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Modelowanie uszkodzeń elementów silnika samolotowego 
w oparciu o sztuczne sieci neuronowe 

o radialnych funkcjach bazowych
The objective of this research is to present a model to predict failure of two categories of critical aircraft engine components; non-
rotating components such as valves and gearboxes, and rotating components such as engine turbines. The work utilizes Weibull 
regression and artificial neural networks employing Back Propagation (BP) as well as Radial Basis Functions (RBF). The model 
utilizes training failure data collected from operators of turboprop aircraft working in harsh desert conditions, where sand erosion 
is a detrimental factor in reducing turbine life. Accordingly, the model is more suited for accurate prediction of life of critical com-
ponents of such engines. The algorithm, which uses Radial Basis Function (RBF) NN, uses a closest point specifier. The activation 
is based on the deviation of the earlier prototype from the input vector. Two earlier models are used for comparison purposes; 
namely Weibull regression modeling and Feed-Forward BP network. Comparison results show that the failure times represented 
by RBF are in better compromise with actual failure data than both earlier modeling methods. Moreover, the technique has com-
paratively higher efficiency as the neuron’s number in each layer of ANN is reduced, to decrease computation time, with minimum 
effect on the accuracy of results. 

Keywords:	 neural network, radial basis function, Reliability, engine components.

Celem pracy jest przedstawienie modelu służącego do predykcji uszkodzeń dwóch kategorii krytycznych elementów silnika samo-
lotowego: elementów nieobrotowych, takich jak zawory i skrzynie biegów oraz elementów obrotowych, takich jak turbiny silnika. 
W pracy wykorzystano regresję Weibulla i sztuczne sieci neuronowe oparte na propagacji wstecznej oraz radialnych funkcjach 
bazowych (RBF). Model wykorzystuje dane o błędach zebrane od operatorów samolotów turbośmigłowych pracujących w trud-
nych warunkach pustynnych, gdzie erozja powodowana przez piasek stanowi szkodliwy czynnik ograniczający żywotność turbin. 
Prezentowany model jest więc szczególnie przydatny do trafnego prognozowania żywotności krytycznych elementów takich silni-
ków. Algorytm, który wykorzystuje sieci neuronowe o radialnych funkcjach bazowych, używa specyfikatora najbliższego punktu. 
Aktywacja bazuje na odchyleniu wcześniejszego prototypu od wektora wejściowego. Dwa wcześniejsze modele oparte na regresji 
Weibulla (Weibull regression modeling) oraz sieciach typu Feed-Forward Backpropagation wykorzystano do badań porównaw-
czych. Wyniki porównania pokazują, że czasy uszkodzeń odwzorowane przez RBF pozostają w większej zgodzie z rzeczywistymi 
danymi o uszkodzeniach niż w przypadku obu wcześniejszych metod modelowania. Co więcej, technika ta ma porównywalnie 
większą efektywność, ponieważ liczba neuronów w każdej warstwie sieci neuronowej została zredukowana tak aby zmniejszyć czas 
obliczeń, przy minimalnym wpływie na dokładność wyników. 

Słowa kluczowe:	 sieć neuronowa, radialna funkcja bazowa, niezawodność, elementy silnika.

1. Introduction
Reliability of modern aircraft engines is highly affected by failure 

prediction methods of their critical parts. When these engines are op-
erated in severe desert conditions, the high temperature, pressure, and 
velocity of the intake air may increase the effect of sand erosion on 
the rotating engine critical components, such as high-pressure turbine 
blades, and gearboxes. Sand also contributes to blockage of failure of 
nonrotating parts like engine valves that get blocked by sand particles. 
To better schedule cost-effective preventive maintenance, more accu-
rate modeling and prediction of component life is important. This also 
helps to enhance both aircraft safety and reliability.

