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Due to long-term use under challenging conditions, the sub-elements of induction motors 
may suffer certain defects over time. Such defects impair the vibration characteristics of the 
motors in different ways, depending on the type of defect. Therefore, the change in vibra-
tion characteristic provides indicators about the fault type and can be used in preventive 
maintenance strategies to ensure safe operation of the system. In this work, discrete-time 
vibration data were transformed into 2-dimensional grey-level images and decomposed into 
individual components by the Wavelet decomposition method. Features based on entropy 
and column correlation were extracted from these components and used to classify motor 
faults by using the Support Vector Machine method implemented by using the Sequen-
tial Minimal Optimisation algorithm. When the selected classifier is compared with other 
popular Machine Learning algorithms, it is observed that motor faults are more successfully 
classified, and these observations are presented in detail with comparative classification 
performance results.
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1. Introduction
Electric motors consume nearly half of the electricity supply and 

may therefore be considered the workhorses of industry. Among all 
electric motors, induction motors — ranging from fractional horse-
power to higher levels of industrial scale — are the most preferred 
electric motors in industrial applications due to their simple rugged 
construction, cost-effective price and ease of maintenance. Industrial 
companies are continuously pushed to continue their operations more 
reliably and efficiently, and therefore, applying predictive mainte-
nance strategies such as vibration monitoring are essential to ensuring 
the continuity and quality of the production process. 

Bearings contribute to the proper mechanical rotation of motors via 
their set of spherical or cylindrical rolling elements located between 
two circular rings called ‘races’ — one inner and one outer. Due to 
non-ideal operating conditions and ageing, incipient types of bearing 
defects may occur, which may further deteriorate and propagate on to 
the races and the rolling elements of the bearings.

The vibration frequencies caused by bearing-related defect types 
are formulised as functions of rotational frequency and bearing geom-
etry metrics [34]. Bearing-related defects can be broadly classified as 
outer race defects (ORD), inner race defects (IRD), and ball defects 
(BD). The characteristic vibration frequencies related to these main 
defect types are:

	 f N f d dORD b r b p= − ( / ) cos( ) /2 1 β 	 (1)

	 f N f d dIRD b r b p= + ( / ) cos( ) /2 1 β 	 (2)

	 f d f d d dBD p r b b p= − ( )





/ cos( ) /2 1
2

β 	 (3)

where fr is the rotational speed, Nb is the number of balls between the 
races, β is the contact angle of the ball with the races, and db and dp 
are the ball diameter and the pitch diameter, respectively, as depicted 
in Fig. 1.

These characteristic frequencies are widely used to construct mod-
els of impulse trains induced by bearing related defects and the vi-
bration responses are used in various fault classification techniques. 
However, these characteristic frequencies derived by kinematical re-
lationship based on simple rolling motion and smooth rolling assump-
tions. But in reality, in the presence of a load between a rolling ball 
and the races, the contact surface is formed and ball rotates relative 
to the deformed surface of the races. Due to the loading conditions, 
the impulse trains show stochastic character rather than being strictly 
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periodical. Consequently, the characteristic defect frequencies are 
strongly depending on bearing metrics, loading conditions and lubri-
cation level that has an important role in the contact angle condition 
and the relative slippage between balls and the raceway [26]. There-
fore, more complex models not solely based on kinematic constraints 
but considering cyclostationary behaviour of the vibration signals is 
needed to enhance the effectiveness of the diagnosis. 

Monitoring vibration signals is a widely used technique to detect 
incipient types of bearing defects. In the existing literature, numer-
ous methods have been applied to detect and classify induction motor 
faults. In one of the first studies on this subject, Ocak and Loparo used 
the frequency of the fundamental harmonics of the vibration signals 
to predict motor fault type [27]. In another research study, Ocak and 
Loparo used the Hidden Markov Model (HMM) to separate motors 
with inner race defects, outer race defects and ball defects from healthy 
motors by using the same vibration data used in our research, and ob-
tained maximally 100% accuracies for both class problems [28]. Nan-
di, Toliyat and Li investigated motor current harmonics instead of vi-
bration, using Fast Fourier Transform (FFT) and clustering the motor 
faults by using this harmonic knowledge on an Artificial Neural Net-
work (ANN); their results achieved accuracies as high as 93% with an 
uneasy current-measuring process [25]. Trajin, Regnier and Faucher 
compared the vibration-based motor fault diagnosis method with the 
motor stator current-based fault diagnosis method, and concluded that 
the vibration method is more appropriate under constant speed mode, 
while the current method is more appropriate for the variable speed 
mode of induction motors [40]. Immovilli, Bellini, Rubini and Tas-
soni also compared the vibration-based method with the current-based 
method, and concluded that although the current-based method is suit-
able only for low-frequency working conditions, the vibration-based 
method is suitable for both low- and high-frequency working condi-
tions [17]. Lei and Meng proposed the Symplectic Entropy method 
with Radial Basis Function (RBF) classifier for vibration-based defect 
classification for four conditions: normal condition, outer race defect, 
rolling element defect and inner race defect, and achieved 99.8% test 
accuracy with 6,000 vibration samples [19]. In more recent research, 
Li, Wang, Si and Huang applied an entropy-based defect classification 
method to the same data used in our research, and achieved 98.75% 
accuracy for ball defect detection and 100% accuracy for inner and 
outer race defect detection [20]. In another recent study, Zhao, Liu and 
Meng proposed switchable normalisation semi-supervised generative 
adversarial networks (SN-SSGAN) for 1D representation of the same 
data used in our research, and achieved 99.93% test accuracy for four 
problem classes (normal, inner race defect, outer race defect and ball 
defect) while splitting data as 80% training to 20% testing [49]. Gan, 
Zhao and Chow also utilized vibration signals in electrical and me-
chanical motor fault detection under different frequency conditions 

