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1. Introduction
With the increasing requirement of safety and economy of 

equipment operation, more and more attention is paid to the predic-
tion of remaining useful life(RUL). Scholars in various fields have 
conducted extensive research on this issue, including aerospace field 
[1, 17] , electronics [28], mechanical industrial [16, 22] , and many 
other fields [7, 20]. Most researchers devoted to improve the accuracy 
of the prediction results, and have investigated many effective meth-
ods for RUL prediction, including various neural networks (NN) [41], 
support vector regression (SVR) [34], stochastic process [13, 36], and 
other methods[3, 21]. Ramezani, Moini and Riahi [27] gives a com-
prehensive summary to various methods.

However, the uncertainty of RUL prediction is still an inevitable 
problem remaining to be solved. For most mechanical systems, the 
actual degradation level is not directly observable and can only be 
inferenced by running data. Inescapably, uncertainty is infused to the 
resulting degradation status with the inference process, and makes 
RUL prediction result under the inferenced degradation status lack 
credibility in maintenance guiding. Considering this problem, schol-
ars have studied and put forward some contributing methods[14, 24, 

38]. Sankararaman and Goebel [30] suggests that the perfectly and 
precisely prediction of engineering systems behavior is not possible in 
practical engineering applications due to prognostics uncertainty, and 
divided the sources of uncertainty into four categories: present state 
uncertainty, future uncertainty, modeling uncertainty and prediction 
method uncertainty. Some researchers believe that the single value 
prediction of RUL is meaningless, even deceptive, what is really need-
ed for decision-making is the prediction interval or probability distri-
bution [11, 29, 32]. To reduce the uncertainty of RUL prediction, Sun, 
Zuo, Wang and Pecht [33] proposed a state space degradation model 
based method with combining online monitoring data. To reduce the 
impact of prediction method uncertainty, Baraldi, Mangili and Zio [2] 
fused the predicted results of two methods with belief function theory. 
Actually, the present state uncertainty and future uncertainty is time 
dependent. Engel, Gilmartin, Bongort and Hess [9] have demonstrat-
ed that with the reduction of residual life, the accuracy of the predic-
tion increases and the uncertainty decreases. To reduce the uncertainty 
of later prediction, Deng, Bucchianico and Pechenizkiy [6] applied 
surrogate Wiener propagation model to RUL prediction to make later 
prediction more accurate by sacrificing the early prediction accuracy. 
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Most studies divide the RUL prediction process into two parts: offline 
training and online predicting[43], and deal with the prognostics un-
certainty under the method level. However, the source of uncertainty 
is the lack of known operational information. In fact, the entire deg-
radation process of the equipment can be divided into several stages. 
In the early stage of degradation, the device can run stably for a long 
time, and little information is available for RUL prediction. Therefore, 
it is neither accurate nor meaningful to predict the RUL in the early 
degradation stage. Once the device gets into the later stage of degrada-
tion, the current state and degradation pattern can be revealed by the 
monitoring data or inspection data with in a long-term operation. This 
is vital for reducing the present state uncertainty and future uncer-
tainty, and improving the accuracy of prediction results.

