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This paper deals with modeling and analysis of complex mechanical systems that deteriorate 
with age. As systems age, the questions on their availability and reliability start to surface. 
The system is believed to suffer from internal stochastic degradation mechanism that is 
described as a gradual and continuous process of performance deterioration. Therefore, it 
becomes difficult for maintenance engineer to model such system. Semi-Markov approach is 
proposed to analyze the degradation of complex mechanical systems. It involves construct-
ing states corresponding to the system functionality status and constructing kernel matrix 
between the states. The construction of the transition matrix takes the failure rate and repair 
rate into account. Once the steady-state probability of the embedded Markov chain is com-
puted, one can compute the steady-state solution and finally, the system availability. System 
models based on perfect repair without opportunistic and with opportunistic maintenance 
have been developed and the benefits of opportunistic maintenance are quantified in terms 
of increased system availability. The proposed methodology is demonstrated for a two-stage 
reciprocating air compressor with intercooler in between, system in series configuration.
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Notations

A Transition probability matrix of the system model O Operative
As Steady-state system availability Pi Steady-state probability of state ‘i’ of SMP model

D Degraded si
Steady-state probability of state ‘i’ of Embedded Markov 
Chain

F Failed Ti Mean sojourn time at state ‘i’ of the SMP model

Fij(t)
Cumulative density function (CDF) of transition from state 
‘i’ to ‘j’. i, j Sequential number of states of the SMP model, where, i, j= 

1, 2,…, n

F tij ( ) Complementary CDF of transition from state ‘i’ to ‘j’. β ij Shape parameter of Weibull distribution

K(t) Kernel matrix of the semi-Markov model θij Scale parameter of Weibull distribution
kij Transition probability from state ‘i’ to ‘j’ µij Exponential repair transition rate
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1. Introduction
Degradation modeling of mechanical systems has drawn special 

attention of plant engineers as it is a crucial aspect of the execution 
of an effective maintenance plan. Maintenance is the system’s design 
feature that enables the success of various maintenance activities in-
cluding inspection, repair, replacement and diagnosis [28]. Whenever 
a system breakdown occurs due to sub-system/component failure, it 
enters the repair phase. With the capability to repair or restore a sys-
tem which is under breakdown, a failure-repair-failure-repair cycle is 
introduced. The restoration cycle can be broken down into a variety 
of subtasks that include supply delay, maintenance delay, diagnosis, 
replacement or repair, alignment and verification, etc. Therefore, re-
pair work is a highly skilled and dynamic task in which workers come 
into close contact with the equipment. There are several factors which 
affect the maintenance procedure like part layout, ergonomic factors, 
maintenance skill levels, repair crew size, level of repair, and use and 
clarity of maintenance procedures and diagrams lay down in the man-
ual. Although, the reliability of the components has improved dra-
matically, humans still remain messy and unpredictable [1]. There are 
several measures of maintainability but the most popular and the one 
discussed in this paper is mean time to repair (MTTR). The growing 
importance of maintenance has developed an increasing trend in de-
signing and implementing optimal maintenance strategies to enhance 
system reliability, avoid system failures, and reduce system degrada-
tion maintenance cost [27].

The main objective of any maintenance regime is to maintain the 
system functionality to the maximum extent possible with optimum 
trade-offs between the down times and cost of maintenance, avoiding 
any catastrophic failures. Opportunistic maintenance works out to be 
the suitable remedy, which utilizes the opportunity of system shut-
down or module dismantle to perform any maintenance required in 
the immediate future and saves a substantial amount of system down-
time. A system of components working in a random environment is 
subjected to wear and damage over time and may fail unexpected-
ly. The components are replaced or repaired upon failure, and such 
unpleasant events of failure are at the same time also considered in 
practice as opportunities for maintenance on other components. Op-
portunistic maintenance basically refers to the scheme in which main-
tenance is carried out at opportunities, either by choice or based on the 
physical condition of the system. In this study, the focus is made on 
the situation in which the opportunities for maintenance are generated 
by the failure epochs of individual components. At each failure epoch, 
the failed components are correctively repaired and other components 
that are still operational are also serviced so that all the subsystems 
are maintained and restored to certain conditions. For example, when 
corrective repair on some components requires dismantling of the en-
tire system, a corrective repair on these components combined with 
opportunistic repair on other or neighboring components might be 
worthwhile.