using genetic algorithms and achieved a maximum of 93.96% test ac-
curacy for electrical faults under 35 Hz frequency and  a maximum of 
96.9% test accuracy for mechanical faults under 45 Hz frequency [9]. 
One of the most recent studies using vibration signals for diagnostics 
was presented by Tabaszewski and Szymański, which proposes a set 
of binary tree-based classification for three valve clearance classes, 
listed as: tight, optimum and excess [39]. In [39], the classification 
accuracy achieved was 99%.

Support Vector Machines (SVM) are also applied for motor fault 
classification problems [5, 10, 13, 23]. Banerjee and Das proposed a 
hybrid method of Short-Time Fourier Transform (STFT) and Linear 
SVM (LSVM) for motor fault detection with multiple sensors and  
achieved 95% test accuracy [5]. Glowacz used LSVM for the classifi-
cation of healthy motors, motors with faulty rotor bar and motors with 
two faulty rotor bars by using acoustic data, and achieved a 96.66% 
total efficiency of recognition of acoustic signal (TEoRoAS) [13]. 
Gangsar and Tiwari applied one-vs-one multiclass SVM (MSVM) 
with RBF kernel for classification of nine different electrical and me-
chanical faults of an induction motor by using vibration and current 
data both separately and together, and achieved 98.3% test accuracy 
by using vibration and current data together under the condition of no-
load and 20 Hz working frequency [10]. In a more recent study, Mao 
and Wang proposed an SVM method supported by Multi-Objective 
Particle-Swarm-Optimisation (MOPSO) and applied it to separate in-
ner race defect data from normal condition data, outer race defect data 
from normal condition data, and ball defect data from normal condi-
tion data — and obtained 99.47%, 100% and 100% respective accura-
cies for the corresponding two-class problems [23].

One-dimensional time domain vibration signals can be converted 
into 2D via quantisation of actual values between 0 to 255 for greys-
cale image representation by using non-overlapping segments as rows 
of 2D matrices [11]. Representation in 2D has some significant ben-
efits over the regular 1D signal representation [41]. Do and Chong 
proposed the Scale-Invariant Feature Transform (SIFT) algorithm 
to detect faults using 2D representation of the vibration signals, and 
achieved 98.1% accuracy for the eight-class classification problem, 
wherein the classes are listed as: angular misalignment, bowed rotor 
shaft, broken rotor bar, faulty bearing, motor unbalance, normal mo-
tor, parallel misalignment and phase unbalance [6]. If a priori knowl-
edge of the classes to be recognised exists, texture-based methods can 
be applied for the classification of the patterns caused by indicators 
of vibration signals [18, 36, 48]. In one of the these texture-based 
methods, Khan and Kim calculated Local Binary Patterns (LBP) from 
2D representation of the vibration data used in our research, derived 
global histogram of these LBPs, and used the values in the global 
histogram as input of k-NN classifier to achieve an average classifi-
cation accuracy of 99.74% [18]. 2D texture analysis based on local 
binary patterns (LBP) is also applied to vibration signals. Vibration 
data converted into 2D greyscale images are used as a medium to find 
discriminating texture features by employing an LBP operator [36]. 
In the other texture-based research, Zhang, Peng and Li used Convo-
lutionary Neural Network (CNN) for the classification of motor faults 
from the 2D representation of the vibration data used in our research, 
and obtained 99.95% accuracy for separations of 30,000 training 
and 7,500 test data samples, and 98.17% accuracy for separations of 
1,500 training and 7,500 test data samples, where each data sample 
contains 2,400 data points [48]. In one of the most recent studies, 
Sun and Cao integrated curvature filtering, Histogram of Gradients 
(HOG) and one-vs-one MSVM for classification of motor faults by 
using 2D representation of vibration data and achieved a maximum 
of 98.48% accuracy by using RBF kernel for MSVM [38]. In another 
recent study, Ma et al. applied Transfer Learning CNN (TLCNN) to 
2D representation of the same data used in our research and achieved 
99.71% accuracy [22]. Zimnickas, Vanagas, Dambrauskas and Ka-
lvaitis built a test workbench for collecting vibration signals from 
several different induction motors whose conditions can be listed as: 
bad bearings, loose mounting, rotor eccentricity, lost phase to motor 

