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Acronyms and Abbreviations
TSV	 Through silicon vias
FEM	 Finite element modeling
SEM	 Scan electron microscopy
TEM	 Transmission electron microscopy
FIB	 Focused ion beam
TC	 Thermal cycling
CTE	 Thermal expansion coefficients

Notations
(C)	 Specific heat capacity matrix
(K)	 Heat conduction matrix
{T}	 Heat storage term
Q(t)	 Heat energy

1. Introduction	
With the development of three-dimensional (3D) integrated pack-

aging [3, 5], Through Silicon Via (TSV) has become one of the most 
promising technologies in realizing 3D stacking package[1, 21]. Ad-
vanced TSV technology can realize 3D heterogeneous integration[28], 
high speed, wide band, small size and high performance through vias 
and micro-bumps. TSV is an important physical and electrical con-
nection between chips [19], and the reliability of TSVs affects consid-
erably on the reliability of 3D integrated devices [18]. However, TSV 
technology faces many difficulties and challenges in processing [12, 
16]. Moreover, its reliability has not been fully understood [15]. Thus 
it is of paramount significance to investigate stress evolution mecha-
nism and thermo-mechanical reliability of copper-filled TSV．

The thermo mechanical reliability of the TSV structure is one of 
the most concerned research fields at present [30]. In the typical TSV 
manufacturing process, copper is often used as the conductive mate-
rial to fill the TSVs [14]. The mismatch between copper and silicon’s 
thermal expansion cofficient (CTE) is significant [11]. To be specific, 
under the condition of rapid temperature change, the expansion rate 
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of the copper column is much greater than the silicon body. Therefore, 
the interface between the copper column and the silicon body will 
generate huge stress [7], which eventually causes failures of TSVs 
like silicon crack, delamination between the interface of the copper 
column and the silicon body, etc. [20].

The study on thermo-mechanical reliability of TSV structure main-
ly focuses on two aspects: Stress Simulation [27] and thermal cycling 
experiment [11]. Feng [13] investigated the radial and axial thermal 
stresses of a novel TSV structure using polarized Raman spectros-
copy and a finite element simulation. Pan [26] established a numerical 
model of Cu-filled TSV to simulate and analyze the effect of diameter, 
aspect ratio (AR) and defects on TSV thermal stress and deforma-
tion. The effects on the material properties of the underfill  layer on 
thermal stress and deformation in 3D TSV integration packages were 
evaluated through numerical analysis in Ref. [32]. However, the stress 
evolution mechanism has not been verified by experiments on real 
3D　TSV integration packages in above literatures. Many research-
ers have attempted to reveal the degradation mechanism of TSV struc-
ture under thermal stresses by employing failure analysis[2, 6]. The 
barrier and dielectric liner degradation in a copper (Cu) TSV structure 
are evaluated via a non-destructive electrical characterization method 
after different stress tests such as high temperature storage, tempera-
ture cycling  and electrical biasing, see Ref. [8]. The reliability TSV 
daisy chains under thermal cycling conditions was examined in Ref. 
[10]. However, there are rare systematic literature devoted to verify-
ing the relationship between the state of stress and TSV failures by 
combining simulation with failure physical analysis. Hence, in this 
paper, we explore the relationship between the state of stresses and 
failures of copper-filled TSV interposer. Moreover, the stress evolu-
tion mechanism has also been verified. 

This paper is organized as follows: Section 2 describes the thermo-
mechanical stress simulation analysis result of typical TSV interposer 
under thermal cycling stress. Section 3 demonstrates the observed 
failure modes of the actual sample after thermal cycling experiment. 
Section 4 analyzes the stress evolution mechanism by microscopic 
physical analysis at nanometer scale. Discussions are given in Section 
5 and finally a conclusion is wrapped up in Section 6.

2. Thermo-mechanical Stress Simulation Analysis

2.1.	 Sample Introduction

The sample is a silicon interposer with a 100μm deep and 10um 
long copper-filled TSV which has a 50nm thick Ti barrier and 250nm 
thick SiO2 dielectric layer. The TSV connects two metal levels of 
damascene redistribution copper at the top with one metal level of 
damascene redistribution copper at the bottom. The surface dielectric 
layer silicon interposer is polyimide. The sectional structure of the 
TSV silicon interposer is shown in Fig. 1.

