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In this paper, a system reliability model subject to Dependent Competing Failure Processes 
(DCFP) with phase-type (PH) distribution considering changing degradation rate is pro-
posed. When the sum of continuous degradation and sudden degradation exceeds the soft 
failure threshold, soft failure occurs. The interarrival time between two successive shocks 
and total number of shocks before hard failure occurring follow the continuous PH distri-
bution and discrete PH distribution, respectively. The hard failure reliability is calculated 
using the PH distribution survival function. Due to the shock on soft failure process, the 
degradation rate of soft failure will increase. When the number of shocks reaches a specific 
value, degradation rate changes. The hard failure is calculated by the extreme shock model, 
cumulative shock model, and run shock model, respectively. The closed-form reliability 
function is derived combining with the hard and soft failure reliability model. Finally, a 
Micro-Electro-Mechanical System (MEMS) demonstrates the effectiveness of the proposed 
model.
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Notation
X(t)	 Continuous degradation at time t
S(t)	 Cumulative degradation due to random shocks at time t
XS(t)	 Total degradation at time t
N(t)	 Number of random shocks arrived by time t
λ	 Intensity of random shocks 
φ	 Initial degradation
β1	 Initial degradation rate
β2	 Changed degradation rate when the number of shocks reaches 

a specific value
H	 Soft failure threshold
D1	 Hard failure threshold under extreme shock model
D2	 Hard failure threshold under cumulative shock model

WL	 Critical level on shock magnitude under run shock model
WU	 Hard failure threshold under run shock model
Wi	 The magnitude of the ith shock
FW(w)	 Cumulative distribution function (cdf) of Wi
Yi	 Degradation damage caused by the ith shock
Tj	 Arrival time of the jth shock(Tj~ Ga(j,λ))
J	 The required number of shocks’ occurrences when the soft 

failure degradation rate changes
k	 The required number of consecutive shocks that exceed the 

critical level WL under run shock model
N	 The number of transfers before the Markov chain enters the 

absorption state
m	 The maximum number of shocks that the system can support

1. Introduction
Many systems will fail due to various failure modes caused by 

degradation and random external shocks (such as wear, corrosion, fa-
tigue, fracture, and shock loads) during operation [1]. Some systems 
may suffer multiple failure processes, and any failure processes will 

cause the system to fail. In this paper, we consider two failure proc-
esses: soft failure process and hard failure process. Soft failure means 
that the performance of the system gradually decreases over time. The 
system will fail when the degradation performance exceeds a certain 
critical threshold. Common soft failure includes wear, corrosion, and 
so forth. Hard failure refers to the phenomenon that the system breaks 
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down suddenly in the normal working process (e.g., fracture). These 
two failure processes compete because any failure will cause the sys-
tem to fail [15]. Besides, because the shock acts on the soft and hard 
failure processes simultaneously, the soft and hard failure processes 
are dependent. It is challenging to predict system reliability when the 
soft and hard failure processes are dependent [25].

Most of researchers are devoted to the reliability prediction of 
systems that experience degradation or random shocks in the avail-
able literature. When there is not enough failure data, the degradation 
modeling method can indirectly provide the failure information of the 
system [25]. There are two main types of degradation models: the 
stochastic process model, such as the Wiener process, Gamma proc-
ess, and inverse Gaussian process; and the other is the general path 
model [30]. Ni [21] developed degradation model for a two-stage 
degradation system subject to shocks, where degradation damage is 
caused by shocks and follows the Gamma distribution. The general 
path model is first introduced into the degradation literature by Lu 
and Meeker [16]. Because it is easy to use and the theory has been 
well established, the general path model has been used in many DCFP 
models to describe the degradation process [1, 6, 23, 25]. In our study, 
in order to implement the idea that the degradation rate changes when 
the number of shocks reaches a specific value, we use the general path 
model as the degradation process. Because the degradation rate in the 
general path model can be changed, this characteristic is exactly con-
sistent with our idea. At the same time, the random shock model has 
been extensively studied. Various shock models are introduced into 
the hard failure reliability calculation. Shock models can be divided 
into the following categories: extreme shock model [29], cumulative 
shock model [20], run shock model [18], m shock model [11], delta 
shock model [13], and mixed shock model [26]. In this paper, hard 
failure is calculated under three different shock patterns: the extreme 
shock model, the cumulative shock model, and the run shock model.

