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1. Introduction
In the last decade repair intervals of certain parts of gas turbines, 

which are installed in the combustor or turbine sections, have been 
extended by 100%. Constantly growing energy needs force operators 
of petrochemical and power plants to reduce downtime and maximize 
production. Many companies sign a Long-term Service Agreement 
with the engine’s OEM to assure seamless execution of the optimized 
maintenance plan, with availability and productivity guarantees. The 
value delivered by the manufacturer is based on the knowledge, expe-
rience and data accumulated over the years. Combining this with se-
lected operating parameters of the units allows to develop predictive 
models, which support data-driven decisions and provide actionable 
insights to the end users [6]. Due to the complexity of the analyzed 
system, numerous estimators are built and utilized, e.g., for diagnostic 
and anomaly detection [17, 13], classification [2], regression, or as a 
synthetic sensors [33]. A structured collection of such models reflect-
ing part-to-part interactions and fed with operational data is referred 
to as the digital twin of the gas turbine [30].

Survival analysis for rotating equipment is typically carried out on 
limited datasets due to the low occurrence of failures, long duration 

and high costs associated with the destructive tests. These constraints 
set Weibull analysis for years as the default method for forecasting 
failure probability and damage size [1]. Scientific papers on the cor-
rect execution of regression analysis in the small-data regime [28] 
have not disappeared in the big data era. New contributions have been 
published [23, 14] and are needed to provide guidance on how to use 
machine learning algorithms, which were not so commonly used in 
the past, for predictive modeling based on small samples. Such stud-
ies will be executed regardless of the growth of big data, but with 
the development of new data infrastructures the small data might be 
pooled and scaled more frequently [26].

Fatigue is among the most frequent causes of failures in mechani-
cal systems. Deep knowledge of the fatigue crack growth mechanism 
is needed for the design and maintenance of gas turbines, especially 
with rising expectations regarding the efficiency and comprehensive 
optimization of the production process. Since the groundbreaking con-
tribution of Paris and Erdogan [32], numerous fatigue crack growth 
equations have been published and these have been summarized well 
in [4]. For the most part, these models are based on experimental data 
and vary in complexity. There is no universal approach to fatigue life 
prediction; thus, for a particular problem, the optimal method should 
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properly balance the accuracy and computational costs. Usually, the 
finite element method is used to solve the crack growth equation. Nev-
ertheless, discretization of the domain at each iteration is a challenge, 
thereby alternative approaches are utilized, e.g.: by the extended finite 
element method, the boundary element method, and their hybrids and 
meshless methods [36].

The growth in computational power, the availability of open-source 
software and simple, user-friendly libraries has resulted in the enor-
mous popularity of machine learning in recent years. These methods 
have also been adapted to estimate the fatigue life, while the artificial 
neural network (ANN) is the most widely used algorithm [21]. The 
ANN was successful in including the effect of mean stress for fatigue 
damage prediction [12] [22] or the effects of load sequences and tem-
peratures on the fatigue life [20]. Attempts to utilize regression trees 
[27], random forests [43], kernel-extreme learning machine [15], or 
Bayesian network [37] can be found in recent publications. Typically, 
the models are based on experimental data, though outputs of a finite 
element analysis were used for the training [10] [41]. Data-driven es-
timators are effective for complex, high-dimensional problems, where 
analytical solutions do not exist. A fully specified model responds 
quickly, therefore it can be installed in the edge devices or utilized 
for real-time monitoring of the damage. However, these methods also 
have certain drawbacks, e.g., a variety of challenges caused by small 
samples, time-consuming optimization, poor extrapolation abilities, 
or a lack of interpretability [31]. In this contribution the authors try 
to address these problems, providing a tutorial on the execution of 
regression analysis by means of machine learning algorithms in the 
small-data regime.

2. The Analyzed Object and Problem Setup
This paper focuses on the 1st stage Nozzle (S1N) of a heavy-duty 

gas turbine. Three different engine configurations are analyzed and 
referenced as Type A, Type B and Type C. The Nozzle assembly has 
18 segments cast from a cobalt-based alloy FSX-414. A compressor 
discharge airflow is used to cool the part by means of a cooling insert 
in the airfoils and cooling holes at the leading and trailing edges. The 
analyzed object is shown in Fig. 1 and Fig. 2 [38].

Failure modes recorded during intermediate inspections of the 
component are as follows:

cracks, oxidation and erosion of airfoils/platforms,––
corrosion of airfoils due to contaminants,––
deformation of airfoils due to creep.––

A degradation of the surface of S1N due to oxidation, erosion, de-
formation, or corrosion results in the gradual loss of efficiency of the 
gas turbine. However, these negative effects should be captured by 
the operator, analyzed by a cross-functional team, and properly ad-
dressed. In the case of cracks, the standard instrumentation provides 

no direct indications of the presence and size of the damage. If the 
engine is not maintained as per the OEM guidelines, S1N cracks may 
even lead to an unplanned outage. Examples of trailing edge cracks 
of the analyzed Nozzle are shown in Fig. 3. The damage was found 
in locations where the trailing edges have the highest temperatures. 
The main cause of this damage are thermo-mechanical stresses, which 
are maximal during transient states, caused, e.g., by engine startups 
and shutdowns. Some locations are also subjected to tension during 
steady-state operations.

