 
failure as Fig. 1.

Fig. 1. state transition under common cause and load-sharing failures

As is shown in Fig. 1, based on state transition figure, we estab-
lish transition intensity matrix for calculation of system mean time to 
failure, and A  denotes transition intensity matrix:

( )
( )

( )

1 1

1 1 1 1 2 2

c2 2 c2 2 3 3

3 3 2 3 3 2 3

0 0
0

2 2
3 3 6

c c

c c c c

A

µ µ
λ λ λ λ µ µ

λ λ λ λ µ µ
λ λ λ λ λ λ λ

− 
 + − + + =  − + +
  + − + + 

The state 0 is absorbing state, therefore, we need to omit all ele-
ments in the system that is related to state 0. And B  denotes a transi-
tion intensity matrix:

	

( )
( )

( )

1 1 2 2

2 2 2 3 3

3 2 3 3 2 3

0
2 2

3 3 6

c

c

c c c

B
λ λ µ µ

λ λ λ µ µ
λ λ λ λ λ λ

 − + +
 

= − + + 
 + − + + 

We have [ ]1 2 3(0) (0) (0)C q q q= , [ ]= 0 0 1D − , where state 
transition equation is CB D= . Therefore, we could get the following 
equation:

[ ]
( )

( )
( )

[ ]
1 1 2 2

1 2 3 2 2 2 3 3

3 2 3 3 2 3

0
(0) (0) (0) 2 2 0 0 1

3 3 6

c

c

c c c

q q q
λ λ µ µ

λ λ λ µ µ
λ λ λ λ λ λ

 − + +
 

− + + = − 
 + − + + 

Considering the complexity of equation and the accuracy of cal-
culation, we can get ( ) ( ) ( )1 2 30 , 0 , 0q q q  by using the math software. 
Then the mean time to failure of three-dependent-component parallel 
system is ( ) ( ) ( )s 1 2 3MTTF (3) 0 0 0q q q= + + . But the solution is too 
complex, we cannot use it to get some useful message, so we should 
make some assumptions to simplify the solution.

Assumptions 1: No matter how many components are working in 
the system, cλ  denotes common cause failure rate.
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Assumptions 2: The failure rate decrease linearly with the decline 
of the quantity of the components which are working in the system, 
this is, if 1= eλ λ , than we will get 2=2 eλ λ  and 3=3 eλ λ .

Assumptions 3: No matter how many components are broken, the 
maintenance rate is common, it is 1µ .

Than we can get the simple version of the solution as follows:

MTTF MTTF

¼ ¼ ¼

s s

c c c c

3 2

7 5 12 9 6 3 32 2 2

( ) − ( )

=
− + + + + +( ) −λ λ λλ λ λ λ λe e e e e

22

2 2 3 2 2 27 2 12 2 20 10 66 39

( )
+ + +( ) + + + +λ λ λ λ λ λλ λ λ λ λc c c c c c c c¼ ¼ ¼e e e e ee e e+ + +( )6 72 272 3 2λ λ λc¼ ¼

  

However, the difference between the mean time to failure of four-
dependent-component parallel system and three-dependent-compo-
nent parallel system is more complex, even if it has been simplified, 
so it is hardly to find the same regular. Through the assumption we 
have made, we also can simplify the result of ( )1 0q , ( )2 0q , ( )3 0q

 
, 

they are:

( )
2 2

1 3 2 2 2 3 2 2
7 3 24 90

2 20 8 66 25 72 3 9
e e

e

c

e e

c c

c c ec ec ec

eq λµ µ
µ

λ λ λ λ λ
λ λ λ µλ λ λ λ λ λ µ λ µλ

+ + + +
=

+ + + + + + −

( )
2

2 3 2 2 2 3 2 2
3 2 9 90

2 20 8 66 25 72 3 9
c e c e e

c c e c c e c e e e e
q λ λ µλ µλ λ

λ λ λ λ µ λ λ µλ λ λ λ µ λ µ
+ + +

=
+ + + + + + −

( )
2 2 2

3 3 2 2 2 3 2 2
7 4 12 5 30

2 20 8 66 25 72 3 9
c c e c e e

c c e c c e c e e e e
q λ λ λ λ λ λ

λ λ λ λ
µ

λ λ λ λµ λ λ λ
µ µ

µ µ µ
+ + + + +

=
+ + + + + + −

And then we can analyze the rate’s influence of the component 
of the mean time to failure of three-dependent-component parallel 
system.

