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1. Introduction

In traditional methods of estimating the parameters of the time-to-
failure distribution of a technical object or its components, a specific 
distribution class is assumed a priori. The purpose of this article is to 
present the results of a procedure to identify the best-fitting probabil-
ity distribution model for the time to failure of a renewable technical 
object using an aggregate criterion. The research concerns compo-

nents of currently operated rail vehicles of a uniform type that belong 
to a fleet maintained by the operator. Empirical data obtained during 
the operation of the vehicles are incomplete, since the vehicles were 
operational at the end of the data acquisition period. Thus, the authors 
did not have complete data on the times to failure of all components 
of the analysed vehicles. Therefore, it was necessary to use statistical 
methods taking account of censored data. Given a suitably prepared 
database of repairs to vehicles in the fleet, it is relatively easy to de-
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Zagregowane kryterium wyboru rozkładu czasu 
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This paper presents an aggregate method of selecting a theoretical cumulative distribution function (CDF) for an empirical CDF. 
The method was intended to identify the time of reliable operation of a renewable technical object by applying three criteria based 
on the following statistics: the modified Kolmogorov–Smirnov (MK-S) statistic, the mean absolute deviation of the theoretical 
CDF from the empirical CDF, and a statistic calculated on the basis of a log-likelihood function. The values of these statistics 
were used to rank eleven probability distributions. The data for which calculations were made concerned failures of the driver’s 
cab lock recorded during five years of operation of a fleet of 45 trams. Before calculating the statistics, the empirical CDF of the 
examined component was determined using the Kaplan–Meier estimator, and then, using the method of Maximum Likelihood Es-
timation, the parameters of the analysed theoretical distributions were estimated. The theoretical distributions were then ranked 
according to the values obtained for each of the assumed criteria: the lower the value for a given criterion, the higher the ranking 
position, indicating a better fit according to that criterion. Then, based on the three rankings and on weights assigned to the in-
dividual criteria, an aggregate criterion (referred to as DESV) was implemented to select the best-fitting probability distribution. 
The method assumes that the lowest DESV value corresponds to the best-fitting theoretical distribution. In the case of the examined 
component, this was found to be the generalised gamma distribution. It is shown that if the final decision is based on the aggre-
gate criterion, which takes into account the three criteria for goodness of fit, the reliability of the estimation of the time-to-failure 
distribution increases, and thus mistakes resulting from the use of only one of the criteria can be avoided.
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W pracy przedstawiono zagregowaną metodę doboru dystrybuant hipotetycznych do dystrybuanty empirycznej. Metoda miała 
na celu identyfikację czasu niezawodnej pracy odnawialnego obiektu technicznego poprzez zastosowanie trzech kryteriów, w 
których użyto następujących statystyk: zmodyfikowanej statystyki Kołmogorowa-Smirnowa (MK-S), statystyki średniego odchy-
lenia bezwzględnego dystrybuanty hipotetycznej od empirycznej oraz statystyki obliczanej na podstawie zlogarytmowanej funkcji 
wiarygodności. Wartości tych statystyk posłużyły do rangowania jedenastu rozkładów prawdopodobieństwa. Dane dla których 
dokonano obliczeń dotyczyły uszkodzeń zamka kabiny motorniczego jakie odnotowano w ciągu pięciu lat użytkowania floty 45 
tramwajów. Przed obliczeniem statystyk wyznaczono dystrybuantę empiryczną badanego elementu przy pomocy estymatora Ka-
plana-Meiera, a następnie przy użyciu metody największej wiarygodności oszacowano parametry uwzględnionych w badaniach 
rozkładów hipotetycznych. Po wyznaczaniu parametrów nastąpiło rangowanie rozkładów hipotetycznych według wartości otrzy-
manych dla każdego z przyjętych kryteriów, im mniejsza wartość dla danego kryterium tym wyższa pozycja w rankingu, świad-
cząca o lepszej jakości dopasowania według danego kryterium. Po ustaleniu rankingu według kryteriów zgodności, każdemu z 
kryteriów zgodności dopasowania dystrybuant modelowych do empirycznej nadano wagi. Następnie na podstawie uzyskanych 
trzech rankingów oraz wag nadanych poszczególnym kryteriom zgodności wyznaczana jest zagregowana miara zgodności (ozna-
czona DESV), która służy do wyznaczania najlepszego rozkładu prawdopodobieństwa. W prezentowanej metodzie przyjęto, że 
najmniejsza wartość DESV wyznacza najlepiej dopasowany rozkład hipotetyczny. W przypadku badanego elementu rozkładem 
tym okazał się uogólniony rozkład gamma. Pokazano, że na podstawie zagregowanego kryterium uwzględniającego trzy statystyki 
zgodności dopasowania zwiększa się wiarygodność estymacji rozkładu czasu pracy do uszkodzenia, unikając tym samym błędów 
jakie można popełnić uzależniając się tylko od jednej z nich.