System performance evaluation remains a core feature in manufac-
turing industries as there is a need for efficient method of assessing 
the efficiency of modern production processes.  Availability is one of 
the most important measures of system performance as it is directly 
related to the financial returns. It has a broader reach than reliability 
as it takes into account the measurement of maintenance times [16]. 
Availability gives the probability of the system being available when 
called to function at random.  Complex mechanical systems work un-
der high reliability and safety standards as such systems deteriorate 
through distinct mode resulting from different physical phenomenon 
or different failure attribute of individual subsystems/components 
with the ageing process [24] which is described by means of increas-
ing failure rate. Certain systems may have lower failure rate, but their 
down time will be long, hence may interrupt the process at a higher 
rate as compared to the system with short down time having lower 
failure rate [22]. The downtime cost of such equipment that progres-
sively degrade with the age, is high. So, it would be more effective to 

consider multi-state degradation and to take appropriate maintenance 
actions upon failure of the system. Industries that rely on certain key 
performance measures have keen interest in being able to model com-
plex mechanical systems and track the availability of such systems. 
System availability estimation is most frequently done through simu-
lation. Software used for assessment of availability of complex me-
chanical system usually takes extra time to bring out results by virtue 
of simulation based technique. Therefore, analytical techniques which 
are quicker than simulation based techniques are utilized in this paper 
for system availability analysis. Due to mathematical complications, 
analytical techniques are hardly used for large and complex mechani-
cal systems but still an attempt is being made to model such complex 
systems for system availability analysis.

Availability studies for degrading systems have been carried out by 
numerous researchers, but these are mainly based on Markov model 
using constant failure and repair rates [19], which is unrealistic in ac-
tual operating conditions. Markov model is a stochastic model which 
is used to model randomly changing systems over time. The basic as-
sumption of a Markov Process is that the behavior of a system in each 
state is memory less which illustrates that that the future evolution 
of the process depends only on the present state and not on the past 
sequence of traversed states prior to current state. Mathematically, the 
Markov property is stated as: 

	 1 1 1 0 0 1( | , ,..., ) ( | )t t t t tP X j X i X i X i P X j X i+ − += = = = = = =   (1)

However, it has two main limitations: with the complexity of the 
system, the number of state increases so rapidly that it can lead to 
state-explosion, restricting the solution to very complex systems [4]. 
For systems which are subjected to increasing or decreasing failure 
and repair rates, the Markov approach is inapplicable. Semi-Markov 
models seem to address this which considers variable failure or repair 
rates. Therefore, SMP is used to model systems where future state de-
pends on current state as well as sojourn times in this state, which can 
obey any distribution in turn, not necessarily exponential.

The SMP model however is difficult to approach analytically [30] 
and no general and detailed procedure for its solution is available. In 
this respect, several attempts were made to transform the SMP model 
to a Markov model by approximating non-exponential distributions 
to exponential distributions in order to get the solution [30, 31]. The 
SMP has been applied in the areas of software reliability [11, 26, and 
32] degradation-dependent reliability [10], fault detection and isola-
tion reliability [18], optimization for condition-based maintenance [3], 
equipment health management [5], etc. Some integrated methods such 
as SMP and Bayesian networks were also presented for assessing the 
availability of fault tolerant systems [21]. The steady-state solution of 
the SMP model was implemented by a two-stage analytical approach 
in the field of software reliability but was not applied to mechanical 
systems [12, 33]. In this article, this method has been extended for 
availability assessment of repairable mechanical systems. The pro-
posed approach is capable of handling non-exponential distributions 
i.e. Weibull distribution, as such distribution depicts actual behavior 
of the systems undergoing degradation. The Weibull distribution has 
been used for modeling other real life applications such as the dete-
rioration of mechanical systems such as pistons, engine crankshaft, 
and the breakdown of insulating fluid, etc. [25]. Therefore, to capture 
the dynamics of real system and to model the dependencies and inter-
actions between components of the system, semi-Markov approach 
have been adopted which deal with events that are non-exponentially 
distributed. The primary objective of this paper is to develop a math-
ematical model for system availability assessment and to quantify the 
benefits of opportunistic maintenance in terms of increased system 
availability. The remaining part of the paper is organized as follows: 
Overview of the analytical semi-Markov approach is described in 
Section 2. Section 3 deals with the system modelling considering 
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multi-state degradation and its solution is illustrated in detail in Sec-
tion 4. Section 5 concludes the work while the scope for future work 
is described in Section 6.

2. Research Methodology: Analytical Semi-Markov Ap-
proach

Semi-Markov approach is an extension of Markov process, which 
is used to model such systems that degrade non-exponentially. Semi-
Markov process is more suitable to present the deterioration process 
of physical system than continuous time Markov chain in terms of 
the mathematical generality and tractability. Semi-Markov process 
(Semi-MP) is of two types: discrete and continuous time chain. Avail-
ability assessment problems are usually encountered in continuous 
time chain for the system. However, to avoid the complexity involved 
in the solution of continuous time chain model, it is converted into 
an Embedded Markov chain (EMC) which is a discrete time chain. 
Hence, EMC is an ideal process for modeling and analysis of degrad-
ing systems. The solution of the Semi-Markov model involves com-
plex integration and hence more complicated than the Markov proc-
ess. Semi-Markov process is characterized as an arrangement of two 
dimensional random variables, {(Xk,Tk): k ϵ1, 2, 3, 4, 5, ……,m}, 
with the properties mentioned below:

X•	 k represents the system state after k transitions in a discrete-time 
Markov chain (DTMC).
T•	 k represents the sojourn time i.e., the amount of time the system 
is expected to spend at a particular state [6].

