
Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 23, No. 1, 2021110

(*)	Corresponding author.
E-mail addresses:

Eksploatacja i Niezawodnosc – Maintenance and Reliability
Volume 23 (2021), Issue 1

journal homepage: http://www.ein.org.pl

Indexed by:

1. Introduction and Objectives
The wind energy capacity in the world energy production is increas-

ing every year, being one of the fastest growing renewable energy. This 
growth in recent years is due to the increasing size, increment of com-
plexity of wind turbines (WTs) and favourable policies adopted by gov-
ernments. The wind energy new installations exceeded the 60,4 GW at 
the end of 2019, with the United States and China as the most relevant 
markets [19]. The impact of COVID-19 pandemic on this growth has 
not been quantified yet and, therefore, it is required technical and eco-
nomic advances to ensure the reliability of this technology. 

WTs are complex electromechanical systems formed by a rotor that 
transforms the wind energy into mechanical energy and it is convert-
ed into electrical power. The blades transmit the mechanical energy 
through the low speed shaft to the high-speed shaft connected to the 
generator. The yaw system rotates the nacelle to align the blades with 
the direction of the wind and the gearbox regulates the speed. Differ-
ent subsystems, e.g., meteorological units, refrigeration, brakes, secu-
rity levels, etc., increase the complexity of the WTs [30]. The working 
conditions of WTs produce a variety of potential component failures 
with high failure rates and economic losses. Different researches re-
ported that the gearbox, yaw and hydraulic system, electrical control 
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Wind energy is one of the most relevant renewable energy. A proper wind turbine mainte-
nance management is required to ensure continuous operation and optimized maintenance 
costs. Larger wind turbines are being installed and they require new monitoring systems to 
ensure optimization, reliability and availability. Advanced analytics are employed to analyze 
the data and reduce false alarms, avoiding unplanned downtimes and increasing costs. Su-
pervisory control and data acquisition system determines the condition of the wind turbine 
providing large dataset with different signals and alarms. This paper presents a new approach 
combining statistical analysis and advanced algorithm for signal processing, fault detection 
and diagnosis. Principal component analysis and artificial neural networks are employed to 
evaluate the signals and detect the alarm activation pattern. The dataset has been reduced 
by 93% and the performance of the neural network is incremented by 1000% in comparison 
with the performance of original dataset without filtering process.

Highlights Abstract

We propose a new approach for signal processing, •	
fault detection and diagnosis. 

A New approach is based on principal component •	
analysis and artificial neural networks 

We analyse the signals and detect the alarm acti-•	
vation pattern. 

The dataset has been reduced by 93% •	

The performance of the neural network is incre-•	
mented by 1000%.

Alarms management by supervisory control and data 
acquisition system for wind turbines
Isaac Segovia Ramireza, Behnam Mohammadi-Ivatloob,c, Fausto Pedro García Márqueza*
aIngenium Research Group, Universidad Castilla-La Mancha, 13071 Ciudad Real, Spain 
bFaculty of Electrical and Computer Engineering, University of Tabriz, 5166616471 Tabriz, Iran 
cDepartment of Energy Technology, Aalborg University, 9220 Aalborg East, Denmark

Segovia Ramirez I, Mohammadi-Ivatloo B, García Márquez FP. Alarms management by supervisory control and data acquisition system 
for wind turbines. Eksploatacja i Niezawodnosc –  Maintenance and Reliability 2021; 23 (1): 110–116, http://dx.doi.org/10.17531/
ein.2021.1.12.

Article citation info:

and blades, concentrate the 60% of the total failures [11], being neces-
sary the application of novel techniques or methodologies [10].

The objective of the maintenance management is to ensure an accu-
rate behaviour of WTs, minimizing the use of human and material re-
sources, reducing reduced costs and avoiding energy production losses 
due to downtimes [35]. The operation and maintenance (O&M) costs 
are estimated between 15-25% in onshore [27], and they are higher 
in offshore WTs [32]. The increment of faults reduces the availability 
of energy generation due to downtimes and unplanned maintenance 
activities [31]. New improvements in maintenance management are 
needed through novel conditions monitoring systems (CMS) and data 
analysis to ensure proper levels of reliability, availability, maintain-
ability and safety (RAMS) [9,20].