The ability to evaluate the length of crack without having to stop 
the engine and inspect the parts may result in substantial benefits for 
the owner, such as:

avoiding component repair by using the Condition Based Main-––
tenance approach,

Fig. 1 Suction side view of the 1st stage Nozzle Fig. 2. Pressure side view of the 1st stage Nozzle

Fig. 3. Examples of S1N trailing edge cracks after service
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optimizing the maintenance schedule enabled by real-time eval-––
uation of the damage size,
forecasting the scope of work for future outage(s),––
making data-driven decisions.––

3. An Overview of Available Empirical Data
The utilized data are the proprietary property of Baker Hughes 

Company LLC and cannot be published. Data provided in this paper 
allow the reader to understand the context and the decisions made by 
the authors. The analyzed positions on trailing edges of the Nozzles 
are referenced as Position 1, 2, 3 and 4, without disclosing any further 
details.

The first piece of utilized input data contains the following:
numbers of fired hours (FH), fired starts (FS) and emergency ––
shutdowns (ESD) accumulated by each segment since the last 
repair and since the part was manufactured,
measurements taken and damages observed during repair ac-––
tivities, after the operation,
configuration of the Nozzle and the engine(s) where the part ––
previously operated.

Trailing edge cracks were found on 754 out of 868 (87%) S1N seg-
ments subjected to the repair. The longest cracks, or less than 5 mm 
shorter than the longest, were recorded at Position 2 for 640 out of 754 
segments (85%). Modeling of the crack lengths at Position 2 shall be 
prioritized with respect to the remaining positions (Fig. 4).

Gas turbines are equipped with a wide range of measuring instru-
ments. Remote Monitoring and Diagnostic services are used to record 
the time series of operational parameters. These random variables are 
utilized to predict damage to parts. The operational data are available 
for 555 out of 868 segments (31 Nozzle sets) subjected to the repairs. 
The sampling interval is set to 1 hour. The optimal interval allows for 
the correct modeling of dynamics of the failure mode, but does not si-
multaneously enlarge the dataset excessively. A preprocessing focuses 
on the removal of erroneous data and variables correlated with each 
other. The second piece of utilized input data contains the following 
time series:

pressure, temperature, and relative humidity of ambient air,––
pressure and temperature of air at the discharge of the axial ––
compressor,
pressure losses in the inlet and exhaust ducts,––
axial compressor pressure ratio,––
mean temperature of gases at the inlet and outlet of the S1N ––
assembly, and output of the engine (these are calculated param-
eters),

temperatures of exhaust gases and their spread,––
speeds of the high-pressure and low-pressure shafts,––
positions of the Inlet (or Nozzle) Guide Vanes.––

Missing readings of ambient air parameters are completed with the 
data published online [44]. For each of the variables a value range is 
defined beyond which the reading is considered either incorrect or re-
lated to transient states. Such records are removed from the dataset.

The set of operational data is composed of 1,029,215 records in to-
tal, although for some periods of the Nozzles’ service time the data are 
unavailable. The coverage varies from 26% to 100% with the average 
equal to 73%. The Nozzles operated in units that drive centrifugal com-
pressors in the process of natural gas liquefaction. Such engines operate 
at base loads with a very stable operational profile. Therefore, it is as-
sumed that the available data also describe the missing periods well.

4. Feature Selection
Long cracks of the Nozzles may jeopardize the availability of the 

gas turbine; hence, the maximal crack size at Position 2 is selected 
as the dependent variable. Each Nozzle set is labeled with just one 
value, composing the sample with 31 data points. The complete in-
put dataset has 32 independent variables; thus, to avoid overfitting, 
to reduce dimensionality and to make the models interpretable [18, 
24], feature selection is executed. The maximal number of predictors 
is set to 5, which gives ~6 subjects per feature. The predictors are the 
same, regardless of the regression method used, thus simplifying the 
interpretation of the results.

The time series of operating parameters related to each observa-
tion are simplified to medians. This transformation greatly reduces the 
dataset and is performed to pool together the different types of inputs 
previously described. It is justified for the analyzed units, which oper-
ate in steady-state conditions.

The features are selected using the Scikit-learn library [34] based 
on the simultaneous evaluation of mutual information, Pearson’s and 
Spearman’s correlation coefficients, and an analysis of chi-square 
tests. The removal of the least important features is done iteratively 
(i.e. ~20% of remaining variables are removed after each iteration) 
until 10 independent variables are identified.