The complete framework of implementing Semi-MP to model sys-
tem availability is summarized using a two stage method. In stage 1, 
transition probability matrix of the EMC of SMP model is determined 
while in stage two, availability of the system is evaluated by using 
sojourn time and steady-state probability of each state of the SMP 
model. 

The steps of the semi-Markov approach expressed in the flow chart 
given below: 

Consider a system state space with m possible states, m being a 
finite natural number, which is represented as I = {1, 2, 3, 4, 5, ……, 
m}. The state space is the set of all feasible states where each state 
represents a different configuration of system. On the basis of this, 
semi-Markov model is developed which can be conveniently repre-
sented by a labeled directed graph which consists of all feasible states 
connected by the transition lines showing the appropriate distribution. 
The semi-Markov process is decomposed into two stages which are 
discussed below:

In stage 1, the transition probability matrix A of the SMP model’s 
embedded Markov chain (EMC) is evaluated and this matrix helps in 
determining steady-state solution, si, of all the feasible EMC states. 

In stage 2, mean sojourn time Ti, has to be evaluated for each state. 
The equation expressed below helps in determining the steady-state 
solution, Pi, of all feasible states of the SMP model [13].

	 P s T
s T

i Ii
i i

i i
i I

= ∈

=
∑

, 	 (2)

where, si is Steady state probability of the EMC and Ti depicts Sojourn 
time of each system state.

The equation expressed below is utilized for determining the Sys-
tem Availability (AS).

	 ,s i
i I

A P i I
=

= ∈∑ 	 (3)

where, Pi is the steady-state probability of the system in working state 
only.

3. System modeling
Degradation modelling of mechanical systems for availability 

analysis has drawn special attention of researchers in the recent years. 
Whenever a system is in working state, it is always degrading with 
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time representing gradual degradation. Therefore, the degradation 
process for the system must be interpreted in such a manner that an 
effective model is built and implemented in operation. In this section, 
semi-Markov model is developed based on subsystem degradation.

3.1.	 System Description
A system is characterized as a set of subsystems/components work-

ing together towards achieving some logical end. Coupling relation-
ships occurs between various parts of the system and also between 
various fault types, resulting in several routes for the propagation of 
faults [7]. The two stage reciprocating air compressor system con-
sists of low pressure compressor (LPC) and high pressure compressor 
(HPC) with intercooler in between, system in series configuration, 
is selected for this paper as shown in the Fig. 1. This series system 
is widely used in power plants to increase the air pressure without 
increasing its temperature as this result in power saving in compress-
ing the air.

Fig. 1. Multi-stage reciprocating air compressor system

Being a series system, it should be highly available when called to 
function so that the power plant operations do not suffer. There is a 
huge loss in case of continuous operating units when unexpected shut-
down occurs and their economic competitiveness implies an effective 
maintenance strategy to improve system availability and reduce oper-
ating cost [17]. Therefore, it becomes important to evaluate availabil-
ity of such system so that overall system availability can be analyzed 
and appropriate maintenance policy can be suggested to improve it.

3.2.	 System Model Development
A system is characterized as a set of subsystems/components work-

ing together and its performance depends on how individual compo-
nents work.  Configuration of a series production system is such that 
failure of any machine may cause the entire system breakdown [34]. 
If proper attention is not given to the system in operation, it can result 
in a catastrophic failure that needs significant repair time and expense 
[35].To scientifically research it, we also have to make a series of 
assumptions that typically take the form of mathematical or logi-
cal relationships that constitutes a model. Variables are required at a 
given time to explain the state of system. A system’s failure is due to 
inappropriate functional interplay between its components and sub-
systems [29]. Many real-world systems are therefore too complicated 
to be evaluated analytically but still an attempt is being made to model 
such complex mechanical system. A system consisting of three sub-
systems in series configuration, with three degradation states, namely 
operational, degraded and failed, is considered for availability analy-
sis.  When any of its subsystems or part fails, it enters the repair proc-
ess. The system is expected to perform its intended functions when 
an appropriate maintenance policy is adopted, however in practice it 
may unexpectedly fail. The corrective maintenance approach is more 
suitable in such conditions for failed subsystems or components as it 
is believed that shutdown and repair cost in case of breakdown will 
be less than the investment required for preventive maintenance. Ac-
cording to the level of repair, the corrective maintenance approach 
can be categorized into perfect and imperfect repair but in this paper, 