In the available literature, most of the literature has been devoted 
to the reliability modeling subject to DCFP. Peng [23] developed reli-
ability modeling for complex systems subject to multiple dependent 
competing failure processes, where two correlated failure processes 
are considered. Soft failure is caused jointly by continuous degrada-
tion and additional abrupt degradation damage due to a shock process 
and hard failure caused by abrupt stress from the same shock proc-
ess. Guo [7] presented a joint copula reliability model for systems 
experiencing two degradation processes and random shocks, where 
the dependence between the two degradation processes is consid-
ered by copula function. Keedy [12] built a probabilistic reliability 
model for stents experiencing dependent competing risk processes. 
Crack propagation is regarded as a degradation process, and a single 
overload under external shocks is considered a hard failure process. 
Besides, shocks will accelerate the propagation of cracks, thus form-
ing a dependent competing failure process. Huynh [10] proposed a 
Degradation-Threshold-Shock model with dependent competing fail-
ure modes, where the shock arrival rate follows the nonhomogeneous 
Poisson process, and the Poisson intensity depends on the degrada-
tion level of the system. Jiang [11] established reliability models for 
systems subject to multiple s-dependent competing failure processes. 
When the shock meets a particular random shock pattern, the hard 
failure threshold reduces to a lower level. Rafiee [25] investigated 
reliability models for a system subject to DCFP of degradation and 
random shocks with a changing degradation rate according to par-
ticular random shock patterns. Lin [14] and Hao [8] studied the gen-
eral dependences between the degradation and two types of random 
shocks (extreme shocks and cumulative shocks). Fan [6] established a 
new reliability model for DCFP, where the intensity function of non-
homogeneous Poisson process depends on the degradation process-
es. Rafiee [26] investigated reliability modeling for systems subject 
to DCFP considering the impact of a new generalized mixed shock 
model. When the generalized mixed shock model is satisfied, the deg-
radation rate and the hard failure threshold can simultaneously shift. 
Zhang [31] proposed a new reliability model for systems with multi-

ple components subject to multiple natural degradations and random 
shocks, where the degradation rate will accelerate due to shocks. Che 
[4] studied a novel reliability model for load-sharing k-out-of-n sys-
tems, where the dependent workload and shock effects are consid-
ered. An [1] considered that systems with high reliability and long 
life could resist small shocks, and divided shocks into safety shocks, 
damage shocks, and fatal shocks, and carried out reliability modeling 
for multiple degradation and shock processes. Lyu [17] applied the 
reliability model of DCFP to the Turbine and Worm System. Pourhas-
san [24] put forward a simulation approach about analytic reliability 
assessment for complicated systems, which embeds the stochastic 
degradation process and random shocks. In most of the above litera-
ture, the interference model is utilized to calculate the hard failure 
reliability; that is, the system is reliable when the shock magnitude 
and shock times are less than a certain threshold or the interarrival 
shock time exceeds a certain threshold. In our research, the phase-type 
distribution method is employed to calculate the hard failure reliabil-
ity. The interarrival time between two successive shocks is assumed to 
be continuous phase-type distribution, and the phase-type distribution 
survival function is used to calculate the reliability.