Słowa kluczowe:	 czas do uszkodzenia, estymacja rozkładu prawdopodobieństwa, niezawodność pojazdów 
szynowych.
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Table 1. Density functions and parameters to be estimated
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termine basic reliability characteristics of failed components [25]. 
However, the selection of a good criterion for the fit of a distribution 
of times to failure of the components becomes an issue. This problem 
is the subject of the research presented in this paper, which concerns 
the use of an aggregate criterion for determining the best-fitting time-
to-failure distributions for selected components of a rail vehicle [33]. 
The research results are presented in the form of a ranking of the fit of 
selected families of distributions based on the aggregate criterion.

In the study of technical objects, different probability distribu-
tion families are used as models of time to failure [17]. The most com-
monly used distributions in Life Data Analysis (LDA) are the normal, 
exponential and Weibull distributions [19, 10]. In this study, apart 
from the aforementioned distributions, the authors also verified the 
possibility of using other, less common distributions, whose goodness 
of fit to the empirical data proved superior in many cases to the more 
common distributions. These are the lognormal, gamma, generalised 
gamma, logistic, loglogistic and Gumbel distributions [22]. The den-
sity functions of these distributions and their parameters are listed in 
Table 1. In the case of the generalised gamma distribution, for 
easier parameter estimation, the density function is also given 
in reparameterised form [20].

The parameters of these distributions can be estimated 
using analytical, numerical and graphical methods [16, 26, 
29]. The most commonly used methods include the method of 
moments, Maximum Likelihood Estimation, the least squares 
method, the method of probability plotting, and the probability 
plot correlation coefficient (PPCC) method [1, 38, 32]. In en-
gineering practice, the most commonly used are numerical and 
graphic methods executed with specialised IT tools [12, 39]. 
Based on the operational data and selection of the estimation 
method, parameters (shape, scale, location) are estimated for 
selected families of probability distributions [28, 37]. Having 
estimated various distributions, it is possible to indicate which 
of them is the best fitted to the empirical data in the sense of the 
lowest sum of squares of deviations.

The proposed methodology for identifying the time to 
failure of a selected vehicle component uses all available data on 
times (mileages) between failures of the component in all vehicles of 
the analysed fleet. This includes the case where the component was 
operational at the time when data acquisition was ended; the time to 
failure of such a component is said to be right-censored. A method of 
preparing statistical data based on the operational database has been 
developed in the articles [3, 2]. 

Instead of the traditional single-criterion selection of the best-
fitting family of probability distributions, the authors propose to use 
an aggregate criterion that includes three measures of the fit of theo-
retical distributions. This criterion takes into account a ranking of the 
fit of individual probabilistic models to the empirical data, including 
right-censored operational data for the vehicle fleet. 

In the aggregate method, the choice of a distribution is preceded 
by a ranking of distributions for three goodness-of-fit criteria. The 
parameters of selected distribution families were estimated using the 
Weibull++ Distribution Wizard module, which – after performing the 
appropriate calculations – ranks the distributions starting from that 
with the highest goodness of fit. However, before the fit of the dis-
tributions is examined, the CDF or reliability function of the empiri-
cal distribution is determined by the Kaplan–Meier method, and then 
the parameters of the theoretical distributions are determined by the 
method of Maximum Likelihood Estimation (MLE).