only perfect repair is incorporated in the system which restores the 
system from failed state to operative state whenever the system en-
ters the repair process. For mechanical systems and subsystems, the 
maintenance actions are varied with the age of components which is 
described by means of increasing failure rate therefore; it becomes 
evident for the study of system availability to accept multi-state deg-
radation at the subsystem/component level, depending on their life 
span. The Weibull distribution, which is more appropriate for degrad-
ing systems, is considered [9].

For each subsystem/component, O, D and F are assumed in order 
for the system undergoing gradual degradation as shown in the Fig. 2. 
Each component is assumed to be in any of the three states through-
out, where; O: Operative; D: Degraded; F: Failed. The states O and 
D are considered as the working states while F is considered as the 
repair state.

Fig. 2. Multi-state degradation of a subsystem and perfect repair

Models are developed with corrective maintenance approach for 
system availability assessment. Various maintenance models find the 
maintenance actions to be done perfectly. In fact, the effectiveness 
of maintenance staff to restore the failed component/subsystem usu-
ally lies between two extreme limits (“as good as new” and “as bad 
as old”), commonly referred as imperfect repair [23]. However, only 
perfect repair module is discussed in this study. The recoverability 
dimension quantifies how quickly and how well a system can recover 
after interruption to its normal state [8]. In the system model develop-
ment, as mentioned earlier state O is considered as the original oper-
ating state, i.e. “as good as new” state and D as degraded state and F 
as the failed state at the subsystem level. Refer Fig. 2, a maintenance 
action, i.e. perfect repair is considered, which restores the subsystem 
from its failed state F to the operating state O. The states O and D of 
the subsystem is considered as working states, while F is the ‘repair 
state’ due to performance below the unacceptable level. Let a system 
is considered with its three subsystems in series, with each subsystem 
having one original operating state, one degraded state and one failed 
state. It is assumed that only one subsystem is changing its state at 
a particular time. State of a system is dependent on the state of its 
subsystems. All the feasible states and their corresponding transitions 
are identified for the system to develop SMP model as shown in the 
Table 1. In developing the system model simultaneous failure of two 
or more subsystems is not considered as it is assumed to be an infea-
sible state.

The criteria to be followed in decision making for corrective 
maintenance and/or opportunistic maintenance are discussed here. 
Table 1 shows system states for three subsystems ‘1’, ‘2’, and ‘3’ 
in series, each with three states as O, D and F. The last column of 
the table gives the maintenance option or possibility of ‘Corrective 
Maintenance and/or opportunistic maintenance’ for the subsystems 
‘1’, ‘2’, and ‘3’, which is decided from the system state status (Col-
umn 2); ‘Under Repair’, i.e. 3, 6, 7, 8, 11, 14 to 20. The rationale  
behind the decision making ‘yes’ or ‘no’ is illustrated by considering 
the first system state status ‘Under Repair’ (Column 2) in the Table 
1, i.e. at S. No. 3 (Column 1). In this state, states of subsystems ‘1’, 
‘2’ and ‘3’ (Column 3, 4 and 5) are O, O and F respectively. For the 
subsystem ‘3’ in state, F i.e. the failed state, a corrective mainte-
nance (perfect repair) is the best choice as one needs considerable 
time to perform the maintenance task, including use of resources 
needed which are also expected to be on a higher side. In view of 
this, it is ‘yes’ logic for corrective maintenance (perfect repair) of 
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subsystem ‘3’. With subsystem ‘3’ under maintenance, there is need 
to check if opportunistic maintenance for the other subsystems, 
i.e. subsystem ‘1’ and ‘2’ can be undertaken. For this, one needs to 
check their state, which is O and O, i.e. ‘Original Operating State’, 
and they does not need it. In view of this, it is ‘no’ logic for op-
portunistic maintenance. In a similar way, decision ‘yes’ or ‘no’ for 
other system states 6, 7, 8, 11, 14 to 20, which are ‘Under Repair’ are 
carried out. In all, two models for the system have been developed as 
discussed in the following subsections.