The phase-type distribution is suitable for modeling the interar-
rival time between two successive shocks. There are many advan-
tages about the phase-type distribution method. First, the simplicity 
of mathematics is one of the advantages of the phase-type distribution 
method. We can express the distribution and moment in the form of 
matrix, and it is easy to calculate the results we need [22]. Second, 
When multiple shock sources act on a system, especially complex 
shocks such as run shocks, it is difficult to obtain a closed reliability 
expression with traditional hard failure reliability calculation meth-
ods, but the phase-type distribution method is easy to calculate the 
hard failure reliability. Besides, the closure properties of phase-type 
distributions under some operations are helpful in the reliability con-
text [2]. In the literature [3, 19, 27], the phase-type distribution is 
applied to analyze the reliability of shock models. In the literature [3, 
19], the interarrival time between shocks is assumed to be continuous 
phase-type distribution. Shocks may lead to system failure, and the 
system may fail due to wear. Its wear lifetime follows the continuous 
phase-type distribution. The interval between shocks and the wear life 
depend on the number of cumulative shocks. When the shocks are 
extreme shocks, cumulative shocks, and run shocks, the survival func-
tion of the system is obtained. Segovia [27] displayed an analytical 
expression of the survival function of a multi-state system that suf-
fered shocks by using phase-type distribution. Zhao [32] proposed a 
multi-state shock model, where the Markov chain was constructed by 
the number of shocks of different types of shocks. When the interar-
rival time between shocks follows the common continuous phase-type 
distribution, the survival function and mean residual lifetime of the 
multi-state system were derived. Eryilmaz [5] developed a new mixed 
shock model, which combined the extreme shock model and the run 
shock model. The survival function of the system was studied when 
the interarrival time and the shock magnitude are independent and 
dependent using the property of phase-type distribution. The above 
literature used the phase-type distribution calculation method when 
calculating the failure reliability caused by shocks. Literature [3, 19, 
27] assumed that the wear life follows a continuous phase-type dis-
tribution. When the failure is caused by wear, the survival function is 
used to describe the reliability of the system.

In the existing literature, the phase-type distribution calculation 
method has not been combined with DCFP. We combine the phase-
type distribution calculation method with DCFP. As far as the author’s 
knowledge, this is the first time for the research in combining phase-
type distribution with DCFP. In this paper, the general path model is 
utilized for the soft failure. The degeneration path is assumed to be a 
linear path. The degradation rate changes when the number of shocks 
reaches a specific value. The soft failure reliability is calculated by 
the total degradation-threshold interference model. The phase-type 
distribution method is applied to calculate the hard failure. It is as-



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 23, No. 4, 2021 629

sumed that the interarrival time between shocks follows the common 
phase-type distribution, the total number of shocks before the hard 
failure occurring follows the discrete phase-type distribution, and the 
survival function is employed to calculate the hard failure reliability. 
The total reliability of the system is derived considering the hard and 
soft failures by the number of shocks.

The rest of this article is organized as follows. In Section 2, the 
soft failure process and the hard failure process of the system are 
described, along with the dependent competing failure relationship 
between those processes. In Section 3, the reliability models of the 
system, including the soft failure model, the hard failure model(the 
extreme shock model, cumulative shock model, and run shock mod-
el), and the model of DCFP, are established. In Section 4, a numerical 
example is developed to demonstrate the implementation and effec-
tiveness of the proposed model. In Section 5, the calculation results 
are summarized.

2. System description and preliminaries
As shown in Figure 1, the failure of a system is caused by two de-

pendent competing failure processes: the soft failure process and the 
hard failure process. The total degradation of the soft failure process 
consists of continuous degradation and sudden degradation caused by 
shocks. When the total degradation exceeds the soft failure threshold 
H, soft failure occurs in the system. At the same time, hard failure will 
occur when the shock magnitude exceeds the hard failure threshold D. 
Whichever failure processes occurs first will cause the system to fail. 
The shock process acts on the soft and hard failure process simultane-
ously, so system failure results from dependent competing failures in 
the soft and hard failure process. In this paper, three shock models 
are applied for the hard failure process: (1) Extreme shock model, 
when the shock magnitude exceeds the hard failure threshold, the sys-
tem will have a hard failure. (2) Cumulative shock model, when the 
cumulative magnitude of shocks exceeds the hard failure threshold, 
hard failure occurs in the system. (3) Run shock model, when the 
magnitude of k consecutive shocks exceeds the critical threshold, hard 
failure occurs. Besides, when the number of shocks reaches a certain 
value, the degradation rate of soft failure changes.