Firstly, we focus on the influence of eλ  to these components. As 
the denominator of the three components are same, when eλ  chang-
es, there are the same changes happen in those denominators, so it 
is ok for us that do not care about the denominators, the only thing 
we should do is focusing on the numerator. We set the numerator of 
( )1 0q  is ( )1 e

Y λ , taking the derivative of this function, we can get 

( )1 7 9 8' 4
e c eY λ λ µ λ= + + , similarly we can get the derivative of the 

numerator of ( )2 0q  and ( )3 0q , it is ( )2 3 9 8' 1
e c eY λ λ µ λ= + +  and 

( )3 7 5 4' 2
e c eY λ λ µ λ= + + , and we know that these rates are positive, 

thus it is obviously that ( )1 '
e

Y λ  is the most through the three.
Secondly, analyzing the influence of cλ , similarly we should focus 

on the numerator only. We set the numerator of ( )1 0q  is ( )1 c
Y λ , taking 

the derivative of this function, we can get ( )1 7 3 2'
c e cY λ λ µ λ= + +

 
, in 

the same way we can get the derivative of the numerator of ( )2 0q  
and ( )3 0q , it is ( )2 3 2'

c eY λ λ µ= +  and ( )3 7 4 2'
c e cY λ λ µ λ= + + , we 

can find that ( ) ( ) ( )3 1 2' ' '
c c c

Y Y Yλ λ λ> > .
Finally, focusing on µ , also, the numerator is the only thing that 

we should care about. Setting the numerator of ( )1 0q  is ( )1Y µ , taking 
the derivative of this function, we can get ( )1 3 9' c eY µ λ λ= + , simi-
larly we can get the derivative of the numerator of ( )2 0q  and ( )3 0q , 
it is ( )2 2 9' c eY µ λ λ= +  and ( )3 4 6' 5c eY µ λ λ µ= + + . But, as we can-
not ensure the relative size of the rates, it is ( ) ( )1 2' 'Y Yµ µ>  that we 
can find only.

Considering the above analysis, we can get some properties as 
follows.

Property 7: The failure rate eλ  has the most influence on the 
system when there is only a component working in.

Proof: Under the premise that all of the three rates are posi-

tive, consider the derivatives above, ( )1 7 9 8' 4
e c eY λ λ µ λ= + + ,

( )2 3 9 8' 1
e c eY λ λ µ λ= + + and ( )3 7 5 4' 2

e c eY λ λ µ λ= + + , we can find 
that ( )1 '

e
Y λ  is the most one, so we can say the failure rate eλ  has the 

most influence to the system when there is only a component work-
ing.

Property 8: The common cause failure rate cλ  has the most in-
fluence on the system when there are three components working in, 
has the second most influence on it when there are two components 
working in, and has the least influence on the system when there is 
only a component working in.

Proof: Under the premise that all of the three rates are posi-
tive, consider the derivatives above, ( )1 7 3 2'

c e cY λ λ µ λ= + + ,

( )2 3 2'
c eY λ λ µ= +  and ( )3 7 4 2'

c e cY λ λ µ λ= + + , we can find that 

( ) ( ) ( )3 1 2' ' '
c c c

Y Y Yλ λ λ> > . Therefore, we can get the view that the 
common cause failure rate cλ  has the most influence on the system 
when there are three components working in, has the second most 
influence on it when there are two components working in, and has 
the least influence on the system when there is only a component 
working in. 

Property 9: The maintenance rate µ  influences the system when 
there is only a component working in more than when there are two 
components working in.

Proof: Under the premise that all of the three rates are positive, 
consider the derivatives above, ( )1 3 9' c eY µ λ λ= + , ( )2 2 9' c eY µ λ λ= +  
and ( )3 4 6' 5c eY µ λ λ µ= + + , we can easily find that ( ) ( )1 2' 'Y Yµ µ> , 
so we can say the maintenance rate µ  influences the system when 
there is only a component working in more than when there are two 
components working in.