Fig. 1. Ball bearing geometry
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and short circuit in stator winding, and they applied a hybrid method 
of Continuous Wavelet Transform (CWT) and CNN to 2D representa-
tions of their collected data [50]. In [50], 97.53% classification accu-
racy was achieved. Artificial Neural Network (ANN)-based bearing 
defect classification via vibration spectrum imaging is another appli-
cation of greyscale to binary image conversion, showing the spectral 
contents of the translation-variant time-segmented vibration signal, 
transformed into a spectral image [3]. 

This article proposes a novel feature extraction method for column 
correlation and entropy features from Wavelet decomposition of 2D 
represented vibration. The vibration data of the induction motors used 
in the experiments are explained in detail in the introduction of Sec-
tion 2. In Section 2.1, the construction of 2D greyscale images from 
1D vibration data is explained. In Section 2.2, the 2D Haar Wavelet 
decomposition method is explained. Calculations of column correla-
tion features and entropy features are explained in Section 2.3 and 
Section 2.4, respectively, and the combined feature vector representa-
tion is introduced in Section 2.5. In Section 3, the chosen MSVM clas-
sifier with Pearson VII (PUK) kernel is introduced. Section 4 presents 
comparative results for different classifiers using proposed features, 
and in Section 5 the presented comparative results are analysed.

2. Material and feature extraction method
In this work, the proposed feature extraction technique is tested on 

a publicly available seeded fault data set from Case Western Reserve 
University (CWRU) Bearing Data Center [1]. The test bench included 
a 2-horsepower (hp) induction motor, a torque transducer and a dy-
namometer used to acquire vibration signals using accelerometers, 
which were attached to the housing with magnetic bases. Single-point 
defects were deliberately introduced to the test bearings with three 
different defect diameters. In this work, 12 kHz drive-end vibration 
data of induction motors with defective bearings with defect diam-
eters of 0.18, 0.36 and 0.54 millimetres of inner race defect, outer race 
defect located at the 6:00 position and ball defect bearing are used. 
Vibration data was taken under four different loading conditions: 0, 
1, 2 and 3 hp motor loads. Class labels of defect types with different 
defect diameters are given in Table 1. 

All loading conditions of motors are included into the classifica-
tion to propose a classification method that is effective regardless of 
loading. 

Sample 1D vibration data related to inner race defect, ball defect 
and outer race defect with different defect diameters under 2 hp load 
are plotted in Figs. 2, 3 and 4, respectively.

2.1.	 Construction of 2D greyscale images 
The first step of the proposed feature extraction method is to con-

vert 1D discrete vibration data to 256-grey-level 2D images. The dis-
crete 1D vibration data can be represented by the vector Vi as in (4) for 
the ith experiment, where vi denotes the jth sample of the ith data.

	 [ ] [ ] [ ] [ ][ ]0 1 2 1i i i i iV v v v v L= − 	 (4)

Table 1. Defect Descriptions for Classes

Class Label Defect Description Defect Depth Level

Class 1 Inner Race Defect 0.18 mm

Class 2 Inner Race Defect 0.36 mm

Class 3 Inner Race Defect 0.54 mm

Class 4 Ball Defect 0.18 mm

Class 5 Ball Defect 0.36 mm

Class 6 Ball Defect 0.54 mm

Class 7 Outer Race Defect 0.18 mm

Class 8 Outer Race Defect 0.36 mm

Class 9 Outer Race Defect 0.54 mm

Fig. 3. Sample 1D ball defect vibration data under 2 hp motor load

Fig. 4.	Sample 1D outer race defect vibration data under 2 hp motor 
load

Fig. 2.	Sample 1D inner race defect vibration data under 2 hp motor 
load
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where: iV  denotes the normalised vector for the ith 1D vibration data, 
which is calculated as in (5). The subtraction of minimum valued ele-
ment of the vector from each sample guarantees that the values will be 
nonnegative, and the division of each subtraction result by the differ-
ence of maximum and minimum elements guarantees that the values 
will fall within the interval [0,1]:

	
( )

( ) ( )
- min

max - min
i i

i
i i

V V
V

V V
= 	 (5)

The size selection of the vectors is another crucial step in the con-
struction of 2D greyscale images:

	 L M N= × 	 (6)