The next step concerns feature engineering. The features are com-
puted based on the time series of the operating parameters previously 
filtered. The variables reflect the distributions of these parameters 
in a simplified way. For each of the time series, considering all the 
records, certain statistical measures are calculated (i.e. 50th, 70th, and 
90th percentile). The new features are computed as the number of serv-
ice hours with a reading below the 50th percentile, between the 50th 
and 70th percentiles, between the 70th and 90th percentiles, and higher 
than the 90th percentile. The enlarged set is again iteratively reduced 
to 10 variables.

The last step is about the application of a wrapper method to find 
the optimal combination of the features but using a specific algorithm. 
A random forest is chosen given its data-driven nature of decorrelated 
trees and leveraging the law of large numbers [5]. Each iteration re-
moves one variable based on the importance of the features. Addition-
ally, a 5-fold cross-validation (CV) with 50 repetitions is used during 
each iteration. The following features are selected for the modeling:

median of average exhaust temperatures, –– EXHT ,
number of fired starts accumulated by the part since the manu-––
facturing, TFS,
number of service hours with the mean temperature of gases at ––
the inlet of the S1N assembly between the 50th and 70th percen-
tiles, TinP50-P70,
median of ambient air temperatures, –– AMBT ,
median of gas turbine output, –– P .

Fig. 4.	 Box plot of the lengths of trailing edge cracks of the Nozzles. The 
data are normalized by dividing them by the maximal measured crack 
length
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These predictors are consistent with the physical phenomena that 
cause the damage. Thermal stresses σ are proportional to the Nozzle’s 
material temperature change, ∆TMATL :

	 σ α α φ φ= = −( ) −( )E T E Tin TMATL COLD HOT COOL∆ 	 (1)

where E is the Young’s modulus, α is the thermal expansion coef-
ficient, φCOLD  and φHOT  are the cooling effectiveness coefficients 
on the cold/hot side of the part, Tin is the mean temperature of gases 
at the S1N assembly inlet, and TCOOL is the coolant temperature. A 
specific range of Tin is present in the set of predictors, while TCOOL is 
strongly correlated with the gas turbine output and the ambient tem-
perature. TFS is considered as the number of load cycles, an inherent 
term in any fatigue crack growth equation.

5. Analysis Setup
As per [19], the expected mean squared error (MSE), for a given 

test value x, can be decomposed to the sum of variance of ( )f̂ x , the 
squared bias of ( )f̂ x , and the irreducible error Var ε( ) :

	 E y f x Var f x bias f x Var− ( )  = ( )  + ( )( )  + ( )2 2
εˆˆ ˆ      (2)

Minimization of the MSE leads to simultaneous minimization of 
the variance and bias to find a trade-off between them. A robust ap-
proach to regression analysis is to split the data into three subsets: the 
training set used to fit the models, the validation set used to tune the 
parameters of the models, and the test set used to assess the gener-
alization capabilities and performance of the fully specified model. 
The sample has just 31 records, therefore an appropriate data splitting 
method is required to properly balance the sets and to avoid errors 
that may affect the entire analysis [42]. To facilitate the decision, the 
observations are separated into three classes:

“short” class composed of cracks with a length lower than L–– LOW 
(9 out of 31 observations, 29%),
“medium” class composed of cracks with a length between ––
LLOW and LHIGH (10 observations, 32%),
“long” class composed of cracks with a length higher than or ––
equal to LHIGH (12 observations, 39%).

Then the dataset composition can be described as follows:
24 records (77%) correspond to gas turbines that operate in ––
the marine environment (salty, onshore), while in the case of 
“short” and “medium” classes the fraction is equal to 95% (18 
out of 19 observations);
Records related to engines that operate in the tropical environ-––
ment (damp, onshore) make up 58% of the “long” class (7 out 
of 12 observations);
19 records (61%) correspond to Type C units and make up the ––
majority of the “medium” and “long” classes (90% and 58% 
respectively);
7 records (23%) correspond to Type A units and make up 33% ––
of the “short” and “long” classes;
5 records (16%) correspond to Type B units and make up 33% ––
of the “short” class and minority of the remaining classes.

Regression models estimating damage to the parts of the gas tur-
bines should be accurate across the entire range of observations, to 
support decisions about the necessity to execute maintenance. Conse-
quently, the main constraint on the test set composition is to properly 
reflect the split between the “short”, “medium”, and “long” classes. 
The test subset is composed as follows:

Each class of crack lengths represents 1/3 of the set;––
To avoid excessive reduction of the training and validation sub-––
sets, the test set is composed of 6 data points (19% of the data-
set) with 2 observations from each of the classes;

5 out of 6 records correspond to gas turbines that operate in ––
marine (salty, onshore) environment;
4 out of 6 records correspond to Type C units, while the remain-––
der correspond to Type A and Type B;
The “short” class is represented by the longest observations as-––
signed to this class;
Records characterized by moderate values of the predictors are ––
selected to the test subset, while the rest of the sample (with 
higher variance) is used for training and validation.