Several data acquisition systems and CMS are installed to deter-
mine the condition of WTs. The measurement techniques are based 
on traditional monitoring, e.g., vibration analysis with low-frequency 
ranges for fault detection [36], thermal analysis for failure of electric 
elements, ultrasonic waves or acoustic emissions generated with en-
ergy pulses to detect blade failures [14, 16], among others. Catelani 
et al. [5] proposes a set of techniques combined in a single system for 
advance detection and the identification of the anomalies and failures 
in WTs, based on data processing. The results lead to inform with 
enough time to make the appropriate decision to maintain their WTs, 

I. Segovia Ramirez - isaac.segovia@uclm.es, B. Mohammadi-Ivatloo - bmohammadi@tabrizu.ac.ir, F.P. García Márquez -	   
faustopedro.garcia@uclm.es



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 23, No. 1, 2021 111

similar to [3]. Despite these techniques, new inspection techniques are 
being developed for early fault detection, e.g., noise waves analysis. 
Supervisory control and data acquisition (SCADA) system is widely 
implanted in the wind energy industry and this system collects main 
parameters of any WT from sensors and measurement systems.

The SCADA system provides alarm records and signal dataset, usu-
ally every ten minutes. The signals are numerical values about certain 
parameters, such as temperature, energy production or vibration. The 
alarm is defined as an operational indicator to identify different anom-
alies or issues that has already done in the WT. Faults in the sensors, 
inaccurate design of the diagnostic model or measurement uncertainty 
may lead to false alarms [6]. The false alarms identification is a critical 
issue in the wind energy market, since it is produced elevated alarm 
flood, unnecessary stops and maintenance interventions [28]. Several 
researches are focused on false alarm determination to reduce or reset 
the maximum alarms as possible, employing statistical analysis, deep 
learning, machine learning or neural networks, etc. The SCADA data 
volume and complexity increment the difficulty in the data analysis 
and the computational cost is elevated. Reliable and robust algorithms 
are required for false alarm detection and signal analysis. Fault tree 
analysis together with binary decision diagrams are employed for 
quantitative and qualitative analysis of these problems [13,23]. Ma-
chine learning algorithms are largely applied to evaluate the state of 
the WT and process a large amount of data. Artificial neural networks 
(ANNs) are based on the biological nerve system formed by neurons. 
This computational structure is formed by several layers with differ-
ent weights and transfer functions for the connection between neurons. 
They can work with non-linear problems and the training phase de-
fines the learning of the network [21]. ANNs have been used in several 
applications, highlighting pattern recognition and image processing 
with high accuracy [33]. ANNs are used in wind energy maintenance 
for forecasting and prediction, design, control optimization and fault 
detection and diagnosis (FDD) [18]. Gomes and Castro [15] employed 
the autoregressive moving average and ANNs to develop a wind ener-
gy forecasting with better results than the reference model. Li et al [22] 
probed that the type of ANN has an relevant influence in the analysis 
and different ANNs may present better capabilities in each case. Oth-
er authors have developed different researches about the false alarm 
identification. Adouni et al. [2] used a new ANN to increase the FDD 
procedure and the robustness to avoid false alarms. Bangalore et al. 
[4] developed filtering methods to ensure a strict training to improve 
the fault detection with the ANN. The advantages of the methodology 
are tested in different case studies. Peco et al. [7] developed a novel 
approach to detect false alarms in gearbox bearing with a partitioning 
methodology. None of these researches consider a preselection of the 
signals and data using statistical methods to reduce the computational 
cost and the accuracy results of the ANN. 

This paper presents a novel approach in alarm and signal filtering 
to increase the accuracy in fault detection. The alarms are analyzed by 
Pareto chart to select the most critical, stabilizing interest periods of 
study. The signal dataset is reduced using principal component analy-
sis (PCA), decreasing the amount of data an incrementing the accu-
racy of ANN. This approach is validated with a real case study based 
on different alarms and signals acquired from a WT. 

