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1. Introduction

During a long period of use, technical systems are prone to deg-
radation processes. The resulting failure has a negative impact on the 
security and income of the system. Failure can, in turn, cause further 
failure to the system. In order to reduce the amount of failure to tech-
nical objects, various strategies of preventive actions are introduced 
into system management. The problem of reduction of the costs of 
system maintenance arises. This requires the development of effective 
repair and replacement strategies. Managing exchanges and repairs 
in industrial systems requires introducing various activities related to 
maintenance as well as appropriate level of reliability and availability 
into the system. These activities are divided into two types: preven-
tive maintenance (PM) and repair, or corrective maintenance (CM). 
Corrective maintenance in practice is carried out in two variants: after 
repair the system is “good as new” (perfect repair) or “bad as old” 
(minimal repair). Minimal repair restores the system to its reliabil-
ity condition just before failure. In practice, it restores the system to 
an intermediate state between the two possible extreme cases. The 
condition resulting from this activity is referred to as imperfect main-
tenance. Various models of imperfect maintenance are presented in 
detail in the review papers [12, 13].

Reduction of system maintenance costs is achieved by imple-
menting various effective prevention strategies and repairs. These 
activities include the replacement of important system components 
and determining the frequency of inspections. The schedule of these 
activities is often set by the system designer or manufacturer. The 
maintenance department also decides about the replacement of worn 
components. CM always requires prior diagnosis and identification 
of failure, therefore it is expensive and can be done by highly trained 
personnel only. CM repair costs are generally higher than the costs 
of preventive maintenance (PM). Similarly, average repair times are 

higher than average times of preventive maintenance. For some indus-
trial systems, it is also possible to repair a failed component without 
replacing it. This type of repair can be considered as a minimal repair 
(MR). Minimal repair restores the failed object to the state before the 
failure. From this point of view, some replacements can be consid-
ered minimal repairs. Based on this argument, many practical models 
of exchanges with minimal repair have been suggested in literature. 
As a result, developing different prevention strategies suggested by 
optimal decision-making models to reduce system maintenance costs 
and reduce the risk of undesired events is an important research topic 
in reliability engineering. In the last four decades, preventive main-
tenance models have generated growing interest in system reliability 
research.

The concept of minimal repair was introduced by Brown and 
Prochan in paper [2]. The minimum repair model assumes that once 
the failure occurs, perfect repair is carried out with p probability and 
minimal repairs are carried out with 1-p probability. Perfect repair re-
stores the technical object to the “good as new” condition. If p = 0, the 
repair is always minimal, while if p = 1, the repair is always perfect. 
Pham and Wang in paper [13] called such a mechanism of repairing an 
imperfect maintenance model with the rule (p, q). In paper [2] it is as-
sumed that the probability of perfect repair depends on the age of the 
technical object at the time of failure. In literature, the construction of 
the minimal repairs model is carried out using various mathematical 
methods. The review of the methods of constructing criterion func-
tions in the models of minimal repairs with preventative maintenance 
by age is found in papers [12, 13]. However, only one work cited there 
[3] uses semi-Markov processes. A more recent review of papers on 
minimal repairs is featured in book [15]. Recently, in papers [4, 5, 16, 
17] new results have been obtained regarding minimal repairs. The 
problem of minimal repairs is considered from the economic point of 
view in paper [6]. In addition, the article contains an up-to-date and 
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extensive literature review on minimal preventive repairs and replace-
ments.

This paper analyzes the strategy of maintaining the system using 
the (p, q) rules of age replacement. The possibility of using semi-
Markov processes to build a preventive replacement model in systems 
with minimal repair is discussed. The basis for building a criterion 
function is a certain border theorem for semi-Markov processes [7, 
8]. This approach to the construction of the criterion function was 
used in the works [11, 12]. The results of paper [3] are a special case 
of results obtained for the 3-state model in paper [11] and this article. 
In this paper, unlike in most articles on maintenance, repair times are 
not negligible. In the article, profit per unit of time and system avail-
ability rate are tested as criterion function. The conditions for the oc-
currence of an exactly maximum of both criterion functions have been 
formulated. Chapter 2 defines a 4-state model of replacements with 
minimal repairs and specifies a criterion function as profit per unit 
of time. Chapter 3 contains sufficient conditions for the occurrence 
of maximum profit per unit of time and maximum of the availability 
rate. In Chapter 4, two numerical examples are analyzed showing the 
results obtained in the paper. In the first example, the availability rate 
is maximized, while in the second the profit per time unit is maxi-
mized. In both examples it was assumed that the time before failure 
has Weibull distribution.