In (6), L denotes the number of samples in a single measurement 
vector, which is taken as 6,000. M is the number of rows in the image 
representation, which is taken as 30, which correspond to 30 cycles. N 
is the number of columns in the image representation, which is taken 
as 200. Since the sampling frequency is 12 kHz, the length N is taken 
as 200. The related experiments were carried out at a network fre-
quency of 60 Hz. Thus, each part of the vibration data comprising 200 
samples will correspond to a single period of the AC voltage applied 
at the motor input. In other words, if the sampling frequency is 12 
kHz, by setting M and N values to 30 and 200 respectively, each grey-
scale image represents a vibration data recorded for 30 cycles, corre-
sponding to half seconds of data, and the pixels in each row belong to 
a single period of that part. The normalised vector is converted to 2D 
8-bit grey-level images as in (7) and (8).

	 I m Round v mN m Ni i, : : -[ ] = ⋅ ( ) +( )( ) ( )255 1 1ˆ 	 (7)
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It should be noted that 60 Hz is the fundamental supply frequency 
in all experiments, and the fORD, fIRD and fBD are the frequencies ex-
pressed in kinematical equations in (1), (2) and (3) respectively, are 
the approximate frequencies of the harmonics those may occur due 
to the relevant fault type. It should be noted that these harmonics do 
not always occur in a deterministic way and show stochastic behav-
iour due to external conditions. In addition, the depth of the defects 
may cause different harmonics in the vibration spectrum, as a result, 
the type of fault that cannot be explained solely by the characteris-
tic equations related to fault types. For this reason, the N parameter 
used in 2D image representation should be calculated based on the 
fundamental frequency, not the approximate harmonic frequencies. 
The effect of harmonic frequencies depending on the fault type on the 

vibration data will be better understood with the texture structure that 
will be occurred specific to the fault type in 30x200 pixels 2D images. 
In this work, column correlation and entropy features which described 
detailly in Sections 2.3 and 2.4 respectively, suggested to employed 
together to detect texture type corresponds to fault type. Sample 2D 
images constructed from vibration data recorded under 2 hp motor 
loads for inner race defect, ball defect and outer race defect classes 
with different defect diameters are given in Fig. 5. 

2.2.	 2D Haar Wavelet Decomposition of constructed im-
ages

After constructing 20 images per data file downloaded from the 
CWRU database, single-level 2D Discrete Wavelet Transformation 
(DWT) is applied to these greyscale images in order to obtain the 
sub-band images needed for the proposed feature extraction technique 
[2, 4]. In DWT, High-Pass (HP) and Low-Pass filters (LP) and the 
down-sampling by two operations are applied along rows of 30 to 200 
pixels images. Haar filters are selected for the Low-Pass and High-
Pass filters [14, 37]. The High-Pass Haar filter is given in (9) and the 
Low-Pass Haar Filter is given in (10):

	
1 1

-
2 2

HaarH =
 
  

	 (9)

	
1 1

2 2
HaarL =

 
  

	 (10)

The same procedure is applied along the columns of the two sub-
images obtained, with a nuance — this time, for the columns, the 
Low-Pass filter is applied before the High-Pass filter. The outputs at 
the second step are four greyscale images having sizes of 15 to 100 
pixels, corresponding to single-level DWT of the image outputs. The 
output images are called the vertical, diagonal, approximate and hori-
zontal sub-images, as shown in Fig. 6. 

Fig. 6. 2D Haar wavelet decomposition 

The order of the sub-images is determined by the strength of the 
information obtainable from the 
sub-image, with stronger infor-
mation for the classification to 
the sub-images with weaker in-
formation. 

Sample sub-images for the 
nine classes of vibration data 
are presented in Fig. 7 in order 
of vertical, diagonal, approxi-
mate and horizontal compo-
nents. The approximate image 
resembles the original image, 
while remaining images contain 

Fig. 5. Sample 2D image representations of vibration data
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detail textures — all of which have some close relationship with the 
indicators of motor faults.

2.3.	 Extraction of column correlation features
The correlations between two neighbouring columns are evaluated 

over the sub-images, and the means of these calculated values are 
used as column correlation features. The detailed analysis of the im-
ages obtained by wavelet decomposition reveals that the strongest in-
formation is captured in their columns, since each row corresponds to 
single period of vibration data. Consequently, there are insignificant 
variations between rows due to the periodicity. The column correla-
tion information contains the potential distinguishing indicators of the 
fault types, which would be more informative. The nth column of the 
jth sub-image for the ith image can be represented as in (11):

	 [ ] ( )( ), , 0 : - 1 ,i j i j jc n I M n= 	 (11)

where Mj = M/2.