The paper is divided in the following sections: Section II defines 
the overview and the methodology based on different phases and the 
information about the algorithms of the approach, a case study is pro-
posed in Section III to test the approach; Section IV validates the re-
sults obtained with neural network and finally, Section V summarized 
the main findings from this research work.

2. Method
This work proposes a data filtering process in alarms and signals to 

increase the reliability of the ANN in fault detection due to the volume 
of the data and the number of alarms. Figure 1 shows flowchart of the 
proposed approach. 

Fig. 1. Approach diagram

The SCADA data is divided into alarms and signals. The alarms 
are filtered analysing its main parameters. The critical alarms are 
identified with Pareto chart, considering its main characteristics, e.g., 
number of activations. Pareto chart shows the frequencies of the se-
lected variables and, in this paper, is employed for determining the 
critical alarm. The user may introduce different weights regarding on 
the needs of the system. The main characteristics are the number of 
activations, time of activation and difference between alarms. For this 
work, the alarm must present several activations with elevated time 
periods with no failures in order to increase the reliability of the meth-
od. Schlechtingen and Ferreira [34] considered the alarm analysis for 
prediction one day before the failure. Reduced periods with less than 
one day between alarm activation are discarded, ensuring suitable 
range periods for the analysis. It is necessary to obtain the dataset of 
signals related to the critical alarm determined in previous phase. The 
signals with no correlation with the alarm increase the complexity 
of the operation and do not provide valuable information. Once the 
alarms and signals are properly determined, the regions of interest for 
the study are determined analysing the region with alarm deactivation. 
The data closer to the alarm activation is considered more relevant to 
the alarm since it is more probable to find data patterns that gener-
ate the activation of the alarm in that data range. A diagram of alarm 
and signal ranges related to the temporal scale is shown in Figure 2. 
The region of interest is defined in the graph as alarm causes range. 
The other region, registered as safe period, presents data related to the 
alarm activation but, in this period, the probability of alarm activa-
tions is low, being considered as training zone for the next phases.

Despite the filtering process, the signal dataset may present large 
volume of data. PCA has been employed in this paper to reduce this 
data volume. PCA is a multivariate analysis that decreases the dimen-
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sions of the initial dataset to a reduced number of uncorrelated vari-
ables or principal components [12,26]. The patterns in multivariate 
datasets may be extracted by PCA and the transformed space is de-
fined by the eigenvalues and eigenvectors of the covariance matrix. 

2.1.	 P-values
The P-value contributes with statistical measurements about the 

relation between signals, being possible the identification of more 
relevant signals [24]. The P-values are defined as the maximum prob-
ability under the null hypothesis, providing information about the 
combination of the data. In first place, it is necessary to calculate the 
distribution of the test statistic T by equation (1):

	
( )
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being p̂  the sample proportion; 0p  the population proportion in the 
null hypothesis, and; n the sample size. The P-value is defined by 
equation (2):

	 ( )Probability (    )P value T ts Hypothesis is true cdf ts− = ≥ =     (2)

where ts the observed value of T, and; cdf the cumulative distribution 
function of the test static.

For this work, P-values of 5% are employed to confirm that the 
model is suitable for this dataset, because of the common criteria in 
several researches is that p-value lower than 0,05 is needed [8].

2.2.	 Principal Component Analysis
Large datasets may have correlated variables with redundant in-

formation that increase the complexity of the data analysis. PCA is a 
dimensionality-reduction tool to reduce and simplify the dimensional-
ity of large datasets, developing an orthogonal linear transformation 
with the original data, to obtain a maximum variance in the new data-
set [25]. The initial matrix data X  is defined with  x n p  dimensions, 
being n samples and p variables, and the objective is the obtention of 
a reduced dataset [17]. The principal components jY  are new uncor-
related variables, defined by (3):

	 1 1 2 2 2 3  j j j j jp pY a X a X a X a X= + + +… 	 (3)

being 1ja , 2ja ,…  jpa . , constants to develop the linear correlation. 
The sum of the square of these constants is usually 1. The first princi-
pal component is defined to take the greatest variance in the data set. 
The transformed space is given by the eigenvectors of the covariance 
matrix S, defined by equation (4):
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being  Λ  the diagonal matrix with real eigenvalues and U the matrix 
with eigenvectors in columns. The correlation between variable and 
principal component jY s given by equation 5:
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being iis , the variance-covariance matrix of the original data. For this 
work, the PCA definition depends on the dataset filtered in previous 
phases of the approach.