2.2.	 Finite Element Model

To study the correlation between stress distribution by thermal cy-
cling and failures, the finite element analysis software ANSYS [9] 
is employed to implement simulation analysis [4]. The APDL which 
is parametric design language of ANSYS is used to establish a solid 
model of the TSV structure and mesh it. The numerical simulation of 
the TSV thermal cycling test is a transient thermal-structural coupling 
simulation, which includes interacting coupled physical fields (ther-
mal and structural fields) and has a large deformation．In order to en-
sure the accuracy of the calculation and speed up the calculation con-
vergence time, in the thermal-structure coupling analysis, the direct 
coupling analysis method is used. PLANE 13 of the two-dimensional 
coupled field solid element is used to calculate the element matrix or 
element load vectors containing the thermal field and the stress field 
for coupling. PLANE 13 has 4 nodes, each node has 4 degrees of 
freedom and has large deformation and stress stiffness capabilities. It 
can realize the large deformation coupling between the thermal field 
and the structural field. It is solved by setting the element real constant 
to the plane stress.

During the thermal cycling process, the temperature field distribu-
tion is a function of temperature and time. From Fourier’s law, it can 
be known that the heat flux of an object is related to the rate of tem-
perature change. The TSV interposer is placed in a variable thermo-
stat, which only considers heat conduction and heat convection, and 
ignores the effects of heat radiation. The thermal cycling condition 
is shown in Fig. 3. The temperature cycle stress condition is a func-
tion of temperature and time. The temperature range is from -55℃ 
+125℃. The conversion between high temperature and low tempera-
ture is completed within 60s. The retention time of high temperature 
and low temperature is also 14 minutes.  In order to express the tem-
perature load that changes with time, the load-time curve (0-1800s 
load diagram) is divided into load steps, that is, each inflection point 

Table 1.	 Material parameters

Material Si TSV-Cu SiO2 Ti PI

Young’s modulus (GPa) 131 120 72 116 0.15

CTE (ppm/℃) 2.8 17.7 0.55 8.6 25

Poisson’s ratio 0.3 0.36 0.16 0.32 0.37

Heat conductivity coefficient
(kg*m/s2℃) 150 401 7.6 21.9 0.35

Specific heat capacity
(m2/s2℃) 168 420 966 520 1100

Density
(kg/m3) 2.35*103 8.4*103 2.2*103 4.5*103 1.43*103

Fig. 1. The sectional structure of TSV silicon interposer.
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in the load-time curve is a load step. For each load step, the corre-
sponding load value and time value are defined, and the step or gradi-
ent load is set. In addition to the elastic modulus, Poisson's ratio, and 
thermal conductivity coefficient of the material, density and specific 
heat capacity is also needed in transient analysis. The governing equa-
tion for transient thermal analysis is as follows:

	 ( ){ } ( ){ } ( ){ }C KT T Q t+ = 	 (1)

Where (C) is the specific heat capacity matrix, (K) is the heat 
conduction matrix, {T} is the heat storage term, and Q(t) is the heat 
energy. Uneven temperature distribution can cause thermal stress on 
components. TSV interposer is composed of multiple materials, and 
the thermal expansion coefficients of the different materials differ 
greatly, which can easily cause thermal mismatch.

Simulation material parameters are listed in Table 1. Elastoplastic 

models [29] are used for Cu and Ti, and linear elastic models are used 
for SiO2 and Si. Reference temperature without stress is 25℃. Ax-
isymmetric two-dimensional structure model and local mesh genera-
tion are shown in Fig. 2. Note the mesh could not be generated due to 
the big difference of the structure size between Ti and other materials, 
hence um/kg/s/℃ as units and appropriate size tolerance are used in 
the calculation. To facilitate convergence, force control standards are 
used in the process of calculation.

Fig. 3. Thermal cycling condition.

2.3.	 Simulation Results

The Mises stress distribution cloud diagram of the TSV interposer 
indicates that under thermal stress, uneven stress and strain appear in 
the TSV structure, which is analyzed by the elastoplastic yield cri-

terion [23]. As shown in Fig. 4, it shows 
that the maximum stress value of the TSV 
structure locates at the corner of the inter-
face between Top_M1 and TSV when sub-
jected to thermal stress. On the Cu/Ti/SiO2 
interface where the thermal stress distribu-
tion is not uniform, the stress is gradient 
descending from the TSV interface to the 
central area.

As temperature rises from negative to 
positive, the mises stress maximum values 
gradually increase. As shown in Fig. 5, the 
mises stress maximum value is 47.84MPa 
at 20 seconds, then goes up to 143.58MPa 
at 60 seconds, as shown in Fig. 6. The 
mises stress maximum value is constant Fig. 2. Local mesh generation (a) the top (b) the bottom.

b)a)

Fig. 4. Absolute maximum stress values point by FEM analysis.

Fig. 5. Mises stress distribution cloud diagram at 20 seconds

Fig. 6. Mises stress distribution cloud diagram at 60 seconds



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 4, 2020708

during temperature maintenance period. At 900 seconds, the mises 
stress maximum value is 143.58MPa, hardly changes than the value at 
60 seconds, as shown in Fig. 7. As the temperature drops from positive 
to negative, the mises stress maximum value gradually decreases. At 
960 seconds, the mises stress maximum value was 0.38MPa, which is 
approximately equal to the initial stress value, as shown in Fig. 8. A 
cycle period curve of mises stress value at certain stress concentration 
points as shown in Fig. 9 also demonstrates the trend of stress change 
with temperature.