The proportional hazard model (PHM) is proposed by Cox in 1972 
[5], and has been widely used in biology and medicine to study the 
association between a patient’s survival time and one or more vari-
ables [39, 42]. The uncertainty of survival problem can be felicitously 
expressed by PHM with the form of survival probability. In the field 
of reliability, PHM has also been used for reliability analysis and life 
prediction. Tran, Hong, Yang and Tan [35] proposed a method for 
RUL prediction by using support vector machine (SVM) and PHM. 
Man and Zhou [23] modeled the monitoring indicator with a Wiener 
process, and took the predicted indicator value as the input variable 
of PHM for RUL prediction. Hu and Chen [12] proposed a preven-
tive maintenance strategy with RUL predicted by Wiener process and 
PHM. Zhou, Son, Zhou, Mao and Salman [43] used both the inspec-
tion data and event data as the input variable of PHM to predict RUL. 
Qiu, Gu and Chen [25] established a health indicator for bearing, and 
predicted the RUL of bearing with support vector regression (SVR) 
and a Weibull PHM. Du, Wu, Zhou and Makis [8] modeled the RUL 
of lubrication with PHM. Equeter, Ducobu, Rivière-Lorphèvre, Serra 
and Dehombreux [10] took the transformed operation parameter as 
the input variable of PHM, and predicted the RUL of cutting tool. 
You, Li, Meng and Ni [40] believes that modelling the whole degrada-
tion process with just a single model is inaccurate, and he proposed a 
two-zone PHM for RUL prediction by dividing the device operation 
process into stable state and unstable state. Lin, Sun, Xu and Zhang 
[19] propose a multi-zone PHM by establishing the PHM for each 
degradation state. The above studies generally take monitoring indi-
cator or synthetic health indicator as the input variable of PHM, and 
the indicator value over the rest life of device have to be predicted 
firstly before the RUL prediction. However, the uncertainty of indica-
tor value predicted by regression algorithm or stochastic process will 
inevitably increasing the uncertainty of RUL prediction. Moreover, 
the whole degradation process of a device is changeable. It is hardly 
to get accurate prediction results by covering the whole degradation 
process with just one model.

In this paper, the concept of right-time RUL prediction is put 
forward with the objective to reduce the prognostics uncertainty of 
mechanical systems under unobservable degradation. Through a rela-
tively rough status assessment, an appropriate prediction moment can 
be selected, and all the operating data accumulated before the predic-
tion moment can be used for RUL prediction, so as to reduce the data 
uncertainty with a bigger data size. After the prediction moment, the 
established life model with smaller modeling scope can be modeled 
to reduce the model uncertainty. Concretely, the whole degradation 
process of a mechanical system is divided into several states, name 
the last degradation state as critical state, other states as stable state, 
and the RUL is predicted only after the critical state reached with the 
accumulated long-term operation data. Correspondingly, a right-time 
RUL prediction method based on hidden Markov model (HMM) and 
PHM is proposed. Different from the existing methods, the proposed 
method divides the whole prediction process into three parts: offline 
training, online state estimating and online RUL predicting. In the 
offline training process, HMM is used for states dividing. For each 
training sample, a HMM is fitted to express the specific degradation 
path of the sample. By clustering these HMMs and synthesizing the 

parameters of HMMs under each cluster, several general models can 
be obtained to represent some typical degradation paths. Using the 
degradation characteristics of stable state extracted from the training 
data by general HMMs as the input variable, the PHM specific to the 
critical state is modeled and fitted with the duration of the critical 
state of each training sample. In the online state estimating process, 
the trained general model is used to estimate the device state continu-
ously during the whole stable state. It is considered that the device 
can still operation stably with a long time till the critical state reached, 
and there is no need to predict RUL in stable state. Once the critical 
state is judged to be reached, the degradation characteristics of the 
mechanical system are extracted and RUL is predicted. In the online 
RUL predicting process, the survival function of the critical state can 
be obtained by taking the extracted degradation characteristics as the 
input variable of the fitted PHM, and RUL can be derived from the 
survival function.

The right-time RUL prediction put forward in this paper can better 
fit the PHM to reduce prediction uncertainty for the following rea-
sons:

The PHM is established only for the critical state of degra-(1)	
dation. The local degradation process is relatively simple to 
model, and it is more appropriate to express by the baseline 
function of PHM.
During the critical state, the degradation path of the device is (2)	
more clear with the long run data. The characteristics reflect-
ing the specific degradation path of the device can be extracted 
from the existing data as the input of the PHM. The extracted 
characteristics can reflect the holistic degradation process and 
avoid the uncertainty from indicator prediction, is preferable to 
be the input variable of PHM which has an effect on the whole 
survival function.