The type of engine system which is currently under considera-
tion comprises a 4-stage turbine subjected to extreme high pressure 
and temperature as it draws air energy from the combustion cham-
ber. The maximum Turbine Inlet Temperature (TIT) can reach up to 

1077ºC while it has a maximum generated power of 11,000 hp. Both 
turboprop and turbofan engines contain also no rotating parts that are 
critical to engine operations. These include turbine bleed air valves, 
high pressure valves, stator vanes, casing and support, support for rear 
bearing, and thermocouples. The failure of any of these components 
can lead to the failure of the entire turbine system. Hence, it is impor-
tant to address this type of failure for aircraft safety and this research 
present a failure model for the parts that were found to fail the most in 
engines operated in the desert climate of Saudi Arabia. The work will 
proceed to compare predictions made by Weibull regression and Arti-
ficial neural networks algorithms that utilize either Back Propagation 
or Radial Basis Functions with the actual failure data from available 
data from the aviation industry.
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2. Literature Review

There is a large body of research on modeling of reliability 
of aircraft system components for different types of failure. Most 
of this research was based on a Weibull distribution to predict the 
component life, utilizing discrete-stressed volume approach [21]. 
Later, Sheikh et al. [16] and Al-Garni et al. [2] used Feed-Forward, 
Back-Propagation ANN to better model failure, as compared to the 
more common two-parameter and three-parameter This advantage 
of FF-BP models was extended to both component and system 
levels [3, 4, 5, 18].  The work enabled customizing maintenance 
plans to suit different operator conditions. Later, Qattan [15] used 
also Radial Basis Functions for modeling of failure time of rotating 
components. 

Artificial Neural Networks were introduced as a means of mod-
eling. A great body of literature was dedicated to explaining these 
methods, see for example Kutusurelis [10] and Paul et al. [14]. The 
basic convergence criterion, known as the delta rule, in all of these 
algorithms is based on reducing some mean square error to its least 
value. The convergence criterion is generally utilized for single 
layer networks and also forms the foundation for a back propaga-
tion used for multi-layer networks. Additionally, Hopfield [9] used 
a “spin glass” model for storing data in dynamically stable type of 
networks. By that time, the well-established back propagation net-
work used a basic delta rule to propagate the output error back to the 
hidden units, see for example Parker [13]. In his work, he used BP 
to train a multilayer feed forward network. 

Another type of net, known as Radial Based Functions (RBF), 
was formulated by Broomhead and Lowe [8]. In RBF networks, the 
accuracy of modeling depends mainly on the number of neurons 
in the input and output layers. Most of the research work aimed 
at selecting the most suitable structure and parameter values of the 
network that increase the failure prediction reliability. Several vari-
ations of PB and RBF networks were used to study failure of aircraft 
components with different training methods, including deep belief 
networks of Lin et al. [11].

In a more recent work, Abdelrahman et al. [1] investigated the 
training of BP ANN to model failure of engine components. The 
work, which was expanded by Al-Wadiee [6], showed significant 
improvement over the traditional Weibull model results. Both work, 
however, did not deal with utilization of the predicted results.

Later, Tian [17] used ANN based method to predict the remain-
ing life of equipment that are fitted with health monitoring. The 
monitoring of age and multiple condition  was used to train the NN. 
Also, Bin et al. [7] utilized two decomposition methods to obtain 
the fault feature frequency in rotating machinery. Then, they used an 
artificial neural network for the early fault diagnosis of these com-
ponents. The fault pattern of the machinery was identified using a 
three layers BP NN model taking the fault feature frequency as the 
target input. The spectral bandwidth energy of vibration signal spec-
trum was taken as a characteristic parameter, whereas 10 types of 
representative rotor fault were considered the output.

Wang and Wang [20] used a nested extreme response surface to 
tackle time dependency issues in reliability analysis. In their work, 
Nieto et al. [12] combined support vector machines with particle 
swarm optimization technique. This significantly improved regres-
sion accuracy. Vanini  et al. [19] also used multiple dynamic neural 
networks to learn the nonlinear dynamics of jet engines. Residuals 
obtained by comparing operating modes of healthy and faulty condi-
tions of engines were used to develop a reliable criterion for detect-
ing and isolating faults. 

3. Modeling of component failure

As this work aims at failure modeling of aircraft critical com-
ponents using Weibull and ANN (Back propagation/Radial Basis 
Function). Since the Weibull regression method is well documented 
in literature [21], more emphasis is given in the present work to the 
back propagation and Radial Basis Function ANN modeling.