The next step is to determine the statistics of the goodness of 

fit of the theoretical CDFs to the empirical CDF, denoted nF . On 
this basis, a ranking is made of eleven distributions, listed in Table 
1, that are used in the survival analysis [18, 30]. Provided that the as-
sumptions are met, the rankings of distributions by goodness of fit are 

compiled independently according to three criteria, using the modi-
fied Kolmogorov–Smirnov (MK-S) statistic, the statistic of the mean 
absolute deviation of the theoretical CDF from the empirical CDF, 
and the value of the log-likelihood function [23]. 

The final ranking of distributions is based on the rankings ob-
tained using these three criteria, taking into account the weights as-
signed to each of them. After assigning weights to the criteria, the 
final Distribution Estimation Values (DESV) are calculated, indicat-
ing the best-fitting distribution according to the aggregate criterion. 
The scheme of successive calculation steps in the aggregate method 
of ranking distributions is shown in Fig. 1. 

According to this scheme, in the first step, based on the obtained 
data and analysing the length of the observation time (right-censored), 
the survival function parameters were estimated with the Kaplan–
Meier estimator and an empirical CDF was determined [7]. Then, to 
determine the parameters of the eleven theoretical distributions listed 
in Table 1, the method of Maximum Likelihood Estimation was used 
[15, 11]. 

In the second step, for each of the eleven distributions, the good-
ness-of-fit statistics are used to test the null hypothesis:

	 0 :  ~H T F 	 (1)

stating that the time to failure T  of the analysed vehicle component 
has a probability distribution with the CDF F  with the estimated 
parameters. This evaluation is based on a random sample 1 2, , , nT T T…  
concerning times to failure of the component. In this paper, the times 
to failure of the examined component are expressed in terms of kilo-
metres travelled, as in the paper [2].

2. Criteria for ranking theoretical distributions

Among the applied goodness-of-fit criteria, a particular role is 
played by the modified Kolmogorov–Smirnov statistic (AVGOF, av-
erage goodness of fit), which evaluates the statistical difference be-
tween the values of the empirical and theoretical CDFs. The particular 
role of this statistic results from the fact that it is highly sensitive to 
local deviations. In addition, it can be used even with a small amount 
of data and with unknown parameters of the theoretical distribution. 
The use of the MK-S statistic is therefore necessary when the param-
eters of the tested distributions need to be estimated. 

Because the distributions of MK-S statistics depend on a theo-
retical distribution family whose parameters are estimated, a critical 
value, at which the null hypothesis is rejected, is determined for each 
distribution [30]. Analytical determination of the critical value is of-
ten difficult or even impossible, and hence it is obtained using the 
Monte Carlo method [6, 18]. 

Fig. 1. Aggregate criterion for ranking distributions
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where:
n  is sample size;

( )n iF t  are values of the empirical CDF;

( )iF t  are values of the theoretical CDF.

This criterion, unlike the MK-S criterion, is not sensitive to local 
deviations, but takes into account the global difference of the distribu-
tions and is a good complement to the MK-S criterion. 

For the third criterion for testing the fit of distributions, the likeli-
hood function (LKV, Likelihood Value Test) was used as a measure of 
the fit of a probabilistic model to empirical data. The log value of the 
likelihood function (LKV) is calculated for empirical data [27, 14]. 
The likelihood function L depends on the random sample 1 2, , , nT T T…  
and on parameters θ j  for which it takes maximum values. The gen-
eral form of the likelihood function is given by the formula [33, 30]: 

	 L T T T f Tk n
i

n
i kθ θ θ θ θ θ1 2 1 2

1
1 2, , , , , ; , , ,,… …( ) = …( )

=
∏ 	 (8)

where:
n  is the number of failed components;
k  is the number of parameters;
θ j j k, , , ,= …1 2  is the j-th parameter of the distribution;

, 1, 2, ,iT i n= …  is the time to failure of the i-th component.

In the case under consideration, the function was expanded to in-
clude factors taking account of right-censored data. The log-likelihood 
function is the sum of logarithms of probability density for particular 
lifetimes of the analysed component [18, 30]:

Λ θ θ θ θ θ θ θ θ1 2 1 2 1 2
1
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∑k k n
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L is the likelihood function;
n  is the number of failed components;
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 is the j-th parameter of the distribution;

T i ni , , , ,= …1 2  is the time to failure of the i-th component.