The rest of this paper is organized as follows: Section 2 presents the 
proposed HMM and PHM based right-time RUL prediction method. 
In Section 3, a demonstration with the turbofan engine simulation data 
is conducted, and the performance of the proposed method is com-
pared with a traditional SVR-PHM method. Finally, Section 4 con-
cludes this paper.

2. Right-time RUL prediction method
In order to reduce the uncertainty of RUL prediction, a right-

time RUL prediction method based on HMM and PHM is proposed, 
which divides the whole RUL prediction process into three parts: of-
fline modeling, online state estimating and online RUL predicting. 
The procedure of the proposed method is shown in Figure. 1, which is 
mainly included in the following three sections.

2.1. Offline modelling
In the offline modeling stage, the whole life indicator data of 

training samples, which can be monitoring data or inspection data, is 
needed for fitting the HMMs and PHM. For each training sample, the 
individual optimal HMM is fitted. In order to get more general mod-
els, all this individual optimal HMMs are clustered, and the models 
under each cluster are synthesized into a general model. With these 
general models, the degradation states of each training sample are di-
vided, and the degradation characteristics of stable state are extracted. 
Taking the extracted degradation characteristics as input variables, the 
PHM specific to the critical state is established.

2.1.1.	General HMM pool establishing
HMM is a probabilistic model with several hidden states 
{ }1 2S ,  S ,  ,  SN=S   and a set of discrete or continuous observations 

[26]. Figure. 2 gives the construction of HMM with it  represents the 
hidden state at time t  and ot  represents the observation at time t .

There are two assumptions in HMM:
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The observation at any given moment is only relevant to the state 
at that moment, that is:

( ) ( ) ( )1 1 1 1 1 1| , , , , , , , , , , , | , 1,2, , .# 1t T T T T t t t t t tP o i o i o i o i o i o P o i t T− − + + = =     (1)

The state at any given moment is only related to the state at the last 
moment, that is:

	 ( ) ( ) ( )1 1 1 1 1| , , , , | , 1,2, , .# 2t t t t tP i i o i o P i i t T− − −= = 
	 (1)

For a standard HMM, the following parameters are defined:
An initial state probability distribution, represents the probability 

of the object in each state at the initial time, ππ = { }π i , where:

	 π πi i
i

iP i S i N= =( ) ≤ ≤ =∑1 1 1, , . 	 (3)

A state transition probability distribution, represents the probability 
of an object transforms from one state to another, A = { }aij , where:

	 a |ij t j t i
j

ijP i S i S i j N a= = =( ) ≤ ≤ =+ ∑1 1 1, , , . 	 (4)

An observation probability distribution related to the hidden states, 
B = ( ){ }b j . .

For convenience, the above parameters can be abbreviated as a tri-
plet:

	 λ = ( )A B, , .ππ 	 (5)

According to the above definition, the parameters can be solved 
with:

	 λ λ λ
λ

= ( ) ⋅ ( ) ( )∑arg max , ,#
I

P O I P I| | 6	 (6)

where ( )1 2I i ,i , ,  iT=   and ( )1O o ,o, ,  oT=  .

In the process of general HMM pool establishing, HMMs is estab-
lished and fitted for each training sample to represent the specific deg-
radation path of the sample. For obtaining some more general degra-
dation paths and reducing the computation load, clustering is applied 
to these fitted HMMs by the Euclidean distance between parameters 
of different HMMs. The HMMs in the same cluster represent a similar 
degradation path, and can be integrated to a general model. For each 
cluster, a general model is obtained to represent a typical degradation 
path by synthesizing the parameters of HMMs with:
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where M  is the number of clusters, mK  is the number of 
models in cluster m , λm  is the parameter of general model 
m, ,m maxd  is the maximum distance of models in cluster m  
to the clustering center of cluster m , ,m id  is the distance be-
tween model i  in cluster m  and the clustering center of clus-
ter m , and λm i,  is the parameter of model i  in cluster m .

Consisting of these integrated models, the general HMM 
pool can be used to estimate the degradation state of the 
object more generally, and make the state estimation result 
less affected by model uncertainty.