2. Criterion function

The paper examines the system in which the technical object 
may belong to one of the four states: S1 – failure free operation state,  
S2  – minimal repair state, S3  – perfect repair state, S4 – preventive 
replacement state. Possible changes of states are shown in the graph 
in Fig. 1.

Fig. 1. Directed graph for changes of states S = { S1, S2, S3, S4 }

In cases when we know the probabilities of transition between 
states, we have a given Markov chain. The matrix of Markov chain 
transition has the following form:
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By solving the appropriate system of linear equations, limit prob-
abilities for the Markov chain are obtained. The analyzed chain has 
the following limit probabilities:
 
	 p1

* = 1 / M,
	 p2

* =  p12 / M,
	 p3

* = ( p13 + p12 p23) / M,	
(1)

	 p4
*= p14 / M,

where M = 2 + p12 p23.

The article analyzes the semi-Markov model of preventive repairs 
and age replacements. The 4-state semi-Markov X(t) process is dis-
cussed with the state space S = {1, 2, 3, 4}. If X(t) = i, then the ana-
lyzed technical object at moment t is at state i. The profit per time unit 
for state i is determined by zi, i = 1, 2, 3, 4. In the paper it is assumed 
that z1 > 0, zi ≤ 0 for 2 ≤ i ≤ 4. If the technical object is at state 1,  
it brings profit, whereas if the technical object is in the state i, where 
2 ≤ i ≤ 4, then the technical object generates loss. 

The unit is replaced at age T or when it is failed, whichever comes 
first. Replacement or failure free time is defined by T1(x). The vari-
able T1(x) can be written as:
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In paper [11] it was proven that profit per time unit is expressed 
through the formula:
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where ETi, i = 1, 2, 3, 4 is average time of the technical object remain-
ing at state Si.

It is assumed that after the time x, if the object has not been failed, 
it goes into the prevention (replacement) state. The process of changes 
of states si, i = 1, 2, 3, 4, taking into account the preventive replace-
ment after time x, is a new semi-Markov process with the matrix P(x) 
of probabilities of transition of the embedded Markov chain. In rela-
tion to the matrix P described above, only the first line of matrix P 
changes. In particular, based on paper  [11], you can write:
 
	 p12(x) = p12 F12(x),
	 p13(x) = p13 F13(x),
	 p14(x) = p14 F14(x) + R1(x).

where:
F1i(x), i = 1, 2, 3, 4 are conditional distribution functions of time spent 
remaining at state i, before transition to state j, defined as follows:
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R1(x) = 1 – F1(x) is a function of reliability T1.

In order to simplify calculations, it is assumed that the following 
equations are true: 

	 F12(x) = F13(x) = F14(x) = F1(x).

On the basis of paper [11], criterion function has the following 
form:

	
* * * *
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Mean value ET1(x) is calculate from the formula:

	 ( )1 1 1
0
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x
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By integrating through parts, we get:

	 ( )1 1
0

( )
x

ET x R t dt= ∫ 	 .

Limit probabilities p1
*(x), p2

*(x), p3
*(x) are probabilities for 

Markov chain:
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On the basis of the formulas (1) may be written as:

	 p1
*(x) = 1 / M(x),

	 p2
*(x) =  p12(x) / M(x),

	 p3
*(x) = (p13(x) + p12(x) p23) / M(x),	 (5)

	 p4
*(x) = p14(x) / M(x),

	
where M(x) = 2 + p12(x) p23.