Values of estimators of the unknown parameters θ θ θ1 2, , ,… k  
are determined by maximising the log-likelihood function 
Λ θ θ θ1 2, , ,…( )k   . A necessary condition for the existence of an ex-
tremum of this function is that all of its partial derivatives take the 
value 0.

To determine the estimators of the unknown parameters, partial 

derivatives 
∂ …( )

∂
Λ θ θ θ

θ
1 2, , , k

j
 of the function Λ are determined with 

respect to the parameters θ j , 1, 2, ,j k= … . To estimate the param-
eters, each partial derivative should be equated to zero and k  equa-
tions should be solved:

	

∂ …( )
∂

=
Λ θ θ θ

θ
1 2

1
0

, , , k

	
	 ……… 	 (10)

	

∂ …( )
∂

=
Λ θ θ θ

θ
1 2 0
, , , k
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The MK-S statistic used to test the fit of a theoretical distribu-
tion to the empirical distribution uses the statistic maxD , defined as 
the maximum of the absolute difference between the value of the em-
pirical CDF ( )nF t  and a matched theoretical CDF ( )F t , and given 
by the formula [18]:

	 ( )
1
max ( )max n i i

i n
D F t F t

≤ ≤
= − 	 (2)

where:

maxD  is the value of the statistic;
n  is the sample size;

( ) n iF t is the value of the empirical CDF;

( )iF t  is the value of the theoretical CDF.

The critical value CRITD  in the modified Kolmogorov–Smirnov 
statistic is determined by the Monte Carlo method, as already men-
tioned, due to the difficulty of the calculations.

The MK-S statistic is used to determine the probability of rejection 
of the null hypothesis, i.e. the probability of the event CRIT maxD D< . 
Hence, in the case of the first criterion, the basis for ordering theoreti-
cal distributions is the probability: 

	 ( )P CRIT maxD D< 	 (3)

The higher the value of the statistic maxD , the more significant 
is the difference between the theoretical distribution defined by the 
CDF F  and the empirical distribution with the CDF nF . Because 
the critical value CRITD  is determined by the Monte Carlo method 
through m -tuple generation of n  time-to-failure values 1 2, ,s s snt t t… , 
 for which simulation CDFs ( ), 1, 2, ,s siF t s m= …  are created, and 
maximum differences with the values of the theoretical CDF are de-
termined for each of these:

	 d F t F t s mmax s
s m

s si si, ( ) , , , ,= − ( ) = …
≤ ≤
max

1
1 2  	 (4)

the critical value CRITD  is estimated as the arithmetic mean CRITd  
defined by the formula [6]: 

	 

,
1

1 m
CRIT CRIT max s

s
D d d

m =
= = ∑ 	 (5)

Finally, in the MK-S criterion for the goodness of fit of distribu-
tions we assume: 

	 ( ) ( )AVGOF , 100 Pn CRIT maxF F d D= ⋅ < 	 (6)

Large values of AVGOF , close to 100, indicate that there is a 
significant difference between the theoretical distribution and the em-
pirical data. Hence, the lower the value of the statistic AVGOF , the 
better the fit of the theoretical distribution. 

In the case of the second goodness-of-fit criterion, the mean abso-
lute deviation of the theoretical CDF from the empirical CDF is exam-
ined, and the statistic used to assess goodness of fit, denoted AVPLOT 
(average plot fit), is determined according to the formula: 

	 AVPLOT F F
n

F t F tn
i

n
n i i, | ( ) |( ) = − ( )

=
∑100 1

1
               (7)
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In the last step, on the basis of each of the three goodness-of-fit 
criteria for all 11 distributions, ranks are assigned from the best-fit-
ting to the worst-fitting theoretical distribution. Thus, the theoretical 
distributions are ordered separately for each criterion by assigning 
them successive natural numbers. Finally, based on the three rank-
ings obtained and the weights assigned to the individual criteria, the 
aggregate criterion DESV is determined. This measure, for the i-th 
theoretical CDF (Fi ), is given by formula (11):