In the regression analysis a loss function is the prediction error for 
a single data point, while a cost function represents the error for all 
observations in the dataset. A squared error is commonly used as the 
loss function; thus, the MSE or root mean squared error (RMSE) are 
the most popular cost functions. The configuration of the cost func-
tion affects all subsequent steps of the analysis, i.e.: the tuning of the 
models’ hyperparameters, the interpretation of results, and the selec-
tion of the optimal model. Also, it influences contributions that the de-
ployed model brings when decisions are made. To obtain satisfactory 
results, the learning objective should be defined carefully with a deep 
understanding of the problem and user requirements.

For the analyzed Nozzle cracks, a certain value of absolute error 
is acceptable for the “short” class, which do not require immediate 
action. The same error is unacceptable for the “long” class, so cracks 
requiring careful evaluation due to the severity of potential conse-
quences. The MSE does not meet this requirement, thereby custom 
loss and cost functions are used in this paper. The loss function has 
a variable width of the scoring bounds dependent on the length of 
observations (Fig. 5). The interval between the bottom bound b(x) and 
the top bound t(x) decreases as the size of actual cracks increases. The 
minimal width of the interval is equal to ~40% of the maximal width. 
The loss function is defined as follows:

	 l x f x

x b x t x

x b x t x and x L

x
HIGH,

, ,

, ,

,
( )( ) =

∉ ( ) ( ) 
∈ ( ) ( )  <

∈

0

1

2 bb x t x and x LHIGH( ) ( )  ≥








 ,

ˆ 	 (3)

Fig. 5. Loss function scoring bounds on the "Predicted vs Observed" plot
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The loss function is positive only if the predicted crack length is 
within the bounds. The correct predictions of cracks belonging to 
the “long” class are scored 2x higher with respect to the remaining 
classes. This bonus favors regression models that accurately predict 
the longest cracks. The magnitude of the bonus should quantify the 
difference of importance of one aspect over others and should not 
artificially promote certain solutions. The authors noticed heavily bi-
ased predictions for short and medium observations when the bonus 
was too high.

The cost function is defined as the mean loss:

	 ( )( )( ) ( )( )
1

1, ,
n

i i
i

c l x f x l x f x
n =

= ∑ˆ ˆ 	 (4)

where i = 1, 2, …, n is the ordinal number of the observation. The 
optimal regression model maximizes the cost function.

General constraints on the composition of the validation set are as 
follows:

To correctly reflect the proportions between the “short”, “me-––
dium”, and “long” classes;
To avoid excessive reduction of the training subset, the valida-––
tion set has 1 observation from each of the classes; thus, 3 data 
points in total (~10% of the entire dataset);
Cross-validation is repeated 560 times, for all the possible train-––
validation splits (the set is composed of 7 short cracks, 8 me-
dium and 10 long cracks).

The codomain of the cost function is represented by the 5-element 

set: {0, 1
3

, 2
3

, 3
3

, 4
3

}. Such an extensive approach to CV is used to 

avoid misinterpretation caused by a random choice of the validation 
set. Each CV repetition utilizes 22 observations to fit the model, and 
3 observations to compute the value of the cost function. The model 
with the optimal values of hyperparameters maximizes the average 
value of the cost function from 560 repetitions. The fully specified 
model is trained on all 25 data points and evaluated against the test 
set.

The training, validation and test subsets were created in a fully 
controlled manner, based on the analysis of composition and clusters 
of the entire dataset. The authors observed that this approach gives 
better outcomes, simplifies the interpretation of obtained results, and 
improves the accuracy of the model. The loss and cost functions are 
custom, favor models that predict correctly in a specific range of the 
domain and reflect well the requirements of the user. Use of these 
functions significantly improved the accuracy of the prediction with 
respect to the MSE or the RMSE.

6. Description of Mathematical Model
Multiple linear regression (MLR) models assume that the response 

variable depends linearly on the independent variables. In scalar form 
it is represented as follows:

	 y x x xi i i k ik= + + + + +β β β β ε0 1 1 2 2  	 (5)

where k is the number of predictors, xik is the value of the kth predic-
tor for the ith observation, β0 is the intercept, βk are the regression 
equation coefficients, and ε is the error term. The Nozzles are not 
damaged prior to the service, thereby β0 = 0. In matrix notation, (5) 
simplifies to:

	 



y = +β εX 	 (6)

where 


β  is composed of coefficients of the regression equation (5) 
and X  is the matrix of features of size i ×  k. 