3.1.	 Back propagation artificial neural network

The back propagation ANN modeling utilizes some criterion 
function to maximize the performance by continuously varying the 
network weights through gradient descent algorithm. The goal of this 
model is to train the network in such a manner that a compromise 
can be achieved between the ability to respond accurately after re-
ceiving training input patterns and the capability to produce accurate 
responses for similar inputs. The network has two main segments; 
the forward-feed and the back-propagation. The input signals are 
transformed into output signals using a suitable activation function. 
Log-sigmoid function is an activation function that proved to give 
good results for component failure time modeling. The algorithm is 
detailed in works of [8] and [1], and is only summarized here.

Let m and n be the number of inputs and outputs of the network; 
respectively, and let Xd be the input signal to the ANN, whereas f 
(netk) is the activation function. This function is normally a non-
linear log-sigmoid function, whose parameter values depend on the 
preferred output data range. Let N be the number of intermediate 
neurons. In this case, we can define a normalized set of inputs as 
follows:

	 jx  = normalized values of Xd  ,1 <  d  ≤  m 	 (1)

Here the rank of neuron activation is defined as:

	   kx       =   f(netk),    m < k ≤ N + n 	 (2)

where:

	 netk   =    
1

1

k

kj j
j

W x
−

=
∑ , m  ≤ k  ≤ N  + n 	 (3)

Here, Wkj are the elements of the weight matrix. The number of 
neurons in the corresponding neighboring layers determines the size 
of this weight matrix W. 

The activation log-sigmoid function is given by:

	 f (netk) =   
1

1 netke−+
	 (4)

The network output is calculated from the output layer neuron 
signals as:

	 sO  =  N sX +  1 ≤ s  ≤ n 	 (5)

In the above equations, N is always less than the number of in-
puts of the ANN. Moreover, If we consider the inputs as neurons of 
the input layer, then the sum (N + m) is the total number of neurons 
in the network. Figure 1 shows a typical 3 layer ANN model with 
inputs pR and weights ws

I
,R.
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3.2.	 Radial basis function artificial neural network

In RBF neural network modeling, the hidden unit activation is 
based upon the spacing  between the input prototype and the input 
vector. This RBF model employs a closest point   classifier type to 
detect anomalies. An extended version of the model utilizes nominal 
data. Here, as soon as the data is added to the system, it is compared 
to the RBF model, and is classified as nominal if it falls within the 
boundaries of the model. If it does not fall within these boundaries, 
then it is classified as anomalous. This approach has many applica-
tions in complex systems and subsystems, including those of military 
aircraft. The accuracy of the model in this case depends on the number 
of elements in each layer, as well as the appropriate choice of the 
radial basis function. The selection of the radial basis function for the 
detection of an anomaly is done considering the condition:

	 f x exp x
k

k( ) = − −








∑

1
θ

µ
α

α . 	 (6)

where α ∈ ∞( )0, θα � is the α  central moment, given by:

	 θ µα
α= −

=
∑
k

N
kx

1
	  

and μ is the center of the data set defined as:

	 µ =
=
∑

1

1N
x

k

N
k . 	 (7-b)

The mean μ and the central moment � �θα  as given by equations 
(7), are evaluated for the nominal condition from the data of a sam-
pled time series. In this case, the distance from the center μ to any 
vector x is given by:

	 x xl
k
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=
∑µ µ

α
α

α

1
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Therefore, the radial basis function is defined by ( ) nomf f x=  at 
the nominal condition. The mean and central moment are not changed 
for the anomalous conditions, whereas the radial basis function is cal-
culated using the possibly anomalous data set under the condition at 

a slow time scale. Anomaly can be measured at 
the k  epoch by the distance from the neuron’s 
center, given by:

	 Mk  ≡  d(fnom, fk)                   (9)

This distance is inversely proportional to the 
outputs of the Gaussian transfer functions of the 
hidden layer. Fig. 2 depicts the general archi-
tecture of a RBF network. The network consists 
of three layers. The first layer has one neuron 
for each predictor variable. It is pivotal to nor-
malize the range of the input values prior to the 
input layer. The second layer, the hidden layers, 
receive the resulting values from the first input 
layer. Since the neuron’s number in this layer 
varies, an optimum value is obtained through 
the process of training. In this layer, every neu-
ron is modeled as RBF which is centered on 
a point whose dimensions are the same as the 

number of the predictor variables. The RBF function’s radius repre-
sents the spread which may vary for each dimension. The spreads and 
the centers are optimally evaluated again in this process of training. 