Fig. 1.	 Two dependent competing failure processes: (a) soft failure, (b) hard 
failure

Phase-type distributions and property:
Consider a finite discrete-time Markov chain in the state space {1, 

2, ..., m, m+1}, where 1, 2, ..., m are the transient states, and m+1 
is the absorbing state. The number of transitions before the Markov 
chain enters the absorbing state is defined as a discrete phase-type 
distribution. The probability mass function of discrete phase-type dis-
tributed random variable N is [22]:

	 P N n nn={ } = =−aQ u1 1 2', , ,  
	 (1)

where, for n∈N , Q=(qij)m×m is the transition probability matrix be-
tween m transient states, and u’=(I-Q)e’ is the transition probability 
vector from the transient state to the absorption state, I is the identity 
matrix. The matrix Q must satisfy the condition that I-Q is non-sin-
gular. We use ~ ( )dN PH a,Q  to indicate that the random variable N 
follows the discrete phase-type distribution.

Assuming a finite-state Markov process starts the transition from 
transient state i with probability ai. The time distribution of the Markov 
process entering the absorbing state is defined as continuous phase-
type distribution. The cumulative distribution function of continuous 
phase-type distributed random variable X is [22]: 

	 P X x x≤( ) = − ( )1 ααexp 'A e 	 (2)

The survival function of X is given by:

	 P X x x>( ) = ( )ααexp 'A e 	 (3)

where, A is an m×m matrix, whose diagonal elements are negative, 
and non-diagonal elements are non-negative, and e=(1,…,1)1×m. 
All elements of the row vector α=(a1,…,am) are non-negative. Ex-
ponential, Erlang, generalized Erlang, and Coxian distributions are 
commonly-used continuous phase-type distributions [9]. We use 
X PHc~ ,αα A( )  to indicate that the random variable X follows the 

continuous phase-type distribution of order m with a PH-generator A 
and substochastic vector α.

Proposition [22]: Assume that X1, X2,… are independent and
X PHi c~ ,αα A( ) , i=1,2,… and independently ~ ( )dN PH a,Q . If α 

and a are stochastic vectors, i.e., ααe ae' ', ,= =1 1  then 

X PHi c
i

N
~ , ,αα αα⊗ ⊗ + ( )⊗( ) = −

=
∑ a A I a Q a Ae'0

1

0  .

where  is the Kronecker product.

3. Reliability analysis of DCFP considering time phase-
type distribution

In this section, the reliability analysis of the system experiencing 
the degradation process and the shock process is carried out. First, the 
soft failure model is developed—the degradation rate changes when 
the number of shocks reaches a specific value. Then the phase-type 
distribution is utilized to model the hard failure process (including 
extreme shock, cumulative shock, and run shock). Finally, the total 
reliability is calculated.

3.1.	 Soft failure model under degradation and random 
shocks 

The total degradation includes continuous degradation and abrupt 
degradation caused by random shocks. The continuous degradation 
path is assumed to be a linear path X(t)=φ+βt. φ is the initial degrada-
tion, β1 is the degradation rate of the first stage, β2 is the degradation 
rate of the second stage. Assume that the initial degradation φ, the 
degradation rate β1 and β2 all follow the normal distribution, that is, 
β1~ N( μβ1,σβ1

2), β2~ N( μβ2,σβ2
2). The degradation rate changes when 

the jth shock arrives. Then the continuous degradation X(t) can be 
expressed as:

	 X t
t j N t
T t Tj j

( )
, ( )

( ),
=

+ >
+ + −

ϕ β
ϕ β β

1

1 2

                       
  jj N t≤





 ( )
	 (4)

where, Tj is the time of arrival of the jth shock, and N(t) is the number 
of random shocks arrived by time t.
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Random shocks will cause abrupt degradation damage to the deg-
radation process, thereby accelerating the degradation process. As-
suming that the magnitude of the random shock Wi is independent 
and identically normally distributed, namely Wi(ti)~N(μW, σW

2), ti is 
the arrival time of the ith shock. The cumulative distribution function 
of the shock magnitude is FW(x). The arrival times of random shocks 
follow a homogeneous Poisson process with intensity λ, then:

	 P N t i
t
i

e i
i

t( ) , , , ,={ } = ( )
=−λ λ

!
  0 1 2 	 (5)

When the number of random shock arrivals follows the Poisson 
process with intensity λ, for a certain j, the arrival time Tj of the jth 
shock follows the Gamma distribution with shape parameter j and 
scale parameter λ, that is, Tj~ Ga(j,λ). The probability density func-
tion is:

	 f t j
j

t eT j

j

j
j t

j
j( ; )

( )!
=

−
− −λ λ

1
1 	 (6)

Let Yi (i=1,2,…,∞) be the abrupt degeneration increment caused by 
the ith random shock, that is, the damage caused by the random shock 
to the degradation process. Then the total degradation S(t) caused by 
random shocks is:

	

( )

1
,   ( ) 0

( )
0,         ( ) 0

N t

i
i

Y N t
S t

N t
=


>= 

 =

∑ 	 (7)

Then the total degradation of soft failure Xs(t) can be expressed 
as:

	 ( ) ( ) ( )SX t X t S t= + 	 (8)

To keep the system in normal working condition, the total degra-
dation of the system Xs(t) should be less than the soft failure critical 
threshold H. The reliability of the soft failure is:

R t P X t H P X t S t H P X t Y Hs s i
i

N t
( ) ( ) ( ) ( ) ( )
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


=
∑P X t H N t P N t P X t Y H N t ii
i

N t
( ) | ( ) ( ) ( ) | ( )

( )
0 0

1




 ⋅ =( )

= + <( ) ⋅ =( ) + + +

=

∞

=

∑
i

i
i

N t

P N t i

P t H P N t P t Y

1

1 1
1

0

( )

( )
( )

ϕ β ϕ β ∑∑∑

∑

<








 ⋅ =( )

+ + + − + <


=

=

H P N t i

P T t T Y H

i

j

j j i
i

N t

1

1 2

( )

( )
( )

ϕ β β
1





 ⋅ =( )

=
− +












⋅

=

∞
∑

i j
P N t i

H t

t

+1
( )

( )
exp(Φ

ϕ µ

σ

β

β

1

1
2 2

−− +
− + +

+














⋅

−

=
∑λ

ϕ µ µ

σ σ

λ λβ

β

t
H t i

t i

tY

Yi

j
)

( ) exp( )(
Φ 1

1
2 2 21

tt
i

H t t t i

t t t i

i

j j Y

j j Y

)
!

( )

( )
+

− + + − +( )
+ − +


Φ

ϕ µ µ µ

σ σ σ

β β

β β

1 2

1 2
2 2 2 2 2











 −

⋅
−

∫∑
=

∞
− −

0
1

1
t

i j

j

j
j t

j

i

j
t e dt t t

i
j

+1

λ λ λλ

( )!
exp( )( )

!

(9)

3.2.	 Hard failure model under extreme shock
The extreme shock model is shown in Figure 2. It can be seen from 

Figure 2 (a) that when the number of shocks reaches a specific value 
(the schematic diagram is 3), the soft failure degradation rate increas-
es from β1 to β2. As shown in Figure 2(b), the fourth shock is a fatal 
shock, so the system life is T=X1+X2+X3+X4.

Let Xi denote the interarrival time between the ith shock and the 
i–1th shock, i≥1. Suppose the arrival rate of the shock follows a Pois-

son distribution with parameter λ. In that case, the interarrival time Xi 
follows the exponential distribution, which can be expressed as phase-
type distribution: 

	 X PH PHi c c~ , ,αα A( ) = −( )1 λ 	 (10)

Let p1 be the probability of a fatal shock, and 1–p1 be the prob-
ability of a non-fatal shock.

	 ( ) ( )1 1 1> 1 =1 W
i W

W

Dp P W D F D µ
σ

 −
= = − −Φ 

 
	 (11)

where ( )Φ   is the cumulative distribution function of standard nor-
mal distribution.