2.3.	 Artificial Neural Network
The ANN is formed by large number of interconnected neurons 

with the capacity of process information [1]. The ANN may be clas-
sified regarding on the presentation of the information, the topology 
of the network, the relation between input and out and the training 
method (unsupervised and supervised). In Figure 3, it is observed the 
two types of ANN employed in this work. Figure 3 shows a multilayer 
perceptron (MLP) structure of ANN architecture, with the neurons 
organized in different layers.

Fig. 3. ANN structure [29]

ANN requires large datasets and training process to design the in-
terconnection weights. The connections between neurons are deter-
mined with number reference or weight. Equation (6) determines the 
output ih  of neuron  i :
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being σ ()  the transfer function; N the number of input neurons; ijW  
the weights; jx  inputs to the input neurons, and; hidden

iT  the thresh-
old of the hidden neurons.

This paper considers a MLP ANN since the objective of this work 
is the definition of the approach. The simulations show that the best 
configuration is an ANN network architecture with 100 hidden layers. 
The inputs are variables, regarding on the filtering phase developed 
in previous phase. The validation and test phase of the ANN is devel-
oped dividing the dataset into 65% for the training, 20% for validation 
and 15% for testing. The adjustment of the network is obtained with 
the training phase. 

3. Case study and results
A real database from the OPTIMUS European Project has been 

employed [60]. The database is composed of a set of parameter mea-
surements and an alarm report. The SCADA generates an alarm when 
a set of variables reach a certain threshold. The SCADA system shows 
a sampling rate of 10 minutes.

Fig. 2. Alarm and signal periods
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The SCADA system also provides a detailed alarm report. This in-
formation will be employed for validating the model proposed. The 
collected data are:

Date of the alarms.––
Code of the alarm (confidential).––
Cause or description of the alarm.––
The state of the alarm (activation or deactivation).––
The severity.––
Required tasks.––

A real case study with SCADA data from one WT for 400 days and 
a data frequency of one minute, is employed to validate the approach. 
The WT presents more than 100 alarms with different activation peri-
ods. The initial signal dataset is composed by 96 signals analysing dif-
ferent parameters of the WT, e.g., temperature, electric performance, 
among others. Each signal is acquired per minute presenting more 
than 500000 data, and it must be related to the critical alarm with the 
aim of predict failures with accuracy. Due to non-disclosure agree-
ments with the operators, the location of the wind farm and the alarm 
nomenclature are omitted. The alarm selection criterion has been es-
tablished by the plant operator according to the needs.

Figure 4 shows the Pareto chart, considering the number of activa-
tions, the period of the activated alarm, the maximum period of the 
alarm and the difference between alarms without filtering process, be-
ing the red line the accumulated data in each case. 

Table 1 shows the alarm codification following the alarm log de-
fined in the wind farm. Several alarms present elevated activations, but 
this information does not provide value to the analysis. It is required a 
further filtering phase to ensure proper ranges and avoid alarms with 
several correlated activations with inadequate data for the analysis.

The range of interest is defined in previous section in one day be-
fore the alarm activation. The alarms that do not comply with these re-
quirements are discarded. Operators may provide different guidelines 
to determine the critical alarm. For this case study, the critical alarm is 
determined following the internal criterion of the plant operators and 
it is related with the overspeed of the WT. This alarm is activated in 
several periods but only 22 ranges between alarms achieve the condi-
tion of at least one day between activations (other case is considered 

as false alarm). This process ensures the reduc-
tion of the data volume, the computational cost 
and increasing the accuracy of the ANN. Figure 
5 shows the separation between alarms and the 
activation between periods. 

The signals related to the critical alarm are 
set by the P-values and correlations, obtaining 
thermal signals in the 71% of the cases and the 
rest are vibration signals. PCA is applied on this 
new dataset employing the data analysis showed 
in Figure 2 to reduce the data volume and select 
fundamental periods of time. Figure 6 shows 
that 99% of the original dataset can be defined 
with two principal components, being the red 
line the accumulated data. 