3.2.1.	System model based on corrective maintenance (perfect 
repair) without opportunistic maintenance

In a system with three subsystems in series configuration, out of the 
twenty feasible states of the system, twelve states (3, 11, 6,7, 8, 14, 15, 
16, 17, 18, 19 and 20) are the ‘under repair’ system states, while the 
remaining eight states falls under the ‘working states’ category. Con-
sidering subsystem degradation and perfect repair, a system model 
is developed as shown in the Figure 3. The system model features 
two types of transition edges. Refer Fig. 3, a black line depicts the 
degradation of the subsystem from O to D and from D to F while a 
continuous dotted black line represents perfect repair, i.e. from F to O. 
Perfect repair is carried out for under repair states and such states are 
represented in the model by transition lines 3-1, 7-1, 8-2, 11-9, 14-12, 
15-9, 16-10, 17-1, 18-2, 19-4 and 20-5 for the subsystems restoring 
the subsystem which is under repair from state F to O.

3.2.2.	System Model based on corrective maintenance (perfect 
repair) with opportunistic maintenance

In opportunistic maintenance, whenever a system or module is 
grounded for corrective or preventive maintenance, that oppor-
tunity is utilized to do maintenance on other parts of the module, 
which are found to be damaged or have started to deteriorate. On 

one hand, this improves the safety and reliability of the system, and 
on the other hand it reduces the downtime by avoiding unsched-
uled maintenance. This in turn reduces the cost of maintenance and 
loss of revenue due to extra groundings. In this model, opportunistic 
maintenance is considered along with perfect repair. Following the 
similar pattern, a system model is developed considering subsystem 
degradation and opportunistic maintenance with perfect repair, as 
shown in the Figure 4. In the system model, the transition lines for 
degradation are same as in the previous model, Fig. 3. The system 
being in the ‘under repair’ states, 3, 7 and 17, only perfect repair is 
carried out for these as the opportunistic maintenance is not possible 
because the other subsystems are still in state ‘O’ i.e. ‘as good as 
new’ state. In the system model, perfect repair for these states is rep-
resented by transition line 3-1, 7-1, and 17-1 for the subsystems ‘3’, 
‘2’, and ‘1’ respectively, restoring the system which is under repair 
from its state, F to O. For the remaining nine ‘under repair’ states, 
opportunistic maintenance is possible because the other subsystems 
are in state D, i.e. degraded state. In the system model, opportunistic 
maintenance with perfect repair is represented by transition lines 
6→1, 8→1, 11→1, 14→1, 15→1, 16→1, 18→1, 19→1and 20→1, 
restoring the system which is under repair from its state, D to O and 
F to O. It is assumed that the time to restore a subsystem in perfect 
repair from state F to O is more than the restoration time of other 
partially degraded states of the subsystems in opportunistic mainte-
nance from state D to O. 

4. Solution of the System Model
The solution of the SMP model is divided into two stages as dis-

cussed below. Stage 1 deals with matrix representation of the system 
model while stage 2 deals with system availability assessment using 
sojourn time and state probability values.

Table 1.	 States of a two stage reciprocating compressor system and their corresponding transitions

System State State of  
subsystem 1

State of  
subsystem 2

State of  
subsystem 3 Transition to

Maintenance Possibility

S.NO Status C.M* O.M*

1 Working O O O 2      4     9 - -

2 Working O O D 3      5    10 - -

3 Under Repair O O F 1 Yes(S3) No

4 Working O D O 5      7    12 - -

5 Working O D D 6      8    13 - -

6 Under Repair O D F 4 Yes(S3) Yes(S2)

7 Under Repair O F O 1 Yes(S2) No

8 Under Repair O F D 2 Yes(S2) Yes(S3)

9 Working D O O 17   12   10 - -

10 Working D O D 18   13   11 - -

11 Under Repair D O F 9 Yes(S3) Yes(S1)

12 Working D D O 19   15   13 - -

13 Working D D D 20   16   14 - -

14 Under Repair D D F 12 Yes(S3) Yes(S1,2)

15 Under Repair D F O 9 Yes(S2) Yes(S1)

16 Under Repair D F D 10 Yes(S2) Yes(S1,3)

17 Under Repair F O O 1 Yes(S1) No

18 Under Repair F O D 2 Yes(S1) Yes(S3)

19 Under Repair F D O 4 Yes(S1) Yes(S2)

20 Under Repair F D D 5 Yes(S1) Yes(S2,3)
*C.M- Corrective Maintenance, O.M- Opportunistic Maintenance
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Stage I

The SMP model is described by its Kernel matrix, a)	 K(t) as 
shown below.
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The matrix K(t) = [kij(t)] is called kernel of the SMP model and the 
matrix elements gives the probability of jumping from one state to 
another. The matrix’s rows and columns correspond to the number of 
feasible system states. The matrix elements, kij(t) are defined as [14]:

where, Fij(t) is the CDF and ( ) 1ijF t = − Fij(t) represents complement 
of CDF associated with transition from state i to j. Therefore, the ker-
nel matrix K(t) of the SMP model developed as shown in the Fig. 3 
is obtained as: 

Fig. 3. Semi-Markov model for the system undergoing perfect repair without  opportunistic maintenance

Fig. 4. Semi-Markov model for the system undergoing perfect repair coupled with opportunistic maintenance

When there is no possible transition from state i within time t.