The Pearson correlation coefficient can be expressed as in (12), 
which can be computed by the covariance of two random variables 
and the variances of each random variable [30, 46]:

	 ρ X Y
Cov X Y

Var X Var Y
,

,( ) ( )
( ) ( )

=
⋅

	 (12)

The column correlation is generated by the mean of Pearson cor-
relations of the neighbouring columns in the sub- images, which can 
be expressed as in (13): 

	 r i j
i j i j

n

N

N j
column

c n c n
j

,
, ,

-

,
( )

[ ] +[ ]( )
= =

−

∑ ρ 1
0

1

1
	 (13)

where Nj=N/2 [12].

2.4.	 Extraction of entropy features
Entropy is a strong measure for the randomness and texture of the 

images [15, 45]. However, for the measurement of entropy, the data 
samples or the pixels of the images should take a countable number 
of values. After the wavelet transform, the pixels of the sub-images 
take floating-point values, thereby making each value unique, which 
is not conducive to entropy calculation. To overcome this problem, 
the pixels of wavelet sub-images are rounded to the nearest integer 
value as in (14):

	 Q Round I Ii j i j i j, , ,- min= ( )( ) 	  (14)

After this, a histogram is constructed as in (15) 
and (16):

	 ( ) [ ]( ), ,i j i jh k count s k=                 (15)

	 ( ) ( ) ( )[ ], , ,0 1 - 1i j i j i jH h h h NS=           (16)

where si,j[k] is the kth state in Qi,j and NSi,j is the 
total number of states observed in Qi,j.

The histogram is an array of numbers of each 
state, which are generalised as in (17):

	 j j jL M N= ×                         (17)

The probabilities of each state are calculated by (18):

	 P s k
H k

L
i j

i j

j
,

,[ ]( )
[ ]

= 	 (18)

According to the probability of each state, the entropy of each of 
the wavelet sub-images can be calculated as in (19):

	 entropy i j P s k P s k
k

NS

i j i j

i j

, - log
, -

, ,( ) [ ]( ) [ ]( )( )[ ]=
=

∑
0

1

2 	 (19)

2.5.	 Feature vector representation
After the calculation of column correlation and entropy features 

from sub-band images, features are combined to construct a feature 
vector of size eight. The overall feature extraction process can be 
summarised with the flowchart depicted in Fig. 8. For vibration data 
samples of size 6,000, 20 sets of feature vectors are extracted from 
each data file downloaded from the CWRU data set. Each set can be 
considered as a separate experiment and the feature vector for the ith 
experiment can be represented by (20):
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Feature vectors are normalised as in (21)–(23):

	
[ ] min

[ ]
max min

i k
i

k k

F k
F k

−
=

−
 	 (21)

where:
	 [ ] [ ][ ]( )0 1min min :k KF k F k−= 	 (22)

	 [ ] [ ][ ]( )0 1max max :k KF k F k−= 	 (23)

The scatter plots of selected normalised feature vectors for all 
experiments are presented in Fig. 9 for the Three-Class case, where 

Fig. 7. Sample sub-images obtained for the nine classes of vibration data
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defect diameters are ignored. Similarly, scatter plots of se-
lected normalised feature vectors for all experiments for the 
Nine-Class case, where each defect diameter was considered 
as a separate class, as described in Table 1, are presented in 
Fig 10. 

The contribution of column correlation features to the Three-
Class problem can be observed by examining the 16 sub-figures 
in the upper-left quadrant of Fig. 9, which show that in particu-
lar, the column correlation coefficients group ball defect and 
outer race defect better than inner race defect. However, upon 
examining the 16 sub-figures in the upper-right quadrant and 
the 16 sub-figures in the lower-left quadrant of Fig. 9, it is seen 
that the inner race defect can be grouped significantly with the 
contribution of entropy features. 

As seen in the 16 sub-figures in the upper-left quadrant of Fig. 
10, it is understood that the most significant contributions of col-
umn correlation features to the Nine-Class problem are grouping 
with 0.18, 0.36, and 0.54 millimetres outer race defects and 0.54 
millimetres inner race defects. When the 16 sub-figures in the 
lower-left quadrant are examined, it can be understood that 0.18, 
0.36, and 0.54 millimetres ball defects can be grouped better 
when column correlation features are used together with entropy 
features. 

When the 16 sub-figures in the lower-right quadrant of Fig. 
10 are examined, it is seen that when entropy features alone are 
used, 0.18, 0.36, and 0.54 millimetres outer race defects can 
be largely distinguished from each other. However, entropy 

features can distinguish ball defects from in-
ner race and outer race defects only with the 
help of column correlation features as seen in 
the 16 sub-figures in the upper-right quadrant 
of Fig. 10.

3. Support Vector Machine Classifier
The purpose of the Support Vector Machine 

(SVM) method is to obtain a suitable hyper-
plane in an N-dimensional space that distinctly 
separates the classes [35, 43]. The chosen hy-
perplane should have the maximum distance 
from both classes. 