Fig. 2. Extreme shock model

Let N be the number of transfers before the Markov chain enters 
the absorption state, that is, the number of shocks before hard failure 
occurring, which follows the discrete phase-type distribution, namely 

~ ( )dN PH a,Q

( ) ( )

( ) ( )

1

1

1 1

1

1 1

0 1 0 0
0 0 1 0

1  0  0  0    0 ,   0 0 0
1

0 0 0 0

m

m m

p
p

p
× +

+ × +

− 
 − 
 = =
 

− 
 
 

a Q





  

   



(12)

where, m is the maximum number of shocks that the system can sup-
port.

Let T be the life of the hard failure of the system, then according to 
the phase-type distribution properties, we have:

T X PH PHi c c
i

N
= ( ) = ⊗ ⊗ + ( )⊗( ) = −

=
∑ ~ , , ,g G ± a A I a Q a Ae'0

1

0αα   
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g G= ( ) =

− −( )
− −( )

× +( )1

1 0 0
0 1 0

01 1

1

1
  0  0  0    0   0





m

p
p

,

λ λ
λ λ

−−
−( )
−























+( )× +( )

λ
λ

λ

 

   



1 1

1 1

p

m m0 0 0

(13)

According to the phase-type distribution survival function, we 
have:

	 ( ) ( ) 'expP T t t> = g G e 	 (14)

Because the soft failure reliability formula is derived by the number 
of shocks as the conditional probability, in order to unify the reli-
ability expression of soft and hard failures, the hard failure reliability 
formula also uses the number of shocks as the conditional probability. 
Therefore, the hard failure reliability can be expressed as:

R t P T t T t N t i P N t i

P T t
t t

H
i

( ) |

exp

= >( ) = > ( ) =( ) ⋅ ( ) =( )

>( ) ⋅ −( )
=

∞
∑

0

=
λ λ(( )

= ( ) ⋅
−( )( )

=

∞

=

∞
∑ ∑

i

i

i

ii
t

t t
i!

exp
exp

!
'

0 0
g G e

λ λ

	
(15)

3.3.	 Hard failure model under cumulative shock
The cumulative shock model is shown in Figure 3. It can be seen 

from Figure 3 (a) that when the number of shocks reaches a specific 
value (the schematic diagram is 3), the soft failure degradation rate 
increases from β1 to β2. As shown in Figure 3(b), the fourth cumula-
tive shock exceeds the hard failure threshold, the system fails, so the 
system life is T=X1+X2+X3+X4.

Let pi be the probability that the ith cumulative shock is a fatal 
shock, then:

	 p D i

i
i

W

W

= −
−













1 2Φ
µ

σ 2
	 (16)

Let N be the number of transfers before the Markov chain enters the 
absorption state, which follows the discrete phase-type distribution, 
namely ~ ( )dN PH a,Q
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p
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p
× +

+ × +

− 
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 

− 
 
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


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   



	
(17)

where, m is the maximum number of shocks that the system can sup-
port.

Let T be the life of the hard failure of the system, then according to 
the phase-type distribution properties, we have:
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According to the phase-type distribution survival function, we have 
( ) ( ) 'expP T t t> = g G e
Therefore, the hard failure reliability can be expressed as:
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3.4.	 Hard failure model under run shock 
The run shock model is shown in Figure 4. k =2 means that when 

the magnitude of two consecutive shocks exceeds the critical thresh-
old WL, hard failure occurs. It can be seen from Figure 4 (a) that when 
the number of shocks reaches a specific value (the schematic diagram 
is 3), the soft failure degradation rate increases from β1 to β2. As 
shown in Figure 4(b), when the fourth shock arrives, the condition 
of system failure caused by run shock is met, so the system life is 
T =X1+X2+X3+X4.