The Euclidean distance is evaluated from the neuron’s center 
point after a hidden neuron is given some input values in the form of 
vector x from the input layer. Next, for this distance, the model uses 
RBF type kernel function by utilizing the spread values that were cal-
culated in the previous step. The output of the value is then transferred 
to the summation layer which is also the last layer. In the summation 
layer, first the neuron value produced by the hidden layer is multiplied 
by a weight (Wi) which is related to the neuron and afterwards the 
output of the network is obtained by summation of all the weighted 
values. Accordingly, training is carried out to determine the neuron’s 
number in the hidden layer, the RBF function’s radius in each dimen-
sion, the center’s coordinates for each hidden-layer RBF function, and 
the weights that are applied to the outputs of the RBF function as they 
are transferred to the last layer (summation layer).

Fig. 2. Model for the RBF Network

The error function is calculated as:

	 ( ) ( ) 2error F t O t= ∑ −   	 (10)

4. Results and discussion

Actual failure data over a period of thirty years was provided by 
local aviation operator working within the Arabian Gulf Area con-
tained both the Time Since Overhaul (T.S.O.). A subset of this data 
is used to train the ANN network with 2, 4, and 1 neurons in the in-

Fig. 1. A schematic of multilayer ANN with a general activation function
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put, hidden, and output layers; respectively. The prediction results are 
compared to Weibull predictions, and to the actual data in Fig.3. Fig. 
4 presents a similar comparison when the ANN model utilizes 4, 20, 
and 1 neurons in the three layers.

It can be noted from Figures 3 and 4 that the network training 
significantly improves with this change in the network configuration.  
It was also found that there is only negligible effect of changing other 
parameters such as learning rate and momentum constant.

A comparison was carried out between the maximum error per-
cent in predictions using several ANN-BP configurations and the re-
sults of these configurations are summarized below in Table 1. The 
error in this table is calculated based on comparison with the actual 
collected field data. Again, it is clear from the table that ANN (4,20,1) 
configuration has the least mean error among all the other ANN-BP 
configurations and hence this configuration most closely matches 
with the actual data. Further increase in neuron numbers in any of 
the layers does not significantly reduce error, but increases run-time 
considerably.

Table 1. Percentage error for failure of Turbine requiring overhaul mainte-
nance (T.S.O.)

Network Configuration Mean Error 
(%)

BP - ANN  (4, 20, 1) 0.84  

BP - ANN  (4, 10, 1) 1.00 

BP - ANN  (4, 8, 1) 1.51  

BP - ANN  (3, 6, 1) 4.51  

BP - ANN  (2, 4, 1) 6.85  

It is worth noting that a similar approach can be implemented for 
predicting turbine failure requiring overhaul maintenance (T.S.O), 
which is sometimes used in the aviation industry. Table 2 presents the 
MATLAB results for comparison between BP ANN (4, 20, 1), Weibull 
regression model, and RBF neural network model for this case. It is 
clear from the table that there is negligible mean percentage error of 
around 1.09E-15 % when Radial based function neural network was 
used for prediction of failure rate for turbines that requires overhaul 
maintenance. Hence, the comparison in Table 2 clearly establishes 
that ANN-RBF model presents more accurate modeling of turbine 
failure rate than both Weibull regression and ANN-BP models. 

Figure 5 presents a comparison of the three methods’ results over 
a range of more than 4,000 hours. From this figure, it can be deduced 
from figure that it is more advantageous to use RBF neural network 
for predicting failure rate as compared to Weibull or BP ANN model. 
Moreover, the BP ANN (4, 20, 1) configuration also depicts far better 
results than Weibull regression model.