When there is a single possible transition from state i to  
state j within time t.

When there are multiple possible transition from state i to  
state j, k and m within time t.
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The empirical estimators of the kernel matrix K(t), are determined 
for the semi-Markov model as shown in the Fig. 3 using the distribu-
tion available in Table 2.

For example, for the non-zero element of the kernel matrix, k12, 
see the details for its distribution available in Table 2. It is clear from 

the Fig. 3 that there are three outgoing transitions from State 1 to 
State 2, 4 and 9 respectively. The distribution of these three transi-
tions is Weibull, therefore the expression for the non-zero element of 
the kernel matrix, K12 in terms of Weibull parameters is expressed as 
follows:
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Table 2.	 Distribution parameters of compressor system [2]

CDFs Distribution Parameter CDFs Distribution Parameter

F12 Weibull β 12=3.78,θ12=10000 F917 Weibull β 917= 2.5,θ917=6776

F14 Weibull β 14=1.2,θ12=6000  F1011 Weibull β1011= 3.78,θ1011=4892

F19 Weibull β19=2.5,θ19=16000  F1013 Weibull β 1013= 1.2,θ1013=6000

F23 Weibull β 23=3.78,θ23=4892  F1018 Weibull β 1018= 2.5,θ1018=6776

F25 Weibull β 25= 1.2,θ25=6000 F119 Exponential µ119=0.001667

 F210 Weibull β 210=2.5,θ210=16000  F1213 Weibull β 1213= 3.78,θ1213=10000

F31 Exponential µ31=0.001667  F1215 Weibull β1215= 1.2 ,θ1215=4000

F45 Weibull β 45=3.78,θ45=10000  F1219 Weibull β1219= 2.5,θ1219=6776

F47 Weibull β 47= 1.2,θ47=4000  F1314 Weibull β1314= 3.78 ,θ1314=4892

 F412 Weibull β 412= 2.5,θ412=16000  F1316 Weibull β1316= 1.2 ,θ1316=4000

F56 Weibull β 56= 3.78,θ56=4892  F1320 Weibull β1320=  2.5,θ1320=6776

F58 Weibull β 58= 1.2,θ58=4000  F1412 Exponential µ1412=0.001667

 F513 Weibull β 513= 2.5,θ513=16000 F159 Exponential µ159=0.001667

F64 Exponential µ64 =0.001667  F1610 Exponential µ1610=0.001667

F71 Exponential µ71=0.001667 F171 Exponential µ171=0.001667

F82 Exponential µ82=0.001667 F182 Exponential µ182=0.001667

 F910 Weibull β 910=3.78,θ910=10000 F194 Exponential µ194=0.001667

 F912 Weibull β 912= 1.2,θ912=6000 F205 Exponential µ205=0.001667
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Similarly, for the non-zero element of the kernel matrix, k31, see 
the details for its distribution available in Table 2. It is clear from 
the Fig. 3 that there is only one outgoing transition from State 3. The 
distribution of this transition is exponential; therefore the expression 
for the matrix element, k31 in terms of exponential parameters is ex-
pressed as follows:

	 ( )31
31 31( ) 1 tk F t e µ−= = − 	 (5)

Remaining elements of the kernel matrix K(t) are expressed as 
explained above, and all these expressions are listed in “Appendix: 
Table 8”.

Transition matrixb)	  A of the EMC
The state transition matrix A has to be determined such that the 

system spends a prescribed amount of time in each state before mak-
ing transition. The system transits from the operative state to the 
failed state in a strongly correlated manner with the time. To imitate 
this behavior of system model, some coupling is required with the 
matrix K(t).

The developed matrix K(t) helps in determining the matrix, A = 
K(∞), of the EMC considering t→∞, which is necessary condi-
tion for the steady-state analysis. As it is clear from the kernel ma-
trix, K(t), that there is only one element in the 3rd, 6th, 7th, 8th, 11th, 
14th, 15th, 16th, 17th, 18th, 19th, and 20th row, therefore, the values 
of  elements k31(∞), k64(∞), k71(∞), k82(∞), k119(∞), k1412, k159(∞) 
, k1610(∞), k171(∞) , k182(∞) , k194(∞)  and k205(∞) are all equal 
to 1. Distribution parameter values shown in Table 2 are substi-
tuted in the expressions of kernel matrix elements and these are 
solved using MATLAB [20]. Table 3 shows the non-zero elements 
of matrix A. By substituting the values of non-zero elements in the 
kernel matrix, K(t), the complete transition probability matrix A is 
obtained.