The original method was developed for two-
class problems. However, the method has been 
adapted to multi-class problems using one of 
three potential strategies: one vs. one, one vs. 
all, and the non-heuristic method [24, 44]. In 
this study, the one vs. one strategy is chosen. 

The algorithm is fastened by the Sequential 
Minimal Optimization (SMO) algorithm [32]. 
SVM is defined in terms of a quadratic pro-
gramming (QP) problem. SMO decomposes 
this QP problem into several QP sub-problems 
and fastens the algorithm by choosing smallest 
possible optimisation problem at each step. 

The classification accuracy of SVM is im-
proved by the application of the Pearson VII 
Kernel (PUK) method [29, 31]. Üstün, Melssen 
and Buydens presented the accuracy of SVM 
with PUK on various test data for classification 
[42]. Zhang and Ge used SVM with PUK for the 
classification of halophilic and non-halophilic 
proteins [47]. The main reason for using PUK 
is the nonlinearity of the hyperplanes between 
classes. The PUK can be expressed as in (24) for 
two feature vectors:

Fig. 9. Scatter plot of normalised features for Three-Class case

Fig. 10. Scatter plot of normalised features for Nine-Class case

Fig. 8. Feature extraction flowchart
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The best classification performance is achieved when ω is taken as 
1 and σ is taken as 0.5 in (24).

4. Comparative results 
For the implementation of the chosen classifiers, the 3.8.2 version 

of the Workbench for Machine Learning (WEKA) is used [16]. The 
performance of the proposed feature extraction method with the cho-
sen classifiers is compared with the Bayesian Network classifier [8], 
Naïve Bayes classifier [33], Naïve Bayes classifier with Kernel Den-
sity Estimation (KDE) [21], K-Nearest Neighbours (KNN) Classifier 
[7] and SMO with Polynomial Kernel [35].

4.1.	 Comparison metrics
Classification accuracies are compared using the following per-

formance metrics: Accuracy, Macro-Precision, Macro-Recall and 
Macro-F1 Score.

These performance metrics are calculated from a confusion matrix. 
A confusion matrix for a multi-class problem can be generalised as 
in (25):
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In (25), îP denotes the total number of samples predicted as ith class 
and iP denotes the exact number of samples in ith class. iTP  denotes 
the number of correctly classified samples as ith class (number of True 
Positive samples) and ijF  denotes the number of samples in ith class 
that are wrongly classified as jth class. The Accuracy metric is calcu-
lated from a confusion matrix as in (26):
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The calculations of Precision, Recall and F1 Score need False Posi-
tive ( :iFP the total number of samples that are wrongly classified as 
ith class) and False Negative ( :iFN the total number of samples in ith 
class that are wrongly classified as one of the other classes) numbers 
of each class. The calculation of iFP is given in (27), and that of iFN
is given in (28):
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The Precision of the classifier for a specific ith class is the fraction 
of the number of samples correctly classified as ith class out of the to-
tal number of samples classified as ith class, which is defined by (29):
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The Recall of the classifier for a specific ith class is the fraction of 
the number of samples correctly classified as ith class among the total 
number of samples in ith class, which is defined by (30):
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The F1 Score of the classifier for a specific ith class is the geometric 
mean of the Precision and Recall metrics for that class as shown in 
(31):
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The data set used in experiments consists of equal numbers of sam-
ples belonging to each specific fault class. Therefore, the classifica-
tion problem dealt with is a balanced multi-class problem. Since the 
classes are balanced, it is appropriate to use the macro average of the 
class-based metrics in measuring the overall classification perform-
ance.

The overall precision, recall and F1 score performances of the clas-
sifiers are measured by Macro-Precision, Macro-Recall and Macro-
F1 Score metrics, which are equal to the arithmetic mean of the class-
specific precision, recall and F1-scores as shown in (32), (33) and (34) 
respectively:
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4.2.	 Results for Three-Class case
Table 2 shows overall the Three-Class classification success of the 

benchmarked classifiers for proposed features. Table 3 and Table 4 
show detailed Three-Class performance of the benchmarked classi-

Table 2.	 Three-Class Classification Accuracy

Classifier 10-fold cross 
validation 80% split

Bayes Net with Naïve Bayes 
search 95.1389% 95.1389%

Naïve Bayes without kernel 51.9444% 58.3333%

Naïve Bayes with kernel 95.5556% 95.1389%

KNN 99.0278% 98.6111%

SMO with polykernel 70.5556% 77.7778%

SMO with PUK (Pearson VII 
kernel) 99.5833% 100.000%
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fiers according to the comparison metrics for 10-fold cross validation 
and a split of 80% training set and 20% test set, respectively.

4.3.	 Results for Nine-Class case
Table 5 shows overall Nine-Class classification success of the 

benchmarked classifiers for proposed features. Table 6 and Table 7 
show detailed Nine-Class performance of the benchmarked classifiers 
according to the comparison metrics for 10-fold cross validation and 
a split of 80% training set and 20% test set, respectively.