Polynomial regression models assume that the response variable 
depends nonlinearly on the independent variables. In scalar form it is 
represented as follows:

	
y x x x xi i i i p i

p= + + + + +β β β β β0 11 1 12 1
2

13 1
3

1 1

	

	
+ + + + +β β β β21 2 22 2

2
23 2

3
2 2x x x xi i i p i

p


	

	
+ + + + +β β β β31 3 32 3

2
33 3

3
3 3x x x xi i i p i

p


	
	 + + 	
	 + + + + +β β β βk ik k ik k ik kp ik

px x x x1 2
2

3
3
  	 (7)

where p is the degree of the polynomial equation. If β0 = 0, then (7) 
in matrix notation has the same form as (6), although the size of the 
matrix of features X depends on the degree p. X is complemented by 
all the possible interaction features of the degree j (j = 2, …, p) calcu-
lated as products of distinct independent variables. The degree of the 
polynomial equation p ϵ {2, 3, 4} is the only hyperparameter tuned 
during the analysis.

The support vector regression (SVR) formulates (6) as an optimi-
zation problem aimed at finding the narrowest margin around the ap-
proximated surface [3]. The maximum error ε sets the width of the 
margin. The objective is to minimize the Euclidean norm of the coef-
ficients’ vector 



β  that is normal to the approximated surface, subject 
to y xi i− ≤



β ε :

	 min 1
2

2
β 	 (8)

Only predictions outside the margin, called support vectors, are 
penalized. The solution of this constrained optimization problem is 
as follows:

	 f x x x x
i

n
i i i





  ( ) = = −( ) ⋅
=
∑β α α

1

*ˆ 	 (9)

where iα  and *
iα  are Lagrange multipliers, and ⋅  denotes the dot 

product in the space of input data  . 


β  is represented as a linear 
combination of the training vectors ix .

For non-linear relations, data are mapped into a higher dimension 
feature space   using a similarity function called a kernel ( ),ik x x  . 
The explicit mapping :Φ →   is not required if the kernel satis-
fies:

	 ( ) ( ) ( ), :i ik x x x x= Φ ⋅Φ
    	 (10)

In the space   the solution of the optimization problem is as fol-
lows:

	
f x x x x

i

n
i i i





  ( ) = ( ) = −( ) ( ) ⋅ ( ) =
=
∑β α αΦ Φ Φ

1

*ˆ

	

	 = −( ) ( )
=
∑
i

n
i i ik x x

1
α α* ,  	 (11)

The kernel function is also used with the ridge regression (KRR), 
which is a linear model with a regularization parameter λ2 ≥ 0. If the 
squared error is the cost function, then the minimized objective func-
tion has this form:



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 23, No. 3, 2021580

	 min y y
T







 

−( ) −( ) +





X Xβ β λ β2

2
	 (12)

with the following solution:

	        



β λ= +( ) =
−

X XX In
T T y2

1

 

	     = +( ) = =−

=
∑X K I Xn

T T

i

n
i iy xλ α2

1

1

 αα  	 (13)

where K = XXT is the Gramian matrix and the kernel function, 
αα = +( )−K Inλ2

1 y  is the dual variable. The solution of the optimi-
zation problem is as follows:

	 f̂ x x x x k x xT

i

n
i i

T

i

n
i i





    ( ) = = ⋅ = ( )
= =
∑ ∑β α α

1 1
, 	 (14)

A random forest is an ensemble of decision trees. A single tree di-
vides the space of inputs   into j high-dimensional rectangles Rj, in 
order to minimize the error at each tree split:

	 min
j

j

i R
i R

j
j

y y
= ∈
∑ ∑ −( )

1

2
ˆ 	 (15)

where ˆ
jRy  is the mean value of the dependent variable in the Rj rec-

tangle. A random subsample is drawn at each split; thus, the decision 
trees are decorrelated. Responses from all the trees comprising the 
random forest are averaged to obtain the final estimate:

	 ( ) ( )
1

1ˆ
m

m
m

f x f x
m =

= ∑
 

	 (16)

where m is the number of decision trees and ( )mf x  is the response of 
the mth decision tree.

In the AdaBoost.R2 algorithm [11] an ensemble of m weak learners, 
one-node decision trees, is created. Their training focuses on observa-
tions with the most inaccurate predictions obtained at the preceding 
iteration. The prioritization is based on weights assigned to each ix  
that depend on the confidence in the weak learner θ, being a function 
of the average loss of this weak learner. For an unseen vector of pre-
dictors x , the response is calculated as the weighted median:
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where the meanings of m and  ( )mf x  are the same as in (16).

The extreme gradient boosted algorithm (XGBoost) [7, 45] is an 
ensemble of gradient boosted decision trees, whose responses are 
summed to get the final estimate:
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The following function is minimized at each iteration t:
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where j = 1,2, …, T is the leaf’s ordinal number, Gj is the gradient 
and Hj is the Hessian of the loss function, wj is the similarity score 
assigned to the jth leaf, λ2 is the regularization parameter and γ is the 
minimum loss reduction to split a node. Pruning of the decision trees 
is based on the gain value:
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where L and R are the scores on the new left/right leaf, and N is the 
score on the new node. The new branch is removed if the gain is nega-
tive.