2.1.2.	Survival function modelling
In the field of survival analysis, representing the m variables that 

have effect on survival probability as:

	 X x x xm= { } ( )1 2 8, , , ,#
	 (8)

then the risk function with the given input variable X can be repre-
sented as:

	 h
P t T t t T t

tt
t X

|
, lim

,
,( ) = < < + >( )

→∆

∆
∆0

X 	 (9)

where T  is the survival time of the object.

The PHM is a semi-parametric model with a fixed baseline hazard 
function and the input variable X that effects on the baseline hazard 
function:

	 h tt h, exp ,#X X( ) = ( ) ⋅ ⋅( ) ( )0 10β 	 (10)

where ( )0h t  is the baseline hazard function, X is the input variable 
and β is the coefficient of X.

The maximum likelihood function of the PHM is:

Fig. 1. The procedure of the proposed right-time RUL prediction method

Fig. 2. Construction of HMM
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where N  is the number of events, iX  is the input variable cor-
responding to event i , it  is the time that event i  happened.

In this paper, the degradation characteristics extracted from 
the training samples by the general HMM pool are used as the 
input variable of PHM, including the duration of each stable 
state and the mean value of indicator data in each stable state:

	 { } ( )1 2 1 1 2 1D ,D , ,D ; , , , # 12NX − −= M M M  N 	 (12)

where N  is the number of states that a whole degradation proc-
ess contains.

The duration of each stable state reflects the degradation 
characteristics of the current equipment in the time dimension. 
The longer duration of stable state indicates that the overall degrada-
tion process of the equipment is proceeding at a slower speed, which 
can provide a reference for the degradation process of critical state. 
The duration of state i  can be represented as:

	 Di i it t i N= − ≤ <+1 1, , 	 (13)

where it  is the time that state i  reached.

The mean value of indicator data in each state can reflect the deg-
radation characteristic of the current equipment in the indicator di-
mension, and the variation of the indicator data in each stable state 
can also reflect the overall degradation process. The mean value of 
indicator data in state  i  can be represented as:

	 Mi
I

=
( )

≤ <=
+∑t t

t

i

i
i t

i N
1

1
D

, , 	 (14)

where ( )tI  is the indicator value at time t .

When the device degrades to the critical state, its overall degrada-
tion path has already appeared. The duration of the previously expe-
rienced states and the mean value of the indicator data of these states 
can well reflect the presented degradation path, and act on the baseline 
function as the input variable of PHM. Given the input variable, the 
parameters can be solved by maximizing equation (11) with training 
samples.

2.2.	 Online state estimating
In the process of online state estimating, the indicator data is input 

into the general HMM pool to realize continuous status monitoring. 
For M  HMMs in model pool, the HMM with the maximal log-like-
lihood is considered as the model with the most similar degradation 
path to the device, and the estimation result of this HMM is regarded 
as the current state of the device. The next step of the proposed method 
depends on the estimated current state. If the critical state not reached, 
the device is considered to still have a long running time, and there is 
no need to predict the RUL. Otherwise, the duration of the previously 
experienced states and the mean value of the indicator data of these 
states are extracted for RUL prediction in the next step. The procedure 
of online state estimating is shown in Figure. 3.

2.3.	 Online RUL predicting
Once the critical state reached, the hazard function during the 

whole critical state can be obtained by substituting the extracted vari-
able into the fitted PHM. With the hazard function, the survival func-
tion can be derived by:

	 ( ) ( ) ( )t exp ,# 15
c

t

t
S h t dt

 
 = −
 
 
∫ 	 (15)

where ct  is the current time and t  is the future time.
The computational load of the calculation process of survival func-
tion is low, which can completely meet the requirements of online 
prediction.
In fact, before the real failure of the device, it can never be determined 
when the device will fail. Therefore, the probabilistic representation of 
survival function is more suitable for the uncertainty of RUL. Moreo-
ver, most maintenance decisions are made based on the probability 
distribution rather than the exact RUL value[4, 15, 18].
Although the probability representation of RUL is more meaningful, 
the method proposed in this paper can still give the value of RUL 
through expectation or determined probability threshold for decision 
reference. Examples will be given in the following method demon-
stration section.