ET2, ET3 i ET4 are mean values for times of the object remaining 
at states S2, S3 and S4 of the system.

On the basis of (5), criterion function (4) is expressed through the 
formula:

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 12 1 2 2 13 1 12 23 1 3 3 12 1 13 1 4 4

1 12 1 2 13 1 12 23 1 3 12 1 13 1 4

( ) 1
( )

( ) 1

z ET x p F x z ET p F x p p F x z ET p F x p F x z ET
g x

ET x p F x ET p F x p p F x ET p F x p F x ET

+ +  +  +  − −    =
+ +  +  +  − −    

.

After rearrangement, one can write:

( )[ ]
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Now the numerator and denominator of the criterion function can 
be represented as:

	 L(x) = z1 ET(x)+ F1(x) B1 + C1,
	 M(x) = ET(x)+ F1(x) B + C.

Analogically:
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where:

B1 = p12 z2 ET2 + p12 p 23 z3 ET3 – p12 z4 ET4 + p13 ET3 z3 – p13 
z4 ET4,
C1 = z4 ET4,

B = p12 ET2 + p12 p 23 ET3 – p12 ET4 + p13 ET3 – p13 ET4,
C =ET4.

After simple transformations we get:

B1 = p12 z2ET2 +  z3ET3 ( p12 p23 + p13 ) – z4 ET4(p12 + p13),
B = p12 ET2 + ET3 ( p12 p23 + p13 ) – ET4 (p12 + p13).

The following symbols are introduced:
α = – B z1 + B1,
β = C z1 – C1,

γ = CB1 – C1B.

The α, β and γ rates play an important role in formulating condi-
tions sufficient for the occurrence of extremes of criterion functions.

3. Conditions for occurrence criterion function maxi-
mums

The assumptions for the parameters of the tested system are for-
mulated below. These assumptions must reflect the actual relation-
ship between perfect repairs, minimal repairs and preventive replace-
ments: 
Z1. z1 > 0, z2 < 0, z3 < 0, z4 < 0. The last element means that the 
technical object brings profit only at the S1 state, while the remaining 
states require expenses. 
Z2. ET3 > ET4, mean time of replacement (prevention) is shorter than 
mean time of perfect repair. 
Z3. z3 < z4, unit cost (− z4) of replacement (prevention) is higher than 
unit cost (− z3) of perfect repair. 
Z4. ET3 > ET2, mean time of minimal repair is shorter than mean time 
of perfect repair. 
Z5. z3 < z2, unit cost (− z2) of minimal repair is higher than unit cost 
(− z3) of perfect repair. 

The above assumptions do not include the relationship between 
the state of minimal repair and the state of preventive replacement. In 
practice, it is not known what is the relationship between the average 
values of ET2 and ET4 or z2 and z4. However, if z2 – z4 ≤ 0, then on 
the basis of the assumption Z3 is γ < 0.

Below, sufficient conditions are formulated for the following in-
equalities to be true α < 0, β > 0, γ < 0. The above conditions are 
formulated depending on mean times ETi, costs zi, i = 1, 2, 3, 4 as well 
as elements of matrix P = [pij], i, j = 1, 2, 3, 4. It is relatively easy to 
calculate that β = ET4 (z1 – z4). The assumption Z1 results in β > 0.
Rate α is expressed through formula:

α = p12 ET2 (z2 – z1) +(p12 p23 + p13) ET3 (z3 – z1) + ET4 (p12 + p13) (z1 – z4).      (6)

Inequality α < 0 is equivalent to the inequality 

(p12 p23 + p13) ET3 > p12 ET2 (z2 – z1) / (z1– z3) + ET4 (p12 + p13) ( z1 – z4) / (z1 – z3).    (7)

Rate γ is similarly determined

	 γ = ET2[ET4 p14 (z2 – z4) + ET3 (p12 p23 + p13) (z3 – z4)].         (8)

Inequality γ < 0 is equivalent to the inequality 

	 (p12 p23 + p13) ET3 > ET4 p14 (z2 – z4) / (z4 – z3).	 (9)

Let us mark the right side of the inequality (7) and (9) with δ1 i δ2 
respectively. Let δ = max{δ1, δ2}. The condition (p12 p23 + p13) ET3 > δ 
and (6), (7), (8) and (9) is implicated by inequalities α < 0, γ < 0. Now, 
the following conclusion may be drawn: 

Conclusion 1. If p23 > (δ / ET3 – p13) / p12, then the inequalities  
α < 0, γ < 0 are true.