Artificial neural networks are non-linear statistical models. The 
output from a neuron Z comprising a hidden layer of the network is a 
linear combination of inputs xi:

	 Z xm m m
T= +( )σ α α0

  	 (21)

where m = 1, 2, …, M denotes the neuron’s ordinal number, σ is the 
activation function, α0m is the bias term and mα  is the vector with 
weights. The output of the entire network with a single hidden layer 
is as follows:

	 f x g T



( ) = +( )β β0 Zˆ 	 (22)

where β0 is the bias term, 


β  is the vector with weights and Z = (Z1, 
Z2, …, ZM) is composed of neuron outputs. Function g  is the iden-
tity function in the case of regression problems. (Stochastic) gradi-
ent descent and back-propagation algorithms are used to calculate the 
weights.

7. Results of the Regression Analysis
Python programming language is utilized to create the regression 

models. NumPy [16] and Pandas [29] libraries are used for the data 
manipulation, Keras library [8] is used to build artificial neural net-
works, while Scikit-learn library is used to build the remaining mod-
els. The z-score is utilized to standardize the input data.

The Differential Evolution [39] method available in the SciPy li-
brary [40] is used to solve the optimization problem and to find the 
optimal vector 



β  in the multiple linear and polynomial regression 
equations. The verification and validation of the models are presented 
in Fig. 6 and Fig. 7. The observed and the predicted values are nor-
malized by dividing them by the maximal measured crack length. The 
dimensionless quantities generalize the results and make them more 
scientifically meaningful. It applies to all the figures in this section of 
the paper. The verification is done to assess the behavior of the model 
on the training set, while the validation evaluates the performance 
on the unseen, test dataset. The observations related to the obtained 
results are as follows:

Regardless of the degree of the polynomial equation, the mean ––
value of the cost function is equal to 1.200, therefore p = 2 
is chosen to reduce the complexity of the model; No further 
efforts are taken by the authors to simplify the regression equa-
tion; However, an analysis of variance should be done to de-
termine whether all the independent variables are statistically 
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significant, especially if some components of the 


β  vector are 
close to zero.

EXHT––  and TinP50-P70 are the most important features in the 
MLR model, while their product and squared TFS are essential 
in the polynomial model (i.e. the modulus of the βk coefficients 
corresponding to these features is higher than the modulus of 
the remaining coefficients of the regression equation).
The polynomial model has a lower normalized RMSE than the ––
MLR model (0.529 and 0.612, respectively), but this comes 
with the higher complexity and lower interpretability of the 
model.
Responses of the models are not sufficiently sensitive to chang-––
es of the input parameters; hence, the length of short cracks is 
overpredicted and the longest cracks are underestimated.
The accuracy is good only for the “medium” class.––

In the case of support vector regression and kernel ridge regression, 
the values of the following hyperparameters are tuned:

the maximum error –– ε ϵ [0, 1),
regularization parameters –– C, 2λ  ϵ [0.001, 100),
the kernel function,––
the degree of the polynomial kernel –– p ϵ {2, 3, 4, 5},
kernel coefficients –– γ, r ϵ [0.001, 1],
the tolerance for stopping criterion –– t ϵ [0, 1).

To reduce the space of hyperparameters a fixed number of param-
eter values is sampled using the RandomizedSearchCV class. The 
entire space is iteratively limited to the subspaces in which the cost 
function is maximized. When the space is sufficiently small, the Grid-
SearchCV class is used to evaluate all the remaining combinations of 
parameter values. The highest CV scores are achieved with the poly-
nomial kernel:

	 ( ) ( ), p
i ik x x x x rγ= +
    	 (23)

The verification and validation of the models are presented in Fig. 
8 and Fig. 9. The observations related to the obtained results are as 
follows:

The mean values of the cost function (1.126 and 1.097 for the ––
SVR and the KRR, respectively) are comparable with the mul-

tiple linear regression (1.133), so does the normalized RMSE 
(0.635 and 0.611, respectively).
Responses of the models are sensitive to changes of the input ––
parameters; hence, the predictions and the observations are in 
the same range.
An exhaustive hyperparameter tuning can be done, since the ––
mean time to fit these models is very short.
The accuracy is unsatisfactory for the “long” class.––

In the case of random forest regression, the AdaBoost.R2 and XG-
Boost algorithms, the following parameters are tuned:

the maximum number of decision trees –– m,
the maximum depth of decision trees,––
whether to build the trees on the entire training set or on its ––
subset, or whether to use bootstrap samples,
the number of predictors used during each split,––
the minimum loss reduction γ, or the minimum decrease in im-––
purity required to split a node,
the minimum sum of the instance weight –– Hj required to split a 
node, or the minimum number of samples on the leaf after the 
split,
the minimum number of observations required to split a node ––
(not applicable to the XGBoost),
the learning rate η (not applicable to random forest regres-––
sion).