3. Method demonstration
As a typical and important mechanical system, aircraft engine is a 

very active research area for prognostics. To demonstrate the method 
proposed in this paper, a case study on turbofan engines is conducted. 
The main components of the aircraft turbine engine include fan, low-
pressure compressor (LPC), high-pressure compressor (HPC), low-
pressure turbine (LPT), high-pressure turbine (HPT), combustor and 
nozzle. In this section, the proposed method is demonstrated with the 
turbofan engine simulation data set FD001 provided by NASA [31]. 
The data set is generated by the C-MAPSS tool and simulates 21 sen-
sor measurements during engine operation, as detailed in Table 1. The 
training set contains the simulated data of 21 sensors of 100 engines 
in the full life cycle. The prediction set has the same data form as the 
training set but truncated at any time. The RUL of each engine in the 
prediction set is also given for result comparison. In the last part of 
this section, the results of the proposed right-time prediction method 
are analysed, and the superiority is verified by comparing with a tra-
ditional SVR-PHM.

Fig. 3. procedure of online state estimating
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3.1.	 Model training
In the offline model training process, all train-

ing samples in training set are used for HMM 
modelling and PHM modelling.

Firstly, the variable 3 and 12 among all 21 
variables is selected for modelling according to 
Wang [37]. With assuming that three implicit 
degradation states exist in the whole degradation 
process and each state has a specific degree and 
rate of degradation, three-state HMM is used in 
this demonstration. 

For each training sample, a HMM is fitted. 
The parameters of the fitted HMM is considered 
to contain information of the specific degradation 
path of the corresponding sample. Note that all 
the modelling, fitting and predicting processes 
for HMM is achieved by the hmmlearn package 
in Python. The model used in this paper is Gaussian HMM, and the 
calculation process of model parameters is achieved by expectation 
maximization (EM) algorithm.

For a better generality and lower computation load, these 100 
HMMs fitted with the 100 samples is clustered into five clusters for 
model poll establishing. For Gaussian HMM used in this demonstra-
tion, the observation probability distribution B  is expressed as a 
mean value matrix U  and a covariance matrix V . The Euclidean 
distance between mean value matrix U  of different HMMs is used 
as the basis for clustering. After clustering, the HMMs under each 
cluster are synthesized with equation (7) to get a more general model. 
Consisting of the five integrated HMMs, general HMM pool has the 
ability to represent some different but common degradation paths. 

Before the PHM established, the input variables from equation (12) 
have to be extracted from the state estimation results of the training 
samples. To be consistent with the online prediction, the general HMM 
pool is used for the state estimation of these training samples. For each 
sample, the estimation result from the general model with maximum 

log-likelihood is considered to be the most credible. Figure. 4 showed 
general model with maximum log-likelihood of each training sample 
and the calculated log-likelihood value. With the general HMM pool, 
the fittest model specific to each sample rather than a constant model 
can be used for state estimating with a lower uncertainty.

Figure. 5 shows the proportion of estimated stable state and critical 
state to the whole life of each training sample. For most in these 100 
samples, the critical state shown in red accounts for 10% to 20% of 
the total life span. Once the critical state reached, the holistic degra-
dation path of the device can be shown from the long-term operation 

Table 1.	 Description of the sensor measurements for the aircraft turbine 
engine

Index Symbol Description Units

1 T2 Total temperature at fan inlet °R
2 T24 Total temperature at LPC outlet °R
3 T30 Total temperature at HPC outlet °R
4 T50 Total temperature at LPT outlet °R
5 P2 Pressure at fan inlet psia
6 P15 Total pressure in bypass-duct psia
7 P30 Total pressure at HPC outlet psia
8 Nf Physical fan speed rpm
9 Nc Physical core speed rpm