Let p represent the probability that the shock exceeds the critical 
level of run shock model under the condition that the shock is not 
fatal, then:

( ) ( )
( )

( ) ( )
( )

| L i U W U W L
i L i U

i U W U

P W W W F W F W
p P W W W W

P W W F W
< < −

= > < = =
<

(20)

Fig. 3. Cumulative shock model
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Let N be the number of transfers before the Markov 
chain enters the absorption state, which follows the discrete 
phase-type distribution, namely ~ ( )dN PH a,Q :
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    (21)

where, k is the required number of consecutive shocks that exceed the 
critical level WL under run shock model.

Let T be the life of the hard failure of the system, then according to 
the phase-type distribution properties, we have:
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According to the phase-type distribution survival function, we have 
( ) ( ) 'expP T t t> = g G e
Therefore, the hard failure reliability can be expressed as:
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3.5.	 System reliability analysis
The system experiences both soft and hard failure processes at the 

same time. If the system is not to fail, neither soft nor hard failures 
can occur. According to Section 3.1 to 3.4, we have obtained the sys-
tem’s soft and hard failure reliability expressions. Therefore the total 
reliability is:

(24)

4. Numerical examples
In this section, a micro-engine is studied as a realistic example to 

illustrate the proposed model’s effectiveness in this paper. The micro-
engine includes comb-drive actuators and rotating gear, which are 
mechanically connected. After the voltage is applied, the comb-drive 
linear displacement is transformed into the circular motion of the gear 
through the pin joint. According to the experimental research con-
ducted by Sandia National Laboratory, the wear of the friction surface 
between the gear and the cylindrical pin is the primary failure mode 
of the micro-engine, and the increase in wear eventually causes the 
cylindrical pin to break. The micro-engine is not only subjected to 
wear but also to random shocks. Tanner et al. [28] conducted a reli-
ability analysis on the micro-engine in the shock environment. Ran-
dom shocks will cause wear debris and accelerate the wear of the 
friction surface. Besides, under the impact of the shock, the spring 
may be misaligned, and a shock with sufficient magnitude may cause 
the spring to break. Because the shock will accelerate the degrada-
tion process, we assume that the degradation rate increases after the 
number of shocks reaches a specific value. The parameters used in 
reliability analysis are shown in Table 1.

The total reliability curves, soft failure reliability curves, and 
hard failure reliability curves under the extreme shock model, cu-
mulative shock model, and run shock model are shown in Fig. 5. 
Besides, the sensitivity curves of (D1, D2, WL), Poisson intensity 
λ, and soft failure degradation rate β2 under three shock models are 
demonstrated in Fig. 6 – 8.

It can be seen from the soft failure reliability curve and the total 
reliability curve in Fig. 5 (a) that when t is around 0.8×105, the decline 
rate of the soft failure reliability curve and the total reliability curve 
becomes faster, which is because the number of shock arrivals reaches 
a certain threshold at this time. The soft failure degradation rate in-

Fig. 4. Run shock model(k=2)
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creases, resulting in a faster decline in soft failure reliability and total 
reliability. It can be seen from Fig. 6 (a) that when the hard failure 
threshold D1 is increased from 1.3 to 1.6, the reliability curve shifts to 
the right. We have increased the hard failure threshold, and the system 
has better performance, which increases the hard failure reliability, 
and the total reliability becomes greater. It can be seen from Fig. 7 
(a) that when the Poisson intensity λ increases, the reliability curve 
shifts to the left. We have increased the frequency of shock arrivals, 
and the system is in a worse working environment, thus reducing the 
reliability. It can be seen from Fig. 8 (a) that with the increase of β2, 
the reliability curve shifts to the left, which is due to the increase in the 
rate of soft failure degradation leads to a decrease in the soft failure 
reliability, thereby reducing the total reliability.

It can be seen from Fig. 6 (b) that when the hard failure threshold 
D2 increases from 4.0 to 7.0, the total reliability curve shifts to the 
right. As D2 decreases, the inflection point of the total reliability curve 
becomes less noticeable. It is because when D2 is a smaller value, the 
number of shocks required to cause the system to fail is small. The 
system will fail when the number of shocks has not reached a prede-
termined value that changes the degradation rate of soft failure, so the 

inflection point of the reliability curve is not apparent. It can be seen 
from Fig. 7 (b) that when the Poisson intensity λ increases, the reli-
ability curve shifts more obviously to the left, which indicates that the 
reliability of the system is more sensitive to the frequency of shock 
arrival. So it is necessary to minimize the frequency of shock arrivals 
to maintain high reliability. It can be seen from Fig. 8 (b) that with the 
increase of β2, the reliability curve shifts to the left. The rise of the soft 
failure degradation rate leads to a decrease in soft failure reliability, 
reducing the total reliability.