PCA modifies the initial dataset to obtain a 
new dataset with the same patterns, and the re-
construction error of PCA must be determined 
to analyze the importance of the selected vari-
ables. Figure 7 shows the unexplained vari-
ance depending on the number of components 
defined in the PCA process. In this case, it is 
confirmed that two components are suitable to 
reduce the uncertainty in the variance and define 
a new suitable dataset.

The original dataset has been reduced by 
93%, from 96 signals to a new PCA dataset. 
The ANN will be trained and designed using 
this new dataset, with the same capabilities and 
patterns. 

4. Validation
The validation of the filtering process is es-

sential for methodology acceptance. It is pro-
posed a comparison between the scenario with no statistical analysis 
and the filtering method proposed in this work to validate this method. 
It is designed a MLP neural network with ten hidden layers and its 
performance is analysed with both datasets.

Figure 8 compares the performance of both ANNs, with filtering 
and data treatment, and with the original dataset. The cross-entropy 
quantifies the error between the defined outputs and the desired out-
puts in the training data. Minimizing cross-entropy leads to better net-
works The ANN performance with the original dataset is showed in 
Figure 8.a) and in this case, the network employs more epochs in the 
stabilization, producing elevated errors and reducing the possibilities 
of finding reliable patterns. Figure 8.b) shows a better performance 

Fig. 4.	 Alarm activations with no filtering process. a) Alarms activation. b) Maximum period of each 
alarm activation. c) Average alarm period. d) Average period without alarms

Table 1.	 Alarm codification.

Alarm Alarm definition

Alarm A Brake alarm

Alarm GB Regulation of the pump motor

Alarm GEFL Out-of-bounds winding

Alarm GM CW motor alarm

Alarm GP WT yaw mechanism alarm

Alarm GCD Degradation alarm

Alarm GPL Limitation of the cosine of (φ)

Alarm GPLP Active power limitation

Alarm GRCT Voltage drop of the grid

Alarm RFT Voltage failure of the grid

Alarm HBP Low pressure hydraulic group

Alarm RDT Failure in the thermal ventilators of the gearbox

Alarm RMV Slow operation of the ventilator

Alarm RBPS Low pitch value at the WT stop
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of the ANN, with reduced number of epochs and cross-entropy. 
The stabilization of this network is developed with less epochs 
due to an optimized and reduced dataset. The methodology pro-
posed in this work increments the ANN performance by 1000% 
due to an efficient data filtering and selection.

The confusion matrix for the MLP with the filtering and data 
treatment process is showed in Figure 9. The number of positive 
cases properly identified by the algorithm is high. The overall 
accuracy of the ANN with the filtered dataset is about 94%, 
proving a high capacity to classify the periods before the activa-
tion of an alarm. It is concluded that the 6% of the alarms stud-
ied were activated without evidence of real damage in the WT, 
according to the signals acquired with the SCADA system. 

5. Conclusions
The volume and type of data acquired by supervisory control 

and data acquisition system implies the need of robust and ac-
curacy methods and algorithms to analyse the data. This paper 
presents a novel approach that filter the alarms and signals with 
the aim of increasing the accuracy of neural networks employed 
for signal processing. The initial phase is focused on the identi-
fication of the critical alarm by means of statistical analysis and 
Pareto chart. The signal dataset is filtered, analysed regarding 
with the critical alarm and reduced with principal component 
analysis to employ reliable and filtered data in the neural net-
work. It is presented a real case study formed by a new dataset 
with thermal and vibration dataset, being electric signals fil-
tered. The 93.5% of the cases are accurately classified, validat-
ing the methodology proposed for this paper. 

Fig. 5. Critical alarm analysis with filtered ranges Fig. 6.	 Percentage of the data explained with different principal  
components

Fig. 7.	 Unexplained variance regarding on the number  
of components

Fig. 8.	 a) Performance of the neural network with original dataset. b) Performance of the 
MLP neural network with PCA. 

Fig. 9. Confusion matrix for the MLP ANN developed with the approach
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