From displacement simulation results, as temperatures rising, in 
the X-direction both sides of TSV displaced towards the middle and 
the maximum displacement value appeared at the center of both sides. 
As shown in Fig. 10, the maximum displacement at the center of the 
left side of TSV is 1.791*10-3 um, and the right is -1.791*10-3 um. In 
the Y direction, both ends of the TSV show an obvious tensile trend. 

As shown in Fig. 11, the maximum displacement at the upper end of 
TSV was 0.297*10-3um, and the lower end was -0.297*10-3 um.

As the temperature rises from negative to positive, the displacement 
gradually increases. The maximum displacement value in the X direc-
tion at 20 seconds and 60 seconds is 0.597*10-3um and 1.791*10-3 um 
respectively (Fig. 13&14). The maximum displacement value remains 
unchanged during the temperature maintenance period, and at 900 sec-
onds, the maximum displacement value is 1.791*10-3 um, as shown in 
Fig. 15. As the temperature decreases from positive to negative, the 
maximum displacement value gradually decreases. At 960 seconds, 
the maximum displacement value was 0.478*10-5 um, which was ap-
proximately equal to the initial displacement, as shown in Fig. 16.

Fig. 7. Mises stress distribution cloud diagram at 900 seconds Fig. 8. Mises stress distribution cloud diagram at 960 seconds

Fig. 10. The total displacement in the X direction at 60 seconds

Fig. 12. The total displacement in the Y direction at 60 seconds (lower ends)

Fig. 9. A cycle period curve of mises stress value at a certain point

Fig. 11. The total displacement in the Y direction at 60 seconds (upper ends)
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3. Thermal Cycling Experiment
To verify the correlation between simulation results and failure 

mode, thermal cycle experiments [17, 25] were carried out, and the 
experimental conditions were consistent with the temperature load 
condition adopted in the simulation.

The test structure for the thermal cycling experiment includes 13 
groups of TSV daisy chains [16], and each group of daisy chains in-
cludes 8 groups of TSVs. After 1000 thermal cycles, a statistical anal-
ysis of the DC electrical resistance as a function of thermal cycling is 
obtained and presented in Fig. 17. It is observed that the resistance of 
the TSV daisy chain of No.1, 2, 6, and 13 increased significantly with 
the number of thermal cycles.

Cross-section analysis [22] of the TSV daisy chain of No.1 had 
been carried out, and the following failure modes were observed at the 
interface between Top_M1 and TSV, as shown in Fig. 18: 

Copper-Filled TSV was deformed from the uniform thickness 1)	
to a “U-shape” thickness, as shown in Fig. 19.
Deformation occurred at the connection between TSV and 2)	
BTM_M1, as shown in Fig. 20. 
Voids appeared in filled copper, as shown in Fig. 21.3)	

4. Degradation Mechanism Analysis
To further analyze the failure mechanism [24, 31] of TSV sam-

ples after thermal cycling experiment, TEM analysis was performed. 
Firstly, a dual-beam focused ion beam (FIB)-SEM tool (Zeiss Auriga 
Compact) was used to slice parallel to the cross-sectioned surface. 
The top view of TSV for FIB preparation was shown in Fig. 22. To ex-
tract the slices at failure site, a trench was dug with 5 um depth, 7 um 
long, and 8 um wide，as shown in Fig. 22(b). The FIB cross-section 
appearance at the interface between Top_M1 and TSV was shown in 
Fig. 23, and from this cross-section appearance it could be judged 
whether the dug depth is appropriate or not. Before slices extraction, 
the thickness of the slices should be no less than 1 um. The slices 
were extracted by the manipulator and placed on the copper net. To 
meet the requirements of TEM analysis, the slices should be thinned 
to about 100nm. The slice for TEM analysis at the interface between 
Top_M1 and TSV is shown in Fig. 24.

Then,the prepared slice was observed by the transmission electron 
microscope  (TEM) model JEM-2100F with 0.25nm point resolution, 
0.102nm line resolution and 0.20nm STEM resolution. According to 
the STEM appearance as shown in Fig. 25 and the TEM appearance 
as shown in Fig. 26, it is confirmed that under thermal cycling stress, 
the crack first appears at the corner of the interface between Top_M1 
and TSV with the maximum stress value (as shown by the arrow), 
and then extended towards the inside of TSV. This agrees with the 
simulation results.