10 EPr Engine pressure ratio (P50/P2) --
11 Ps30 Static pressure at HPC outlet psia
12 Phi Ratio of fuel flow to Ps30 pps/psi
13 NRf Corrected fan speed rpm
14 NRc Corrected core speed rpm
15 BPR Bypass Ratio --
16 farB Burner fuel-air ratio --
17 htBleed Bleed Enthalpy --
18 Nf_dmd Demanded fan speed rpm
19 PCNfR_dmd Demanded corrected fan speed rpm
20 W31 HPT coolant bleed lbm/s
21 W32 LPT coolant bleed lbm/s

Fig. 6. Distribution of the proportion of critical state in total life

Fig. 4. Log-likelihood and corresponding general model for each sample

Fig. 5. State estimating result
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data. The right-time RUL prediction with these existing degradation 
characteristics can not only reduce the uncertainty of prediction re-
sults, but also leave enough time for RUL-based decision-making.

In order to quantify the results of state estimating more accurately, 
the fitted distribution of the proportion of critical state in total life 
of 100 samples is shown in Figure. 6. The histogram shows the true 
distribution of samples, and the curve is a fitted normal distribution 
with mean value of 0.19 and variance of 0.05. Kolmogorov-Smirnov 
test is performed on the fitting results, with a D value of 0.05 and a P 
value of 0.98, which is considered to be in line with the fitted normal 
distribution. The 95% bilateral tolerance interval of the fitted distribu-
tion is [0.08,0.29], that is, under the 95% probability, the critical state 
duration is from 8% to 29% of the total life, and the RUL prediction 
is made at the moment in 71-92% of the total life. This also proves 
that the proposed right-time RUL prediction method is reliable for 
device safety.

With the extracted input variables, the PHM specific for the criti-
cal state can be established. Note that all the modeling, fitting, and 
predicting processes of PHM in this paper is implemented through 
the lifeline package of Python, in which the baseline hazard function 
is determined with Breslow’s Method and the model is fitted with 
Efron’s method for ties and Newton-Rhaphson algorithm.

Then the established PHM is fitted with the real RUL at the time of 
critical state reached of the training samples. The fitted coefficients of 
input variables are listed in 

Table 2, in which D0 and D1 represent the duration of the first state 
and second state estimated by the three-state HMM respectively, M0,3 

and M1,3 represent the mean value of variable 3 in the first state and 
second state respectively, similarly, M0,12 and M1,12 is the mean value 
of variable 12 in the two state.

Figure. 7 presents a sentitivity analysis of the fitted PHM to the 
input variables. For each input variables, five values are equably se-
lected within the variation range of all training samples. Changing of 
survival function caused by changing of single varaible is shown, and 
the changed survival function is compared with the baseline survival 
function. The picture shows that the variation of each input variable 
has a significant impact on the survival function, so it is necessary 
to obtain the most appropriate input variable for the sample through 
multiple models in the model pool.

3.2.	 State estimating and RUL predicting
In the online state estimating process, the general HMM pool is 

used to continuously monitor the equipment state according to the 
input indicators. The state estimating for all 100 predicting samples 
in the data set is carried out. According the state estimating results, 19 
samples have reached the critical state and the RUL of these samples 
need to be predicted. The remaining samples are still in a stable state 
and are considered to have a long running time and do not need RUL 
prediction. Figure. 8 shows the results of the state estimation of the 19 
samples. The blue line is the input monitoring indicator with abscissa 
the time, and ordinate the indicator value. The green line, the yellow 
line, and the red line are three states estimated by general HMM pool, 
respectively. The states represented by the green line and the yellow 
line are taken as stable state, and the state represented by the red line 
is critical state.