DESV(Fi ) = RAVGOF(Fi )∙WAVGOF+ RAVPLOT(Fi ) ∙ WAVPLOT+ 
RLKV(Fi ) ∙ WLKV	 (11)

where:

( )RAVGOF iF
	
 denotes the rank of the distribution  iF  by the 
AVGOF  criterion;

( )RAVPLOT iF  denotes the rank of the distribution  iF  by the 
AVPLOT  criterion;

( )RLKV iF 		   denotes the rank of the distribution iF  by the  
LKV  criterion;

WAVGOF 		   denotes the weight of the AVGOF  criterion;
WAVPLOT 		   denotes the weight of the AVPLOT  criterion;
WLKV 			    denotes the weight of the LKV  criterion.

The aggregate criterion DESV  is therefore a weighted average 
of the individual ranks of theoretical distributions. After calculating 
the DESV value for the particular theoretical distributions, their final 
ranking is determined. The distribution with the lowest DESV value 
is identified as the best-fitting according to the aggregate criterion, 
and is assigned the number 1 in the ranking. The aggregate criterion 
is used to make the final selection of the distribution that best fits the 
empirical data among the theoretical distributions considered. 

3. Subject of study

The aggregate criterion for ranking distributions of times to fail-
ure of selected vehicle components was applied based on operational 
data from a fleet of 45 urban rail vehicles of the same type, namely 
five-section low-floor Tramino S105P trams with total weight 42.5 
tonnes and length approximately 32 metres. These are articulated, 
single-compartment vehicles. The tram can carry a maximum of 229 
passengers, including 48 seated. The operational data covered the ini-
tial five years of use of the fleet, including two years covered by the 
warranty and three subsequent years under a maintenance contract 

[31, 9]. All trams were used in similar operating conditions, i.e. the 
same track infrastructure, similar daily and annual times of travel, and 
the same schedule and scope of (preventive) maintenance. 

From the database of failures in trams of the fleet under investi-
gation, the lock of the driver’s cab door was selected for testing of the 
time-to-failure distribution. This component failed 54 times during 
the first five years of operation, and generated 0.52% of all correc-
tive maintenance costs [5]. The lock is mounted on the door between 
the passenger space and the driver’s cab. To open the driver’s cab 
door from the outside, the lock has to be opened mechanically with a 
special key. It was the bolting part of the lock that failed, becoming 
blocked and thus preventing the driver from opening the door and en-
tering the cab. Depending on where the failure occurred, it was neces-
sary to call the emergency maintenance service or to open the door us-
ing force, damaging the strike plate structure. On each such occasion 
the damaged lock was replaced with a new one. The cause of failure 
of the lock was excessive wear of the internal mechanism responsible 
for bolt extension, caused by a poorly selected construction material, 
as a result of which the lock stuck and sometimes prevented removal 
of the inserted key. A photograph of the lock is shown in Fig. 3. 

4. Empirical data

The process of tram operation is a valuable source of in-
formation serving to assess the required reliability parameters 
and to forecast maintenance costs. Operational information 
should be taken to include all data on events occurring during 
the operation and maintenance of trams [13]. These data play a 
key role in the planning and day-to-day management of vehicle 
fleet operation and maintenance, as well as in improving vehicle 
technology and construction [4, 35]. Operational information 
plays a particularly important role for operating companies, as 
it enables the proper planning of costs of operation, inspections 
and repairs, as well as assessment of the use of the means of 
transport [24, 34].

Before proceeding to the estimation of the parameters of 
probabilistic models of times to failure of selected vehicle com-
ponents, the operational data should be appropriately prepared. 
For the investigated fleet of trams, operational data regarding 
individual vehicle components is right-censored of type I, which 
means that for a fixed period of use of the tram fleet the lock 

Fig. 2. Tramino S105P tram

Fig. 3. Driver’s cab door lock
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failed and was replaced only in some vehicles, while in some vehi-
cles it was replaced multiple times. Because the research concerns 
vehicles that are operated intensively, times to failure of individual 
components are expressed in kilometres. The time at which each 
vehicle comes into operation is known, and tram mileages at which 

components fail are recorded [33, 2]. The mileage of trams is used 
to determine the mileage of components at failure. The method of 
determining the mileage of failed vehicle components is presented in 
the paper [3]. 