4. Numerical example

In this section, we will have an analysis about a parallel sys-
tem of three components under common cause and load-sharing 
failure. This section mainly studies the effect of single variance on 
the reliability of parallel system. We assume the reliability param-
eters are 3 11.12 10a hλ − −= × , 3 12 10m hλ − −= × , 3 15 10f hλ − −= × ,

4 13 10c hλ − −= × , 16aMDT h= , 3 15.2 10a hµ − −= × , 12kMDT h= ,
2 18.3 10k hµ − −= × , 8fMDT h= , 1 11.25 10f hµ − −= × .

4.1.	 The effect of each failure rate on mean time to failure of 
parallel system

(1) Effect of aλ  variation on sMTTF

aλ  is defined as independent variable, and its range of values is
30,2 10− ×  . Dependent variable is sMTTF . We can calculate mean 

time to failure of two-dependent-component and three-dependent-
component parallel system under common cause and load-sharing 
failure.

	
( ) ( ) ( )

( )( ) ( )s 1 2
2

MTTF 2 0 0 1935.4
2 2

c f m k

c m c f k m k
p p h
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+ + +
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+ + + −

( ) ( ) ( )

( )( )( ) ( ) ( )

s 1 2 3
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4 7
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6 3 12 2 4 2 3 6 2 2
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a

a

q q q
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Fig. 2 describes the effect aλ  variation on ( )sMTTF 2 and
( )sMTTF 3 . Firstly, ( ) ( )sMTTF 2 =1935.4 h , aλ  have no effect on 

mean time to failure of two-dependent-component parallel system. 
Secondly, mean time to failure of three-dependent-component parallel 
system is negatively correlated with aλ . Thirdly, 

3
s s a

3
s s

3 3
s s

MTTF (3)>MTTF (2),0 1.233 10

MTTF (3)=MTTF (2), 1.233 10

MTTF (3)<MTTF (2),1.233 10 2 10
a

a

λ

λ

λ

−

−

− −

 ≤ < ×
 = ×


× < ≤ ×

, so the three-

dependent-component parallel system is prior to two-dependent-com-
ponent parallel system when 3

a0 1.233 10λ −≤ < × .

(2) The effect of mλ  variation on sMTTF
mλ  is defined as independent variable, and its range of values is

30,5 10− ×  . Dependent variable is sMTTF . We can calculate mean 

time to failure of two-dependent-component and three-dependent-
component parallel system under common cause and load-sharing 
failure.

( ) ( ) ( )
( )( )

2

s 1 2 2 5
2 2 8.830 10MTTF 2 0 0

2 2 1.060 10 2.649 10
c f m k m

c m c f k m k m
p p

λ λ λ µ λ
λ λ λ λ µ λ µ λ

−

− −

+ + + + ×
= + = =

+ + + − × + ×

( ) ( ) ( )

( )( )( ) ( ) ( )

s 1 2 3
2

1

3 5

MTTF (3) 0 0 0

6 3 12 2 4 2 3 6 2 2

2 6 2 3 2 12 4
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a c a f a m c c f c m f m a a a k c a c k f a a k

c f k c m a a c a a c f k k a m c m c a
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λ λ µ λ λ µ λ λ λ µ λ λ µ µ λ λ λ λ λ µ

λ
λ

−

− −

= + + =

+ + + + + + + + + + + +
=

+ + + + + − + + − + +

+ ×

× + ×

Now we describe the effect mλ  variation on ( )sMTTF 2 and
( )sMTTF 3  in Fig. 3.

Firstly, mean time to failure of three-dependent-component and 
two-dependent-component parallel system is negatively correlated 

with mλ  . Secondly, 

3
s s

3
s s

3 3
s s

MTTF (3)<MTTF (2),0 1.832 10

MTTF (3)=MTTF (2), 1.832 10

MTTF (3)>MTTF (2),1.832 10 5 10

m

m

m

λ

λ

λ

−

−

− −

 ≤ < ×
 = ×


× < ≤ ×

 , 

so the three-dependent-component parallel system is prior to two-de-
pendent-component parallel system when

3 31.832 10 ,5 10mλ − − ∈ × ×   
.