4.4.	 Evaluation of the Results
When the literature is re-examined, there are similar studies that in-

clude feature extraction from the 2D representations of vibration data 
taken from the CWRU database or a self-designed test rig [3, 6, 18, 
22, 36, 38, 48]. In the studies that use CWRU data, image representa-
tion of vibration signals differs in some aspects. 

In [48], pixels of 60 to 40 sized images were directly used as 2400 
inputs of a batch-normalized CNN and 99.95% accuracy for a separa-
tion of 30,000 training and 7,500 test data samples and 98.17% accu-

racy is achieved for a separation of 1,500 training and 7,500 test data 
samples, where each data sample contains 2400 data points. 

In [18], average classification accuracy was obtained as 99.74% 
by LBP features, which is similar to the classification accuracy of our 
proposed method. 

In [3], spectral imaging and filtering with appropriate threshold se-
lection — which is more complicated than the proposed technique — 
was used to discriminate the same type of faults, and 96.9% average 
classification accuracy was obtained. However, it focused only on the 
fault types and neglected the defect depths. 

In [38], the sizes of 2D representation of the vibration signal are 
100 x 128, which has more data points than our proposed 2D repre-
sentation (30 x 200) and obtained 98.48% accuracy by using one-vs-
one MSVM with RBF kernel, which is less than the accuracy of our 
proposed method. 

Ma et al. achieved 99.71% accuracy by using TLCNN [22]; how-
ever, in our proposed method 100% accuracy can be achieved for both 
Three-Class and Nine-Class problems without the complex structure 
of CNN and additional knowledge used for transfer learning.

Classifying bearing-related faults, as well as classifying the same 
type of faults with different defect depths, makes the classification 
process more challenging when compared to the studies using a self-
designed test rig where the fault types are very distinct from each 
other. In [6], the classification accuracy of the SIFT algorithm, which 
yields feature vectors of size 128, remained at 98.1%. In [36], the LBP 
technique, which uses histogram bins of size 256 as feature vectors, 
was used to discriminate the same fault types as in [6], and 100% 
accuracy was measured by 4-fold cross validation. Even though the 
classification accuracy of  [36] is similar to that of our proposed meth-
od, the feature vector size and computational effort are higher than in 
our method. On the other hand, we proposed only 8 features based 
on 2D Discrete Wavelet Transform to discriminate similar bearing-
related defects with different depths and achieved remarkably high 
classification accuracies up to 100%.

Table 3.	 Three-Class Detailed Classification Performance Statistics with 
10-Fold Cross Validation

Classifier Macro-
Precision

Macro-
Recall Macro-F1

Bayes Net with Naïve Bayes 
search 95.17% 95.14% 95.14%

Naïve Bayes without kernel 51.85% 51.94% 51.78%

Naïve Bayes with kernel 95.72% 95.56% 95.50%

KNN 99.04% 99.03% 99.02%

SMO with polykernel 69.53% 70.56% 69.59%

SMO with PUK (Pearson VII 
kernel) 99.58% 99.58% 99.58%

Table 4.	 Three-Class Detailed Classification Performance Statistics with 
80% Split

Classifier Macro-
Precision

Macro-
Recall Macro-F1

Bayes Net with Naïve Bayes 
search 95.36% 95.15% 95.23%

Naïve Bayes without kernel 58.90% 58.93% 58.90%

Naïve Bayes with kernel 95.17% 95.54% 95.22%

KNN 98.55% 98.77% 98.64%

SMO with polykernel 76.77% 76.84% 75.88%

SMO with PUK (Pearson VII 
kernel) 100% 100% 100%

Table 5.	 Nine-Class Classification Accuracy

Classifier 10-fold cross 
validation 80% split

Bayes Net with Naïve Bayes 
search 95.1389% 96.5278%

Naïve Bayes without kernel 95.2778% 97.9167%

Naïve Bayes with kernel 96.2500% 99.3056%

KNN 99.0278% 98.6111%

SMO with polykernel 91.6667% 91.6667%

SMO with PUK (Pearson VII 
kernel) 99.4444% 100.000%

Table 6.	 Nine-Class Detailed Classification Performance Statistics with 
10-fold Cross Validation

Classifier Macro-
Precision

Macro-
Recall Macro-F1

Bayes Net with Naïve Bayes 
search 95.28% 95.14% 95.11%

Naïve Bayes without kernel 95.46% 95.28% 95.34%

Naïve Bayes with kernel 96.48% 96.27% 96.29%

KNN 99.05% 99.03% 99.02%

SMO with polykernel 93.14% 91.67% 90.90%

SMO with PUK (Pearson VII 
kernel) 99.45% 99.44% 99.44%

Table 7.	 Nine-Class Detailed Classification Performance Statistics with 
80% Split