Fig. 3.	 Comparison of results of ann (2, 4, 1), Weibull model, and actual fail-
ure rate for turbine requiring overhaul maintenance (T.S.O)

Fig. 4.	 Comparison of results of ANN (4, 20, 1), Weibull model, and actual 
failure rate for turbine requiring overhaul maintenance (T.S.O) 

Fig. 5.	 Comparison of BP ANN model, RBF ANN and Weibull regression 
with actual failure rate for turbine requiring overhaul maintenance 
(T.S.O)

Fig. 6.	 RBF ANN analysis of Gear boxes failure training data without denor-
malization

Table 2.	 Mean percentage error for failure rate of turbine requiring overhaul 
maintenance (T.S.O) for Weibull,  BP ANN (4, 20, 1), RBF ANN 

Method Mean Error (%)

Weibull 16.55 

ANN- BP (4,20,1) 0.84

ANN-RBF (best config.) 1.09E-15 
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A question that need to be investigated is whether these conclu-
sions can be extended to failure prediction of nonrotating components, 
or components not directly affected by the airflow. Accordingly, a 
similar study was carried out for gearbox failure data. The failure data 
for gear boxes was also collected from local aviation company. Tables 

3 and 4 present Weibull analysis for Gear box failure for two sets of 
Weibull parameters, comprising failure data of 42 gearboxes. 

Afterwards, RBF-ANN analysis was carried out, with different 
neurons numbers, and is compared to Weibull analysis results. This 
is presented in Figure 6. In this figure Input 1, 2, and 3 refer to the 

Table 3.	 General failure data for gear boxes using Weibull analysis- Part I

ti
ti - t0

t0 =506.6 i F = i/N + 1
N = 44 R = 1- F ln (ti - t0)

= xi

ln[ln(1/R)]
= yi

4838.6 4332.00 1 0.022222 0.977778 8.373785 -3.795447

5183.7 4677.10 2 0.044444 0.955556 8.450434 -3.090870

5246.5 4739.90 3 0.066667 0.933333 8.463771 -2.673752

5345.2 4838.60 4 0.088889 0.911111 8.484381 -2.374184

5437.9 4931.30 5 0.111111 0.888889 8.503358 -2.138911

5663 5156.40 6 0.133333 0.866667 8.547994 -1.944206

5680.6 5174.00 7 0.155556 0.844444 8.551401 -1.777405

5753.2 5246.60 8 0.177778 0.822222 8.565336 -1.630945

5773.3 5266.70 9 0.200000 0.800000 8.569159 -1.499940

5868 5361.40 10 0.222222 0.777778 8.586980 -1.381050

5900 5393.40 11 0.244444 0.755556 8.592931 -1.271888

5926.2 5419.60 12 0.266667 0.733333 8.597777 -1.170683

6031.5 5524.90 13 0.288889 0.711111 8.617020 -1.076088

6752.5 6245.90 14 0.311111 0.688889 8.739681 -0.987048

6915 6408.40 15 0.333333 0.666667 8.765365 -0.902720

7385.9 6879.30 16 0.355556 0.644444 8.836272 -0.822421

7395 6888.40 17 0.377778 0.622222 8.837594 -0.745582

7555 7048.40 18 0.400000 0.600000 8.860556 -0.671727

8173.2 7666.60 19 0.422222 0.577778 8.944629 -0.600448

8293 7786.40 20 0.444444 0.555556 8.960134 -0.531391

8540.9 8034.30 21 0.466667 0.533333 8.991475 -0.464246

8586.3 8079.70 22 0.488889 0.511111 8.997110 -0.398735

8953 8446.40 23 0.511111 0.488889 9.041496 -0.334606

9046.1 8539.50 24 0.533333 0.466667 9.052458 -0.271625

9523 9016.40 25 0.555556 0.444444 9.106800 -0.209573

9542.9 9036.30 26 0.577778 0.422222 9.109005 -0.148241

9542.9 9036.30 27 0.600000 0.400000 9.109005 -0.087422

9684.41 9177.80 28 0.622222 0.377778 9.124543 -0.026910

9777.5 9270.90 29 0.644444 0.355556 9.134636 0.033506

9786.3 9279.70 30 0.666667 0.333333 9.135584 0.094048

9848 9341.40 31 0.688889 0.311111 9.142211 0.154955

9925 9418.40 32 0.711111 0.288889 9.150421 0.216492

9946.7 9440.10 33 0.733333 0.266667 9.152722 0.278961

10249 9742.60 34 0.755556 0.244444 9.184263 0.342715

10563 10056.20 36 0.800000 0.200000 9.215945 0.475885

11044 10537.40 37 0.822222 0.177778 9.262686 0.546514

11462 10954.90 38 0.844444 0.155556 9.301542 0.620981

11545.8 11039.20 39 0.866667 0.133333 9.309208 0.700571

11674 11167.00 40 0.888889 0.111111 9.320718 0.787195

11714 11207.30 41 0.911111 0.088889 9.324321 0.883920

12376 11869.10 42 0.933333 0.066667 9.381694 0.996229
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different ANN configurations, with increasing number of neurons in 
the input and hidden layers. It can be seen from the figure that increas-
ing number of neurons results in more accurate predictions, but that 
prediction accuracy for gearbox failures is less than that of turbine 
failures. Figure 6: RBF ANN analysis of Gear boxes failure training 
data without denormalization