(3)The effect of fλ  variation on sMTTF

fλ is defined as independent variable, and its range of values is 
3 22 10 ,1 10− − × ×   

.  	

Fig. 2. Effect of aλ  variation on sMTTF

Fig. 3. Effect of mλ  variation on sMTTF
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As is shown in Fig. 4, the three-dependent-component parallel 
system is prior to two-dependent-component parallel system when

3 22 10 ,1 10fλ − − ∈ × ×  . 

(4)The effect of cλ  variation on sMTTF

cλ is defined as independent variable, and its range of values is
30,1 10− ×  . Dependent variable is sMTTF . We can calculate mean 

time to failure of two-dependent-component and three-dependent-
component parallel system under common cause and load-sharing 
failure:	  

( ) ( ) ( )
( )( )

2

s 1 2 2 3 4
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+ × + ×( )( )2 3 3 69.2 10 1.113 10 5.219 10c cλ λ− − − −+ × − × − ×

Now we describe the figure of the effect cλ  variation on 
( )sMTTF 2  and ( )sMTTF 3  in Fig. 5.

Firstly, mean time to failure of three-dependent-component and 
two-dependent-component parallel system is negatively correlated 

with mλ . Secondly, 
4

s s
4 3

s s

MTTF (3)>MTTF (2),0 5 10

MTTF (3)=MTTF (2),5 10 1 10
c

c

λ

λ

−

− −

 ≤ < ×


× ≤ ≤ ×
, 

so the three-dependent-component parallel system is prior to two-de-

pendent-component parallel system when 40,5 10cλ − ∈ ×  .

Fig. 4. Effect of fλ  variation on sMTTF

Fig. 5. Effect of cλ  variation on sMTTF
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4.2.	 The effect of each maintenance rate on mean time to 
failure of parallel system

(1)The effect of aµ  variation on sMTTF
aµ  is defined as independent variable, and its range of values 

is 20,8.3 10− ×  . Dependent variable is sMTTF . We can calculate 
mean time to failure of two-dependent-component and three-depend-
ent-component parallel system under common cause and load-sharing 
failure.

( ) ( ) ( )
( )( ) ( )s 1 2

2
MTTF 2 0 0 1935.4

2 2
c f m k

c m c f k m k
p p h

λ λ λ µ
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a
q q q µ

µ
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− −
+ ×

= + + =
× + ×

.

In Fig. 6, the mean time to failure of three-dependent-component 
parallel system is weakly positive correlation with aµ . When =0aµ  , 

s sMTTF (3)=MTTF (2) . The three-dependent-component parallel 
system is prior to two-dependent-component parallel system when

20,8.3 10aµ − ∈ ×  .

(2)The effect of µk  variation on MTTFs

µk  is defined as independent variable, and its range of values is 

5 2 10 0 1253. , .×
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
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− . Dependent variable is MTTFs .
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From Fig. 7, the mean time to failure of three-dependent-compo-
nent and two-dependent-component parallel system is positive corre-
lation with µk . The three-dependent-component parallel system is 

Fig. 6. Effect of aµ  variation on sMTTF

Fig. 7. Effect of variation on 
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prior to two-dependent-component parallel system when 
µk ∈ ×





−5 2 10 0 1253. , .
.

5. Conclusions

This paper presents parallel system model under common cause 
and load-sharing failures. According to this model, mean time to fail-
ure of three-dependent-component and two-dependent-component 
parallel systems is calculated. Besides, we calculate and discuss the 
conditional failure probability and reliability of three-dependent-com-
ponent and two-dependent-component parallel system model under 
common cause failure. The reliability of three-dependent-component 

parallel system model under common cause failure is more than two-
dependent-component. We could observe that mean time to failure of 
three-dependent-component parallel systems is not always longer than 
two-dependent-component. Hence, some measures could be taken to 
control the range of variables to ensure mean time to failure of three-
dependent-component parallel systems is more than two-dependent-
component.
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