For these 19 samples which reached the critical state, the degrada-
tion characteristics in equation (12) are extracted from the existing 
degradation data, and taken as the input of the fitted PHM to obtain 
the hazard rate of the remaining life time. Then the survival function 

Table 2.	 Coefficients of PHM

D0 D1 M0,3 M0,12 M1,3 M1,12

Coefficient -0.03 0.03 -0.24 3.92 0.95 -1.74

Fig. 7. Sensitivity of the fitted model to input variables
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is obtained according to equation (15). The survival function from 
the moment that critical state reached of the 19 samples is shown in 
Figure. 9. The survival curves of different samples are clearly dif-
ferentiated, indicating that the extracted degradation characteristics 
can reflect the unique degradation path of the sample and act on the 
baseline function, so that the obtained survival curve can adapt to dif-
ferent degradation processes through different input variables and be 
more compatible with the real degradation path.

The survival function reflects the survival probability of the device 
at different moments and can be used as reference for maintenance or 
replacement decision-making. Besides, the survival function can be 
used for predicting RUL value by expectation or a given threshold of 

survival probability. Figure. 10 shows the predicted RUL value from 
the survival function in Figure. 9. The abscissa is the real life of the 
sample, and the ordinate is the corresponding predicted RUL. The 
yellow line in the figure is the reference line with slope 1. The degree 
of closeness between the prediction results and the reference line can 
indicate the prediction accuracy. The blue dots in the figure is the 
predicted RUL of 19 samples with a survival probability of 0.6 as the 
threshold. All these predicted points nearby the reference line, indicat-
ing that the prediction results are accurate. When the expectation of 
the survival function is taken as RUL value, the predicted results are 
shown as red dots in the figure. Most of the predicted points are below 
the reference line, indicating that the predicted results are generally 

Fig. 8. State estimating results of the 19 samples

Fig. 9. Survival function of the 19 samples Fig. 10. RUL predicted with survival function
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smaller than the real RUL, which can provide a reference for a con-
servative decision-making.

3.3.	 Results analysis and comparison
In this part, the proposed right-time prediction method is compared 

with a traditional method based on regression model and PHM. In the 
traditional method, the future value of indicators has to be predicted 
firstly, and then the predicted value is taken as the input variable of 
a PHM to obtain the survival function. There are two processes in 
traditional method, offline training and online prediction. In the train-
ing process, the total lifetime data of the 100 training samples is taken 
as the input variable of PHM for model fitting. To make an effec-
tive comparison, the prediction samples is selected the same as the 19 
samples used in the right-time prediction. In the prediction process, 
the future indicator value is predicted by on SVR firstly, and then the 
predicted indicator value is taken as the input variable of PHM to ob-
tain the survival function. Figure. 11 shows the survival curve of the 
19 samples predicted by SVR-PHM from truncation time.

Fig. 12. Comparison of the predicted survival function

Fig. 11. Survival function of 19 samples by SVR-PHM
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Figure. 12 gives a comparison between the survival function of 
the selected 19 samples predicted by the proposed right-time predic-
tion method and traditional SVR-PHM. The blue line is the survival 
function obtained by SVR-PHM, the red line is obtained by the pro-
posed method, and the the black dotted line corresponds to the real 
failure time of the sample. For most of the 19 prediction samples, the 
predicted failure probability of the proposed method is close to or 
significantly lower than that of SVR-PHM at the failure time, which 
indicates the superiority of the proposed method.

For a more accurate comparison, Table 3 lists the survival probabil-
ity of the 19 samples predicted by the two methods at real failure time. 
Among the 19 samples, only one sample has a significantly higher 
survival probability with the proposed method than with SVR-PHM, 
which marked red in table. For four samples in table, the predicted 
survival probability by the two methods is similar with difference less 
than 0.05, and these four samples are marked orange in table. For the 
left 14 samples, the survival probability predicted by the proposed 
method is significantly less than that of SVR-PHM.

Table 4 gives the MSE, RMSE and MAE comparison of RUL 
prediction results of the two methods. For SVR-PHM, the RUL is 
determined by survival probability with a threshold of 0.8, and the 
minimum error can be achieved with this threshold. For the proposed 
right-time prediction method, the threshold is chosen as 0.6.