These hyperparameters are common for the considered tree-based 
algorithms. The size of the space of hyperparameters varies depend-
ing on the type of algorithm. Additionally, in the case of XGBoost 
regression, the following parameters are tuned:

the booster type ϵ {gbtree, dart},––
the L1 regularization parameter –– 1λ  ϵ [0, 5],
the L2 regularization parameter –– 2λ  ϵ [0, 500],
the fraction of decision trees neglected (dropped out) during ––
each boosting step dr ϵ {0.2, 0.4, 0.6, 0.8},
the probability of skipping the dropout procedure during a ––
boosting step ds ϵ {0, 0.2, 0.4, 0.6}.

The verification and validation of the models are presented in Fig. 
10, Fig. 11, and Fig. 12. The observations related to the obtained re-
sults are as follows:

EXHT––  is the most important feature, regardless of the method 
utilized. The importance is calculated based on the values of 

Fig. 6. Verification and validation of the multiple linear regression model Fig. 7. Verification and validation of the polynomial regression model (p = 2)
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gain for each decision tree in the XGBoost model or based on 
the mean decrease in impurity (Gini importance) in the remain-
ing models.
The models based on random forest and AdaBoost algorithms ––
give low values of the normalized RMSE (0.544 and 0.500, re-
spectively). However, based on the CV scores (0.962 and 0.980, 
respectively), these models are ranked lower than the remaining 
ones.
The XGBoost regression model has a significantly higher CV ––
score (1.096), but the normalized RMSE calculated against the 
test set is the highest (1.000). The tuning of hyperparameters 
aimed at reducing the error (i.e. to increase prediction accuracy 
for the longest crack) results in a substantial decrease of the 
cross-validation score. Despite some regularization parameters 

having non-zero values, estimates for the training observations 
are almost perfect. A stronger regularization or reduction of the 
number of decision trees has a detrimental effect on the CV 
score and does not improve the normalized RMSE.
The responses of the models are sensitive to changes in the in-––
put parameters; hence, the predictions and the observations are 
in the same range.
Due to the higher complexity of these algorithms and the nu-––
merosity of user-defined constants, the tuning of hyperparam-
eters requires more time in comparison with the previously dis-
cussed methods.
The models underestimate the longest observations and none of ––
them have a high cross-validation score or good results of the 
validation against the test set.

Fig. 8. Verification and validation of the support vector regression model

Fig. 10  Verification and validation of the random forest regression model

Fig. 9. Verification and validation of the kernel ridge regression model

Fig. 11  Verification and validation of the AdaBoost regression model
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In the case of artificial neural network regression, the values of the 
following hyperparameters are tuned:

the optimization algorithm ϵ {Adadelta, Adam, Adamax, Nad-––
am},
the activation function for hidden layers –– σ ϵ {relu, exponential, 
hard sigmoid, sigmoid, softplus, tanh},
the initializer used to set the initial weights of the ANN ϵ {Glo-––
rotNormal, GlorotUniform, he_normal, he_uniform, lecun_nor-
mal, lecun_uniform},
the number of hidden layers ϵ {2, 3, 4, 5, 6, 8, 10},––
the number of neurons in the input layer and in the hidden lay-––
ers Minp, M ϵ {5, 10, 15, 20},
the number of training epochs ϵ [100, 1300],––
the number of training observations shown to the network be-––
fore each update of the weights ϵ [4, 10],
the fraction of neurons of the hidden layers that drop out during ––
the training dr ϵ {0, 0.2, 0.25, 0.3, 0.4},
the maximum norm of the vectors with weights ––



αm , 


β  ϵ 
{3, 4, 5},
the learning rate η ϵ [0.0001, 0.1],––
the exponential decay rates for the 1–– st and 2nd moment estimates 
ϵ [0, 0.999] (applicable only to Adamax optimizer).

The highest cross-validation score (0.910) is obtained with the Ad-
amax algorithm [25], the rectifier linear unit (relu) activation func-
tion defined as σ(x) = max(0, x), and the Lecun initializer that draws 
the initial weights from the uniform distribution U( 3 / inpM− , 

3 / inpM ). The artificial neural network has 3 hidden layers each 
with 15 neurons.

The verification and validation of the model are presented in Fig. 
13. The observations related to the obtained results are as follows:

the model gives low value of the normalized RMSE (0.519), ––
although it has the worst mean value of the cost function;
the model is a black-box and it is unknown which independent ––
variable is the most important;
responses of the models are sensitive to changes in the input ––
parameters; hence, the predictions and observations are in the 
same range;
regardless of the dataset size, the tuning of hyperparameters is ––
very time-consuming, due to the quantity of user-defined con-
stants and the length of time needed to fit a single artificial neu-
ral network;
the model underestimates the longest observations.––

The objectives of this study are to apply the statistical learning al-
gorithms to a real technical problem, to share the approach and learn-
ings with other researchers, and to evaluate if these algorithms are 
effective in the small-data regime. The results presented herein are 
sufficient to achieve the objectives. In the authors’ opinion, the inclu-
sion of additional results (e.g.: the scripts, the results before the nor-
malization, or the final form and coefficients of the regression mod-
els) do not increase the scientific value of the paper. A quantitative 
summary of the obtained results is reported in Table 1.