It can be seen from Fig. 5 (c) that compared with the total reli-
ability under the extreme shock model (see Fig. 5 (a)), the total reli-
ability under the run shock model is higher. It is because when the 
hard failure threshold under extreme shock model D1 and the critical 
level on shock magnitude under run shock model WL are the same, the 
run shock model requires that the system fails when two consecutive 
shocks exceed WL, while the extreme shock model only needs one 
shock to exceed D1. It can be seen from Fig. 6 (c) that when the criti-
cal level on shock magnitude WL increases from 1.3 to 1.6, the total 
reliability curves are relatively close, which shows that the reliability 
of the system is less sensitive to the critical level on shock magnitude 
WL. It can be seen from Fig. 7 (c) that when the Poisson intensity λ 
increases, the reliability curve shifts more obviously to the left, which 
indicates that the reliability of the system is more sensitive to the fre-
quency of the shock. So it is necessary to minimize the frequency of 
shock arrivals to maintain high reliability. It can be seen from Fig. 8 
(c) that with the increase of β2, the reliability curve shifts to the left. It 
is due to the rise in the soft failure degradation rate, which leads to a 
decrease in the soft failure reliability and the total reliability.

Table 1.	 Parameter values of the reliability model

Parameters Values Sources

H 0.00125 μm3 (Tanner&Dugger,2003)

D1 1.5 GPa (Rafiee, 2014)

D2 5.0 Gpa (Hao, 2017)

WU
WL

1.8 Gpa
1.5 Gpa

Assumption
(Rafiee, 2014)

φ 0 (Tanner&Dugger,2003)

μβ1 8.4823×10-9 μm3 (Tanner&Dugger,2003)

σβ1 6.0016×10-10 μm3 (Tanner&Dugger,2003)

μβ2 10.4823×10-9 μm3 (Rafiee, 2014)

σβ2 6.0016×10-10 μm3 (Tanner&Dugger,2003)

μW 1.2 GPa (Rafiee, 2014)

σW 0.2 GPa (Rafiee, 2014)

μY 1.0×10-4 μm3 (Rafiee, 2014)

σY 2×10-5 μm3 (Rafiee, 2014)

λ 5×10-5 / revolutions (Rafiee, 2014)

j 3 Assumption

k 2 Assumption

Fig. 5.	 Curves of soft failure reliability, hard failure reliability, and total reli-
ability: (a) extreme shock model, (b) cumulative shock model, (c) run 
shock model

Fig. 6.	 Sensitivity analysis of R(t) on D1, D2, WL: (a) extreme shock model, 	
(b) cumulative shock model, (c) run shock model

Fig. 7.	 Sensitivity analysis of R(t) on λ: (a) extreme shock model, (b) cumula-
tive shock model, (c) run shock model
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5. Conclusions
In this paper, based on the phase-type distribution, we develop a 

new reliability model for systems subject to DCFP with phase-type 
distribution considering changing degradation rate. The main innova-

tions of this paper are as follows: first, when the number of shocks 
reaches a specific value, the soft failure degradation rate changes; 
second, the phase-type distribution method is utilized to calculate the 
hard failure reliability—the interarrival time between two successive 
shocks follows a continuous phase-type distribution, and the survival 
function of the phase-type distribution is applied to calculate the hard 
failure reliability; third, the phase-type distribution is combined with 
the DCFP. Besides, the hard failure shock model adopts the extreme 
shock model, cumulative shock model, and run shock model, respec-
tively. Finally, the proposed new model is verified by a MEMS nu-
merical example. The effect of model parameters is studied through 
sensitivity analysis.
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