In the literature on minimal repairs [2, 13, 14], it is assumed that 
if a technical object passes from the state of operation to the state of 
failure, the state of minimal repair is achieved with probability equal 
to 1 – p, and the state of exact repair with probability p. On the ba-
sis of elementary properties of conditional probability, the following 
equality is true:
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	 p12 / p13 = (1 – p) / p.	 (10)

Conclusion 2. If Tϵ IFR, λ(t) is differentiable, α < 0, γ < 0, β > 0,  
β + γ f(0+) > 0, λ(∞) α ET + β – α < 0, then the criterion function g(x) 
reaches maximum value.
Proof.

Function derivative g’(x) has the following form:

	 g’(x)= {α[f(x) ET(x) – R(x) F(x)] +β R(x) + γ f(x)} / M2(x),

where M(x) is the denominator of criterion function g(x).

It is known that if time before failure T belongs to the class of 
MTFR distributions, then the equality H(x) = λ(x) ET(x) – F(x)] ≥ 0 
for x ≥ 0. The class of MTFR distributions was tested in papers [9, 
10]. The MTFR class includes some lifetimes with single-mode func-
tion of failure intensity [9, 10]. From the fact that derivative H’(x) has 
the form H’(x) = λ’(x) ET(x) it follows that if the function of intensity 
of failure λ(t) increases, the function H(x) also increases. The class of 
distributions with the increasing failure rate function (IFR) is included 
in the MTFR class. The symbol of the derivative is the same as the 
symbol of the function:

	 h(x) = α[λ(x) ET(x) – F(x)] + β + γ λ(x).

It is known that H(0+) = 0, hence h(0+) = β + γ f(0+) > 0. From the 
fact that α < 0, β > 0, γ < 0 and function H(x) increases it follows that 
the function h(x) decreases from (0+) = β + γ f(0+) > 0 to h(∞) = λ(∞)α 
ET + β – α < 0. It follows that derivative function g’(x) changes from a 
„+” to a „– ” exactly once. Hence it is concluded the criterion function 
g(x) reaches precisely one maximum. □

If λ(∞) = ∞, then for the occurrence of criterion function g(x) 
the following conditions are sufficient: Tϵ IFR, differentiability λ(t),  
α < 0,  γ < 0, β > 0, β + γ f(0+) > 0. One example is Weibull distribution 
with increasing failure intensity function.

Conclusions 1 and 2 result in the following sufficient condition 
for the occurrence of maximum criterion function: 

Conclusion 3. If Tϵ IFR, λ(t) is differentiable, β + γ λ(0+) > 0, p23 > (δ 
/ ET3 – p13) / p12, λ(∞) α ET + β – α < 0, then criterion function g(x) 
reaches maximum value. 

Sufficient condition for occurrence of an asymptotic maximum 
availability rate is formulated below. In order to obtain availability 
rate from criterion function g(x), it is sufficient to assume the follow-
ing conditions: z1 = 1, z2 = z3 = z4 = 0. After taking into account these 
conditions, in formula (4) we get B1 = 0, C1 = 0. Hence, on the basis 
of (2), (3) and (5) for α, β, γ the following can be calculated: 

α = – B = – p12 ET2 – (p12 p23 + p13) ET3 + (p12 + p13) ET4,
β = ET4,

γ = 0.

Inequality α < 0 is equivalent to inequality 

p23 > {[ET4(1 + p13 / p12) – ET2] / ET3} – p13 / p12.

The last inequality, taking into account (7), may be written in the 
following form:

p23 > {[ET4 / (1 – p) – ET2] / ET3} – p / (1 – p).