Fig. 13. The total displacement in the X direction at 20 seconds Fig. 14. The total displacement in the X direction at 60 seconds

Fig. 16. The total displacement in the X direction at 960 secondsFig. 15. The total displacement in the X direction at 900 seconds

Fig. 17. The DC electrical resistance change (the logarithmic coordinate)
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Besides, the distribution and diffusion behavior of elements at the 
interface had also been investigated by Bruker XFlash 5030T X-ray 
energy spectrometer equipped with silicon drift detector (SDD) with 
energy resolution better than 123eV within the input count rate of 
100,000cps which provided an important clue to confirm the failure 
mechanism. As shown in Fig.27 and Fig.28, the TSV interface had 

four elements: Si, O, Ti, and Cu, which is corresponding with four in-
terface materials. From the distribution of the Ti element, after crack 
took place at the corner of the interface between Top_M1 and TSV 
with the maximum stress value, the Ti elements spread along the crack 
towards the Cu substrate. The diffusion behavior of the Ti element had 

Fig. 18. Cracks at the interface between Top_M1 and TSV (a) failure TSV 1 (b) failure TSV 2

Fig. 20. Deformation at the connection between TSV and BTM_M1 (a) normal appearance (b) failure appearance

Fig. 19. Copper-Filled TSV deformation from uniform thickness to thin in the middle and thick at the ends (a) normal appearance (b) failure appearance

b)a)

b)a)

b)a)
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a good corresponding relationship with the physical mechanism of 
crack initiation and propagation.

5. Discussion
Mises stress distribution cloud diagram showed that the maximum 

stress value of the TSV appears at the corner of the interface between 
Top_M1 and TSV under thermal stress. This is because of the serious 
thermal mismatch caused from the thermal expansion coefficient dif-

Fig. 22. The top view of TSV for FIB preparation (a) Metallographic microscope appearance (b) SEM appearance

Fig. 21. TSV void (a) failure site (b) local magnification appearance

Fig. 23.	 FIB cross-section appearance at the interface between Top_M1 and 
TSV

Fig. 24. Slice for TEM analysis at the interface between Top_M1 and TSV

b)a)

b)a)
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ference of copper and silicon dioxide (two orders of magnitude). Be-
sides, it is easier to produce stress concentration around the corner.

As temperature increases, the mises stress and displacement val-
ues gradually increase. This is related to the thermal properties of 
materials.

The crack areas observed after the actual thermal cycling experi-
ment is in a good corresponding relation with stress concentration ar-
eas simulated by finite element analysis. Under thermal cycling stress, 
first, the crack appears at the corner of the interface between Top_M1 
and TSV with the maximum stress value, and then it extends toward 
the inside of TSV. As a result, crack is observed at the interface be-
tween Top_M1 and TSV by scanning electron microscopy (SEM).

TSV deformations after the actual thermal cycling experiment also 
have a good corresponding relation with displacement simulation re-
sults. From displacement simulation results, as temperatures rise, in 
X-direction both sides of TSV displaced toward the middle and the 
maximum displacement value appears at the center of both sides. In 
Y direction, both ends of the TSV shows an obvious tensile trend. By 

SEM, it is found that the copper-filled TSV deformation from uni-
form thickness to thin in the middle and thick at the ends under the 
action of thermal cycling stress. The upper and lower ends show obvi-
ous tensile deformation. The left and right sides extrude toward the 
middle. The axial stretching of the metal accumulates at both ends 
of TSV, which results in deformation at the connection between TSV 
and BTM_M1.

Voids that appeared in filled copper are related to electromigra-
tion under thermal stress. TEM appearance and diffusion behavior of 
Ti element confirm the physical mechanism of crack initiation and 
propagation.

6. Conclusions
In this paper, the relationship between the state of stresses and 

failure of TSV has been explored. FEM-based thermo-mechanical 
analyzes are performed to understand stress distribution and change 
in the TSV interposer. Subsequently, a thermal cycling experiment is 
performed to verify the simulation results. Based on FIB-SEM analy-
ses, four different damage types are observed in the TSV interposer; 
TSV-M1 interface cracks, TSV voids, TSV-bottom deformation, and 
TSV “U-shape” deformation. TSV deformations after the actual ther-
mal cycling experiment have a good corresponding relation with dis-
placement simulation results. Voids that appeared in TSV are related 
to electromigration under thermal stress. Combining FEM simulation 
analysis and TEM physical analysis, it is found that the crack site is 
correlated with the distribution of stress in the TSV interposer, the 
crack first appears at the corner of the interface between Top_M1 and 
TSV with the maximum stress value, and then extended towards the 
inside of TSV. 
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Fig. 25. STEM appearance at the interface between Top_M1 and TSV Fig. 26. TEM appearance at the interface between Top_M1 and TSV

Fig. 27. Element analysis of TSV interface (four elements) overlay)
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Fig. 28. Element analysis of TSV interface (each element) (a) O element (b) Si element (c) Cu element (d) Ti element

c) d)

b)a)
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