Table 2.	 Right-censored times to failure of the lock in 5 years of operation

Dist. travelled [km] F/S      Dist. travelled [km] F/S     Dist. travelled [km] F/S     Dist. travelled [km] F/S

174,124 F 256,382 F 114,128 S 67,733 F

196,837 S 144,819 S 135,078 F 300,557 S

317,275 S 223,684 F 136,600 F 103,378 F

292,525 F 46,217 F 97,832 S 177,506 F

112,431 S 43,897 S 377,101 S 23,153 S

196,218 F 155,522 F 93,585 F 242,544 F

1,910 F 201,423 S 238,103 S 89,047 S

93,529 S 119,376 F 285,538 F 125,785 F

334,484 S 198,190 S 43,117 S 58,407 F

366,935 F 368,449 S 221,226 F 117,646 S

28,826 S 340,330 F 117,701 S 202,396 F

191,367 F 58,964 S 28,934 F 127,143 S

21,117 F 193,641 F 135,673 F 287,695 F

135,831 S 155,920 S 155,828 S 53,863 S

348,956 F 206,246 F 92,594 F 174,580 F

38,020 S 144,352 S 197,981 S 139,571 S

188,493 F 371,800 S 148,840 F 210,775 F

70,534 F 22,482 F 27,858 F 102,038 S

102,343 S 139,974 F 107,491 F 131,537 F

340,236 F 39,840 F 52,280 S 126,738 F

52,022 S 127,333 F 250,370 S 83,497 S

115,592 F 21,021 S 282,989 F 176,928 F

79,071 F 376,601 S 77,834 S 81,021 F

72,135 F 354,513 S 86,028 F 103,807 S

105,552 S 203,105 F 226,082 S - -

Table 3.	 Estimated parameters of tested distributions

1P-Exponential 2P-Exponential Normal Lognormal

λ = 3.413E-06 λ = 3.937E-06 μ = 218,279.5 μ' = 12.184

γ = 21.117 σ = 115,461.8 σ' = 0.819

2P-Weibull 3P-Weibull Gamma G-Gamma

β = 1.745 β = 1.885 μ = 11.53 μ = 12.415

η = 255,316.9 η = 266,209.6 κ = 2.307 σ = 0.605

γ = −10,300.12 λ = 0.857

Logistic Loglogistic Gumbel

μ = 211,755.9 μ = 12.198 μ = 274,770.6

σ = 68,491.7 σ = 0.447 σ = 104,341.5

F – failure, S – survival

ˆˆ

ˆ ˆ

ˆˆ

ˆ
ˆ ˆ ˆ

ˆˆ

ˆ ˆ
ˆˆ

ˆ

ˆˆ

ˆ
ˆ ˆˆ
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Suitably prepared data are summarised in Table 2. They contain 
the exact time to failure of the tested component (the driver’s cab lock) 
from the fleet of 45 trams under observation, expressed in kilometres 
and marked as F (failure), and the survival time of other locks that did 
not fail, marked as S (survival), also expressed as a number of kilo-
metres travelled until the observations ended. At the time of the end 
of observations, the locks in all 45 vehicles were functional, although 
many of them had been replaced due to failure. Because the main rea-
son for the replacement of locks is failure in the opening mechanism, 
all failures of this type were classified as mechanical failure.

Based on the data in Table 2, parameters were estimated for 11 
theoretical distributions. The results of estimation for all examined 
distributions are given in tabular form (Table 3).

5. Identification of the best-fitting probability distribu-
tion

To select the best-fitting theoretical distribution out of the 11 con-
sidered, the aggregate ranking criterion described in section 2 was 
used. In determining the ranking of distributions, first the parameters 
of the theoretical distributions were estimated, and then the distribu-
tions were ranked based on the three criteria described. The results of 
this ranking procedure are summarised in Table 4. 