Taking into account the fact that β > 0 i γ = 0, we can now for-
mulate the sufficient condition for the occurrence of maximum avail-
ability rate.

Conclusion 4. If Tϵ IFR, λ(t) is differentiable, λ(∞) α ET + β – α < 0, 
p23 > {[ET4 / (1 – p) – ET2] / ET3} – p / (1 – p), then the availability 
rate reaches precisely one maximum value. 
Proof.

Function derivative g’(x) has the following form: g’(x)= {α[f(x) 
ET(x) – R(x) F(x)] + β R(x)} / M2(x), where M(x) is the denominator 
for criterion function g(x).

If failure intensity function λ(t) increases, then function H(x) in-
creases. Symbol of the derivative is identical with symbol of function 
h(x) = α[λ(x) ET(x) – F(x)] + β. It is known that H(0+) = 0, hence 
h(0+) = β > 0.

From the fact that p23 > {[ET4 / (1 – p) –  ET2] / ET3} – p / (1 – p), it 
follows that α < 0 and function h(x) decreases from value h(0+) = β > 0 
to values h(∞). If h(∞) = λ(∞)α ET + β – α < 0, then derivative function 
g’(x) changes from a „+” to a „–” exactly once. Hence it is concluded 
the criterion function g(x) reaches precisely one maximum. □

If λ(∞) = ∞, then for the occurrence of maximum availability rate 
the following conditions are sufficient Tϵ IFR, p23 > {[ET4 / (1 – p) – 
ET2] / ET3} – p / (1 – p).

4. Numerical examples

Example 1. In this example the value of the function g(x) is deter-
mined, when g(x) is the availability rate. The following data were 
used in the calculations: mean values of times of the technical object 
remaining at states ET2 = 0.2, ET3 = 0.5, ET4 = 0.1, assumed for 
Weibull distribution of time before failure T with the scale parameter 
b = 6. Non-zero elements were assumed for matrix P as p12 = 0.2, 
p13 = 0.6, p14 = 0.2, p21 = 0.2, p23 = 0.7. The values of the c form 
(shape) parameter for Weibull distribution c ε {5, 6, 7} were assumed. 
In each of the three analyzed cases, there is an optimal value for the 
replacement time.

Fig. 2.	 Charts of changes in the value of availability rate depending on the 
time of preventive replacement x, for c ϵ {5, 6, 7)

Example 2. In this example the value of the function g(x) is deter-
mined, when g(x) is profit per time unit. The calculations included 
mean values for times of remaining at states, probability matrix P 
and the parameter of Weibull distribution scale the same as in Exam-
ple 1. The values of parameter c form (shape) for Weibull distribution  
c ϵ {5, 6, 7} were assumed. For calculations, unit profits were assumed as  
z1 = 6, z2 = – 0.1, z3 = – 0.8, z4 = – 0.2.

For all values of parameter c of the form of Weibull distribution, 
the criterion function reaches the maximum value. Analysis of the de-
pendence of the point xmax, in which the criterion function g(x) reach-
es maximum value shows that as the value of parameter c increases, 
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the value of xmax and the maximum value of the criterion function 
increase.

6. Conclusions

Maintenance systems performing two types of repairs: minimal 
repairs and perfect repairs are covered by a wide range of literature. 
However, the use of semi-Markov processes is rare. This paper shows 
that the application of semi-Markov processes in determining optimal 
strategies for preventive actions in systems with minimal repair al-
lows for the formulation of interesting conclusions. For the criterion 
functions analyzed in this paper (availability and profit per unit of 
time), sufficient conditions for the occurrence of maximum of these 
criterion functions were formulated. Criterion functions are analyzed 
in an infinite time horizon. Formulating stronger conditions requires 
establishing the relation between the mean times of technical object 
remaining at individual states as well as unit profits at states of mini-
mal repair and preventive replacement.
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Fig. 3.	 Charts of changes in the value of profit per unit time rate depending on 
the time of preventive replacement x, for c ϵ {5, 6, 7)