The transition matrix A of the Embedded Markov Chain (EMC), 
obtained is:

 

Probability of the states of EMCc)	
The matrix A helps in determining the state probability of EMC. 

The steady-state solution of the EMC is determined using the equation 
expressed below which is to be solved using MATLAB and the values 
of si, i ϵ I are listed in Table 4.

[ ] [ ]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s A= ∗

(6) 

0 0.1885 0 0.7367 0 0 0 0 0.0748 0 0 0 0 0 0 0 0 0 0 0
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1 0 0 0 0 0 0 0 0 0 0 0 0

( )A K= ∞ =

0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.0753 0 0.5687 0 0 0 0 0.3560 0 0 0
0 0 0 0 0 0 0 0 0 0 0.3743 0 0.4397 0 0 0 0 0.1860 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.0431 0 0.7238 0 0 0 0.2331 0
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Table 3: Elements of the matrix, A

kij Value kij Value kij Value kij Value

k12 0.1885 k45 0.0896 k910 0.0753 k1213 0.0431

k14 0.7367 k47 0.8678 k912 0.5687 k1215 0.7238

k19 0.0748 k412 0.0426 k917 0.3560 k1219 0.2331

k23 0.4915 k56 0.3066 k1011 0.3743 k1314 0.2610

k25 0.4823 k58 0.6741 k1013 0.4397 k1316 0.5993

k210 0.0262 k513 0.0193 k1018 0.1860 k1320 0.1397

Table 4.	 Probability of the states of EMC

si
Probability 

Value si
Probability 

Value si
Probability 

Value si
Probability 

Value

s1 0.2289 s6 0.0191 s11 0.0038 s16 0.0043

s2 0.0820 s7 0.1705 s12 0.0376 s17 0.0171

s3 0.0403 s8 0.0370 s13 0.0071 s18 0.0019

s4 0.1964 s9 0.0481 s14 0.0019 s19 0.0088

s5 0.0571 s10 0.0100 s15 0.0272 s20 0.0009
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Stage 2
Mean sojourn time evaluation of all the feasible states of the a)	
system model

The mean sojourn time, Ti, is the amount of time the system is ex-
pected to spend at state i, before leaving for another state depending 
upon the configuration of the system. This helps in determining the 
steady-state probability of all the feasible states of the system model.

See the details for its distribution 
available in Table 2 for sojourn time ex-
pression for state 1, T1. It is clear from 
the Fig. 3 that there are three outgoing 
transitions from State 1 to State 2, 4 and 
9 respectively. The distribution of these 
three transitions is Weibull, therefore the 
expression for the mean sojourn time, 
T1 in terms of Weibull parameters is ex-
pressed as follows [14]:

	
1912 14

12 14 19
1 12 14 19

0 0

t t t

T F F F dt e dt

ββ β

θ θ θ

      − + +    ∞ ∞        = =∫ ∫
     (7)

See the details for its distribution available in Table 2 for sojourn 
time expression for state 1, T3. From Figure 3, it is evident that only 
one state is reachable from state 3 i.e. to state 1. The distribution is 
exponential for this transition; therefore the expression of the sojourn 
time, T3, in terms of exponential parameters is expressed as follows 
[14]:

	 ( )31
3 31

0 0

tT F dt e dtµ
∞ ∞

−= =∫ ∫ 	 (8)

Likewise, the time values are represented in “Appendix: Table 9” 
for the remaining feasible states of the system model. Using the so-
journ time expressions of all the states and by substituting the dis-
tribution parameter values listed down in Table 2, the sojourn time 
for all the states are determined. To solve sojourn time expressions, 
MATLAB is used and its value is shown in Table 5.

Steady-state probability of states of the system modelb)	
The probability ‘Pi’ of all the feasible states of the system model 

is determined by Eq. (1). The evaluated values of the states are listed 
in Table 6.

Availability Assessmentc)	
The state probability solutions are used for availability assessment. 

Availability is the summation of state probabilities in which the system 
is operational or available [15]. It is determined by using Eq. (3); As = 
0.9241. As mentioned earlier system availability is a performance meas-
ure and is defined as a measure of the percentage of time the equipment 
is in operable state. The steady–state availability of a two stage recip-

rocating air compressor system by analytical semi-Markov approach is 
0.9241. It represents that the system is available 92.41% of the time and 
working at 92.41% of the system’s technical limit. Availability measure 
is typically equal to the financial output of the system. Therefore, avail-
ability modeling and analysis is crucial for degrading system as it will 
give insights for its improvement. All our efforts should be focused on 
improving system availability in order to achieve the planned service 
life. The analytical approach utilized for availability assessment typi-
cally requires less time in computation but involves complex integrals. 
The suggested approach quantifies the impact of corrective mainte-
nance policy in terms of system availability. 