Finally, the failure prediction of nonrotating components; namely 
engine valves was carried out. Collected failure data of high pressure 
valves and engine bleed valves was used to train the ANN. Calcu-
lations of failure prediction of bleed valves are presented in Table 
5, whereas calculations for the high pressure valves are presented in 
Table 6.  For the bleed valves, Table 5, a network configuration of 
4 neurons in the input layer and 8 in the hidden layer was selected. 
However, for the case of high pressure valves, Table 6, the results of 
several network configurations were presented and compared. 

Figures 7, 8, and 9 illustrate the comparison between selected net-
work configuration and actual results for bleed valves (Figure 7), and for 

high pressure valves (Figure 8 and 9). From these figures it is clear that 
prediction results are better than predictions done for gearboxes, and the 
accuracy is comparable to predictions done for turbine components.

5. Conclusion

In this work, a RBF NN model is developed for the modeling of 
critical rotating and nonrotating engine parts operating in desert condi-
tions. The accuracy of the trained model is determined by a comparison 
to earlier methods of BP NN and Weibull distribution. Testing several 
values for the number of neurons shows that the percentage deviation 
from actual failure data is small for networks with 4 or more neurons 
in the input layer. Further increase in number of neurons does not im-
prove accuracy much and considerably increases run-time. Moreover, it 
is found that an intermediate neuron number of 20 produces reasonable 
accuracy for predicting failure of both rotating and nonrotating compo-
nents, without much increase in run time. The RBF modeling of failure 
data provided by local operator proved to be superior than the other 

Table 4.	 General failure data for gear boxes using Weibull analysis – Part II

(1) (2) (3) (4) (5) (6) (7)

ti ti - t0 i F = i/N + 1 R = 1- F ln (ti - t0) ln[ln(1/R)]

9046.1 8539.50 24 0.533333 0.466667 9.052458 -0.271625

9523 9016.40 25 0.555556 0.444444 9.106800 -0.209573

9542.9 9036.30 26 0.577778 0.422222 9.109005 -0.148241

9542.9 9036.30 27 0.600000 0.400000 9.109005 -0.087422

9684.41 9177.80 28 0.622222 0.377778 9.124543 -0.026910

9777.5 9270.90 29 0.644444 0.355556 9.134636 0.033506

9786.3 9279.70 30 0.666667 0.333333 9.135584 0.094048

9848 9341.40 31 0.688889 0.311111 9.142211 0.154955

9925 9418.40 32 0.711111 0.288889 9.150421 0.216492

9946.7 9440.10 33 0.733333 0.266667 9.152722 0.278961

10249 9742.60 34 0.755556 0.244444 9.184263 0.342715

10331 9824.50 35 0.777778 0.222222 9.192635 0.408180

10563 10056.20 36 0.800000 0.200000 9.215945 0.475885

11044 10537.40 37 0.822222 0.177778 9.262686 0.546514

11462 10954.90 38 0.844444 0.155556 9.301542 0.620981

11545.8 11039.20 39 0.866667 0.133333 9.309208 0.700571

11674 11167.00 40 0.888889 0.111111 9.320718 0.787195

11714 11207.30 41 0.911111 0.088889 9.324321 0.883920

12376 11869.10 42 0.933333 0.066667 9.381694 0.996229

Fig. 7.	 Comparison of failure prediction results for RBF ANN with the actual 
data of bleed valves.

Fig. 8.	 Comparison of results of ANN (2, 4, 1) for High stage valve with the 
actual data
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two methods.  RBF NN showed much higher accuracy, as represented 
by the much smaller value of the sum of error squares. This modeling, 
therefore, can be utilized to formulate replacement and overhaul guide-
lines of both rotating and nonrotating engine components that corre-
spond to a certain optimum level of reliability. 
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