In this demonstration, the proposed method achieves better predic-
tion results than the traditional SVR-PHM, the reasons for the superi-
ority of the proposed method are analyzed:

The proposed method estimating the degradation state of 
the device firstly, and the RUL is predicted after the critical 
state reached. Therefore, only the degradation process of 
critical state need to be modeled by PHM. Compared with 
the traditional method which modeling the whole degrada-
tion process, the proposed method reduces the difficulty of 
modelling and makes the established model more consist-
ent with the real degradation process.

The input variable of PHM in the proposed method is the 
characteristics extracted from the real long run degradation 
data, while the traditional method takes indicator value as 
the input variable. For the traditional method, the indica-
tor value during the remaining lifetime must be predicted 
before RUL prediction. The proposed method avoids the 
uncertainty in the process of indicator value prediction.

The traditional method takes indicator value as the 
input variable of PHM. This makes the model highly af-
fected by the indicator fluctuation. The indicator volatil-
ity increased the difficulty of model fitting, makes the 
model difficult to accurately express the real degradation 
process. The proposed method takes the characteristics 
extracted from the whole degradation process as the input 
variable of PHM, and can make the RUL prediction with 
a global perspective.

4.  Conclusion
This paper presents a right-time RUL prediction meth-

od for reducing the prognostics uncertainty of mechanical 
systems under unobservable degradation based on HMM 
and PHM. In this method, HMM is used for state estimat-
ing, and PHM is used for obtaining the survival function. 
With the concept of right-time prediction, RUL is only 

predicted after the last degradation state reached. The prediction un-
certainty can be greatly reduced by maximizing the available degrada-
tion data and meanwhile leaving sufficient time for decision-making 
by right-time prediction. By demonstrating on a turbofan engine deg-
radation simulation data set and comparing with a traditional SVR-
PHM, the effectiveness of the proposed method is proved.

The main contributions of this paper are as follows:
According to the authors know, the concept of right-time prediction 

is first put forward in this paper. Correspondingly, the offline mod-
elling and online predicting parts of traditional RUL prediction are 
divided into more accurate offline modelling, online state estimating 
and online RUL predicting three parts. When the RUL is predicted, 
the whole degradation trend is more clear for better modelling, and 
the previous degradation data can be used for uncertainty reduction.

Taking the degradation characteristics extracted from the long run 
data as the input of PHM. It can not only avoid the uncertainty from 
indicator predicting, but also avoid the influence of the RUL predic-
tion results from indicator fluctuations. With the data set, it is verified 
that the degradation characteristics extracted by partitioning the deg-
radation states are effective.

While good prediction results have been obtained by the pro-
posed method, the method still has considerable room for improve-
ments. At present, the input variables of PHM are degradation char-
acteristics extracted only from the previous data. How to update the 
survival function with the indicator value of the last degradation state, 
and that will be focused on in further research.

Table 3.	 Predicted survival probability at failure time

Sample 1 Sample 2 Sample 3 Sample 4

SVR-PHM 0.85 0.66 0.65 0.78

The proposed method 0.33 0.41 0.87 0.56

Sample 5 Sample 6 Sample 7 Sample 8

SVR-PHM 0.83 0.68 0.91 0.91

The proposed method 0.86 0.60 0.22 0.39

Sample 9 Sample 10 Sample 11 Sample 12

SVR-PHM 0.68 0.91 0.83 0.66

The proposed method 0.61 0 0.11 0.23

Sample 13 Sample 14 Sample 15 Sample 16

SVR-PHM 0.78 0.73 0.64 0.73

The proposed method 0.74 0.42 0.33 0.69

Sample 17 Sample 18 Sample 19

SVR-PHM 0.92 0.51 0.82

The proposed method 0.28 0.55 0.67

Table 4.	 Comparison of prediction errors

The proposed method SVR-PHM

MSE 16.21 125.32

RMSE 4.03 11.19

MAE 3.47 8.58
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