8. Conclusions
The main outcomes of this study are as follows:

The utilized algorithms can accurately predict the crack lengths ––
based on operational parameters of the engine, i.e.: the tempera-
ture of exhaust gases, the number of fired starts accumulated 
by the part, the temperature of gases at the Nozzle’s inlet, the 
gas turbine output and ambient air temperature. Based on the 
analysis of the linear/polynomial regression equations and the 

Fig. 12. Verification and validation of the XGBoost regression model Fig. 13. Verification and validation of the neural network regression model

Table 1.	 A comparison of the regression models based on the mean CV 
score and the normalized RMSE evaluated against the test set

Algorithm type Mean cross-valida-
tion score Normalized RMSE

Polynomial regression 1.200 0.529

Multiple linear regression 1.133 0.612

Support vector regression 1.126 0.635

Kernel ridge regression 1.097 0.611

XGBoost regression 1.096 1.000

AdaBoost regression 0.980 0.500

Random forest regression 0.962 0.544

ANN regression 0.910 0.519
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values of gain/Gini importance, the median of the average ex-
haust temperatures EXHT  is the most important feature in the 
majority of the regression models.
The polynomial regression model is the best model, considering ––
the cross-validation score and the normalized RMSE evaluated 
against the test set. Nevertheless, it is not sufficiently sensitive 
to changes in the input parameters. It underestimates the long-
est observations as well, which is a common drawback with the 
created models. The AdaBoost regression model predicts these 
cracks with the lowest normalized RMSE. Before being used 
as a standalone support for data-driven decisions, the model 
should be subjected to further validation.
The split into training, validation and test subsets was done ––
in a fully controlled manner, considering the clusters and the 
composition of the entire dataset. Each subset represents the 
sample in a quantitative and qualitative way. Such a consistent 
approach reduces ambiguity during the cross-validation, testing 
and interpretation of obtained results, especially in the case of 
small datasets.
The (root) mean squared error should not be automatically cho-––
sen as the cost function, as the results might be suboptimal from 
a business, risk management or other relevant perspective. A 
custom cost function better reflects the requirement of the user/
customer and may favor certain solutions. In this paper, accu-
rate predictions of the longest cracks are awarded with a bonus. 
The structure of the cost function drives the form and capabili-
ties of the model.
A variant of leave-p-out cross-validation is utilized, since the ––
usage of k-fold cross-validation provides unclear and hard-to-
interpret results for the training set composed of 25 records. 
This is computationally feasible because of the effective feature 
selection and the small number of observations.
None of the models outperforms the remainder. Some of them ––
are accurate for the “short” class, while others are better for the 
“long” class. Combining these models into an ensemble could 
improve the overall accuracy and better support data-driven de-
cisions. None of the analyzed algorithms surpasses the others 
because of certain advantages or characteristics. The order of 
regression models in Table 1, resulting from the mean cross-

validation score, will change for a different dataset. Neverthe-
less, finding the optimal structure and hyperparameters of the 
artificial neural network was the most complicated and time-
consuming. In general, the short time needed to fit a model al-
lows for an extensive tuning of hyperparameters and is one of 
the few benefits of small samples.
Building conclusions on a small dataset can be reliable, but it ––
requires a rigorous approach and understanding of the decisions 
made throughout the entire analysis. The applicability domain 
must be defined for such models to limit extrapolation attempts 
and application of the model to items not covered by the train-
ing set. If possible, results of the data-driven model should be 
compared with a different approach, e.g., the results of the finite 
element analysis. A staggered implementation of the regression 
model is suggested, preferably connected with checks of the 
hardware (e.g., borescope inspection of the analyzed Nozzles), 
data gathering, and subsequent update of the model.

The authors applied several known machine learning algorithms 
to predict the maximal length of fatigue cracks. The analyzed dataset 
was not created synthetically or obtained during an experiment, but 
it describes components that operated in the industrial gas turbines 
under variable operating conditions. The purpose was to assess if the 
data-hungry methods can provide valuable results for the inhomoge-
neous sample composed of 31 observations only. The authors proved 
that the selected algorithms are effective in the small-date regime. The 
experience shared herein is universal and can support other research-
ers and professionals working with similarly sized sets.

It is the first attempt of the authors to apply machine learning al-
gorithms in the small-data regime. Further research will focus on 
techniques that combine physics-based descriptions of the analyzed 
phenomenon with empirical models, staying in the small-data regime. 
Physics-informed neural networks [35, 9] are examples of such hybrid 
models. This approach should assure the consistency of the outputs 
with the laws of physics, and improve the accuracy of the predictions 
and extrapolation capabilities. The ultimate objective of the research-
ers is to propose a method of scaling the hybrid models and transfer-
ring knowledge between domains.
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