Steps explained in Section 4 are repeated for the SMP model based 
on corrective maintenance (perfect repair) with opportunistic mainte-
nance. The results obtained are tabulated in Table 7.

As the results obtained provide a definite indication of the trend in 
the availability for different maintenance policies, these numeric re-
sults can be analyzed quantitatively to compare the relative improve-
ment in the performance of the system in different scenarios. For the 
same mission time, moving from perfect repair without opportunistic 
maintenance to perfect repair with opportunistic maintenance, the 
availability shows the increasing trend. This clearly establishes that 
the maintenance policy: perfect repair without opportunistic mainte-
nance is inefficient and should be seldom used unless cost of mainte-
nance is the only dictating factor.

5. Conclusions
Considering the importance of maintenance, this research has at-

tempted to establish a framework for availability modelling and analy-
sis of degrading system. Using analytical semi-Markov methodology, 
a method for determining the availability based on corrective mainte-
nance approach applied to complex mechanical system is suggested. 
By recognizing the configuration of the system, different subsystems/
components are identified and allocated at different stratified levels of 
mechanical system experiencing deterioration with ageing. The states 
and states transitions are identified. The state transition rates for de-
terioration and restoration are expressed by Weibull and exponential 
distribution respectively. The main contribution of this research is to 
develop mathematical model for system availability assessment which 
will give insights for its improvement. The steady-state availability of 
the system based on corrective maintenance (perfect repair) without 

opportunistic maintenance is low (As= 0.9241). So, there 
lies a scope of improving it further. Therefore, the system 
needs attention on revising existing maintenance policies 
towards further improvement. Another model is added to 
investigate the gain in system availability when corrective 
maintenance (perfect repair) is combined with opportunistic 
maintenance.  Hence, it is concluded that corrective main-
tenance (perfect repair) with opportunistic maintenance 
should be preferred and certain redundant strategies may 
also be applied in the designing of the system to enhance its 
availability further. The suggested approach is valuable for 

Table 5.	 Mean Sojourn Time of System States

Ti Value(hr) Ti Value(hr) Ti Value(hr) Ti Value(hr)

T1 4458.2 T6 600 T11 600 T16 600

T2 3176.8 T7 600 T12 2922.8 T17 600

T3 600 T8 600 T13 2519.4 T18 600

T4 3379 T9 3611.9 T14 600 T19 600

T5 2683.9 T10 2941.2 T15 600 T20 600

Table 6.	 Steady-state probability of the states of System model

Pi
Probability 

values Pi
Probability 

values Pi
Probability 

values Pi
Probability 

values

P1 0.3882 P6 0.0044 P11 0.00085842 P16 0.00097674

P2 0.0991 P7 0.0384 P12 0.0418 P17 0.0039

P3 0.0092 P8 0.0084 P13 0.0068 P18 0.00042657

P4 0.2525 P9 0.0661 P14 0.00042538 P19 0.0020

P5 0.0583 P10 0.0112 P15 0.0062 P20 0.00022768

Table 7.	 Steady-state availability analysis

S.No. Corrective Maintenance System Availability

Without Opportunistic Maintenance With Opportunistic Maintenance

1. Perfect Repair 0.9241 0.9342



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 23, No. 1, 2021204

maintenance personnel allowing them to establish repair and replace-
ment policies. The designers can also use the methodology to make a 
decision on the implementation of the repairs and the degree of repair 
to achieve the required system availability values.

6. Practical Utility and Future Directions
In spite of the reality that the suggested technique provides nu-

merous merits, it involves significant calculations for developing its 
detailed solution. The proposed approach is useful for plant engineers 
and maintenance personnel in designing a system with high availabil-
ity by incorporating appropriate maintenance policies. The suggested 
methodology can be applied to variety of systems as it incorporates the 

varying deterioration and restoration rates. In this paper, steady-state 
availability of the system is evaluated by employing the semi-Markov 
technique. Availability assessment under transient conditions case can 
also be carried out for measuring system performance. The suggested 
approach can also be extended for system availability assessment of 
mechanical systems considering various maintenance approaches like 
condition based maintenance, preventive maintenance, etc. The effect 
of human error can also be incorporated in the maintenance procedure 
in order to analyse its effect on system availability. After, one find a 
suitable way of quantifying system availability, it is possible to carry 
out further modifications of system design and operations thereby 
enhancing availability. Moreover, other performance parameters of 
complex mechanical systems, including resilience, maintainability 
and reliability will also be evaluated using this technique. 

Appendix
Table 8.	 Expressions of the elements of kernel matrix, K(t)
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