The first column contains the name of the probability distribution. 
The second contains the values of the Kolmogorov–Smirnov AVGOF 
statistic – the probability of rejection of the working hypothesis for the 
MK-S statistic. The third column (AVPLOT) gives the mean absolute 
deviation of the theoretical CDF from the empirical CDF. The fourth 
column (LKV) gives the measures of goodness of fit determined using 
the log-likelihood criterion [8, 36, 21]. 

After calculating the goodness-of-fit statistics for the three criteria 
and ranking the probability distributions, the next step was to assign 
weights to the criteria. In this study, the default values of weights se-
lected by the software manufacturer were used. These are determined 
on the basis of engineering practice, resulting from many analyses 
conducted in industrial applications. Using the weights assigned to 
each criterion, the weighted average was calculated for the ranks ob-
tained using the individual criteria. Finally, using the described DESV 
aggregate criterion, the final ranking of the eleven theoretical distribu-
tions was obtained. Weibull++ software was used for the estimation 
of parameters of the theoretical distributions and for constructing their 
rankings. For the analysed data, the following weights were assigned 
to the criteria: 40 for AVGOF, 10 for AVPLOT and 50 for LKV. After 
calculating the DESV value, the final ranking of distributions was de-
termined (Table 5). The distribution with the lowest DESV value was 

identified as the best-fitting according to the aggregate criterion, and 
was assigned number 1 in the ranking. As shown in Table 5, the lowest 
value of the DESV statistic was obtained for the generalised gamma 
distribution. It was calculated from formula (11) as follows: 

	 ( ) ( ) ( )DESV 2 40 2 10 1 50 150= × + × + × = 	 (12)

Thus, for the data contained in Table 2 regarding lock failures 
during five years of operation of the tram fleet, using the developed 
aggregate criterion, the generalised gamma distribution was identified 
as the best-fitting. This is reflected in the last column of Table 5. 

The estimated parameters μ, σ, λ for the reparameterised form 
of this distribution took the following values: μ =12.415; σ =0.6058;  
λ =0.8572. The calculated rate of failure of the lock was  
0.000000617/km, and the average time to failure was 229,623 km.

To illustrate how the selected distribution matches the data, in 
Fig. 4 the data are presented on a probability plot of the generalised 
gamma distribution. The following figures show the reliability func-
tion (Fig. 5), the probability density function (Fig. 6) and a histogram 
of numbers of failures (Fig. 7). 

In Fig. 4 the blue line represents the modelled probability of fail-
ure according to the generalised gamma distribution, and the red lines 
mark a two-sided 95% confidence interval. The reliability function 
graph (Fig. 5) shows the change in the reliability value over time, ex-
pressed as distance travelled in kilometres, indicating the trend in the 
behaviour of the tested component in terms of failures. The graph of 
the failure probability density function provides a visualisation of the 
distribution of data over time (Fig. 6). The histogram (Fig. 7) shows 
that a relatively large proportion of the failures occurred between 
50,000 and 200,000 km.

The graphical presentation of the estimated functional character-
istics (reliability, probability density) and the histogram of numbers of 
failures can be used to determine more easily the failure mode. This 
information is important when forecasting failures and determining 
the future cost of corrective maintenance resulting from them.

The presented analysis of the time to failure of the driver’s cab 
lock shows that the best-fitting distribution, according to the aggre-
gate criterion, is the generalised gamma distribution. It should also 
be noted that with successive failures, the aggregate method may in-
dicate a different distribution as the best-fitting, because new data, 
especially if the quantity is large relative to that previously analysed, 
may follow a different model. In this situation, analysis of the plot of 
the probability distribution is very useful for pre-evaluating the fit of 
a selected theoretical model to the appropriate case.