Classifier Macro-
Precision

Macro-
Recall Macro-F1

Bayes Net with Naïve Bayes 
search 96.14% 96.76% 96.26%

Naïve Bayes without kernel 97.92% 98.36% 97.99%

Naïve Bayes with kernel 99.21% 99.47% 99.32%

KNN 98.25% 98.89% 98.50%

SMO with polykernel 91.34% 92.02% 90.19%

SMO with PUK (Pearson VII 
kernel) 100% 100% 100%
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5. Discussion
The Three-Class classification problem comprises challenge of the 

ball defect separation from the inner and outer race defects. The diffi-
culty of this separation problem can be observed in Fig. 9. According 
to the figures, it can be emphasised that the ball defect data is spread 
over a larger area in the feature space than the data of the other two 
classes, which may potentially cause confusion. On the other hand, 
the inner race data bunch along three narrow regions in the feature 
space, and this situation expedites the distinction of the inner race 
defect from other defect types. The outer race data bunch along three 
other narrow regions different from the inner race regions; therefore, 
the outer race defect type is also distinct from the inner race defect 
type. The inner race and outer race defects can be separated by linear 
hyperplanes. However, the ball defect needs a nonlinear hyperplane. 
As also seen in (3), the characteristic vibration frequency of the ball 
defect is more complicated than that of other defect types. Therefore, 
it is understandable that a ball defect is harder to discriminate from 
other defect types.

According to the overall accuracies of the classifiers on Three-
Class classification, the worst performance is observed for the Naïve 
Bayes without KDE. The simple structure of pure Naïve Bayes is suf-
ficient to avoid both the confusion between ball defect and the other 
classification types, as well as the confusion between inner and outer 
race defects. This confusion problem is mostly solved by application 
of KDE to Naïve Bayes. After the application of KDE, the overall 
success of the Naïve Classifier increased from 58.33% to 95.14% 
for the 80% training – 20% testing strategy. In addition, confusion 
is observed only between ball defect and others after KDE. Bayesian 
Network shows similar performance with Naïve Bayes with KDE. 
SMO with simplest polynomial kernel with an exponent of 1 shows 
relatively worse performance than Naïve Bayes with KDE. 

The SMO with polynomial kernel shows confusions mostly be-
tween inner race defect and the others. The cause of this confusion 
could be bunching along three narrow regions which cannot be sepa-
rated by first-degree polynomial kernel. The performance of SMO is 
boosted by choosing PUK, which shows 100% sufficiency for Three-
Class classification for the 80% train – 20% test strategy. The closest 
performance to SMO with PUK is observed for KNN classifier, which 
offers little confusion on ball defect. 

If the Nine-Class performances of the classifiers with proposed 
feature extraction methods are analysed, the first pattern that stands 
out is that the confusions in the Three-Class classification are mostly 
avoided, especially for the worst classifiers in Three-Class classifi-
cation, as Naïve Bayes without Kernel and SMO with polykernel. 
The one-vs-one hyperplanes in the Nine-Class problem have simple 
structures than the one-vs-one hyperplanes in Three-Class problem, 
because each level of the inner race and outer race defects are bunched 
at specific locations, which can be easily separated from other type 
of defects as seen in Fig. 10. According to Tables 5–7, despite the re-
markable improvement in scores, the SMO with polykernel becomes 
the worst classifier in Nine-Class classification. Naïve Bayes without 
KDE achieves the success of Bayesian Network, and Naïve Bayes 
with KDE exceeds the success of Bayesian Network. The best per-
formance in the Nine-Class classification is also observed in chosen 
SMO with PUK classifier, which is followed by KNN classifier.

If the success of the proposed features in both Three-Class and 
Nine-Class problems is evaluated over the precision, recall and F1 
metrics, there is no significant difference between the precision and 
recall values, as can be seen in Tables 3, 4, 6 and 7. Because of the 
closeness of precision and recall performances, the F1 scores are re-
markably close to the accuracy scores. The precision, recall and F1 
metrics prove that the proposed features are sufficient to obtain con-
sistent and reliable fault classification results.

6. Conclusions
To sum up, the proposed feature extraction technique provides 

strong information, not only for the Nine-Class fault classification 
problem, but also for the Three-Class fault classification problem. In 
addition, if these features are supported by a kernel-based classifier 
with a suitable kernel, they provide great improvement — up to 100% 
correct classification. The type of kernel is crucial, as observed in the 
comparison of polykernel and PUK. 

In future work, the method can be improved upon in two different 
ways. First, some additional features can be proposed, especially for 
separating ball defects from other types of defects. Alternatively, a 
different kernel can be proposed that is much more suitable for the 
hyperplanes between separated classes.
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