Table 4.	 Results of individual statistics for the data in Table 1

Distribution AVGOF AVPLOT LKV

1P-Exponential 80.740 7.599 -720.16

2P-Exponential 55.253 5.666 -712.58

Normal 30.946 4.178 -715.65

Lognormal 14.276 2.790 -711.82

2P-Weibull 1.034 1.709 -709.71

3P-Weibull 2.396 1.870 -710.23

Gamma 0.045 1.585 -709.78

G-Gamma 0.289 1.589 -709.66

Logistic 36.386 3.730 -717.34

Loglogistic 1.716 1.768 -710.49

Gumbel 84.250 6.355 -723.73

Table 5.	 Weighted average values and ranking of distributions

Distribution AVGOF AVPLOT LKV DESV Ranking

1P-Exponential 10 11 10 1010 9

2P-Exponential 9 9 7 800 7

Normal 7 8 8 760 6

Lognormal 6 6 6 600 5

2P-Weibull 3 3 2 250 3

3P-Weibull 5 5 4 450 4

Gamma 1 1 3 200 2

G-Gamma 2 2 1 150 1

Logistic 8 7 9 840 8

Loglogistic 4 4 5 450 4

Gumbel 11 10 11 1090 10

ˆ
ˆ ˆ
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When analysing failure data using an aggregate method, it has 
to be remembered that sometimes none of the statistical distribution 
models match the analysed data. In this case, the best of the worst 
solutions is obtained, which may poorly fit the data. In other cases, 
in which many models may be well matched to the empirical data, 
statistics alone are not enough; in such cases knowledge of the fail-
ure mechanism can be invaluable when selecting the most appropri-
ate theoretical model. It is important to remember that, although the 
aggregate method applied to small samples will also rank selected 

probability distributions depending on the number of parameters in 
a particular theoretical distribution, using it in such cases comes with 
a high level of uncertainty, and it is only recommended for use with 
larger data sets.

It should also be borne in mind that the two-parameter exponen-
tial distribution, the three-parameter Weibull distribution and the gen-
eralised gamma distribution contain a location parameter, a change 
in which causes a shift of the CDF and probability distribution func-
tion without changing their shape. On the other hand, the generalised 
gamma distribution is a complex model that can easily mimic many 
other distributions, and therefore often seems to be the best fitted to 
the analysed data. 

When analysing data on probability plots, it can often be stated 
that they reflect more than one type of failure (e.g. fatigue, opera-
tional, construction, technological, etc.). In this case, all distributions 
ordered according to the aggregate selection method may turn out to 
be mismatched, because the developed method can only be used for 
a homogeneous type of failure of the examined component. In such 
situations, it is advisable to consider the possibility of using a mixture 
of distributions, e.g. a combination of two Weibull distributions.

6. Conclusions

The results obtained constitute an important argument for the pos-
sibility of using the proposed aggregate method of selecting a theo-
retical distribution for empirical data. By taking into account three 
criteria for assessing the accuracy of the fit, mistakes resulting from 
the use of only one of them can be avoided. 

The use of only one criterion defining the quality of the fit of a 
theoretical to an empirical CDF may often prove insufficient, as it de-
pends on many variables: mainly on the quantity of data and whether 
the data are full or censored, but primarily on the type of failure.

The aggregate method of identifying a theoretical distribution, 
taking into account three criteria, is a general method and has wide 
application, provided that the appropriate conditions are met: the 
number of observations must be large enough, and should contain 
accurate data on times to failure or to the end of observations. The 
modified K-S statistic (AVGOV) is sensitive to local deviations. On 
the other hand, the mean absolute deviation of the theoretical CDF 
from the empirical CDF (AVPLOT) is not so sensitive to local devia-
tions; it takes into account the global difference of distributions, and 
is a good complement to the MK-S criterion. For the third criterion, 
the logarithm of the likelihood function (LKV), the size of the sample 
is important, because for small samples the value obtained may be 
strongly biased. 

The benefits resulting from the correct selection of a random 
variable distribution for the time to failure of a renewable technical 

Fig. 4. Presentation of data on a probability plot of the generalised gamma 
distribution

Fig. 5. Reliability function

Fig. 6. Probability density function

Fig. 7. Histogram
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object (a rail vehicle) are significant, among others due to the costs 
generated by failing to utilise fully the potential lifetime of the com-
ponent, as well as losses resulting from unplanned corrective mainte-
nance and vehicle downtime.

The research was financed from the following funds: PUT 04/43/
SBAD/0111 and 05/51/SBAD/3584.
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