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1. Introduction

Failure caused by severe wear of friction couplings, which is the 
primary failure mode of mechanical transmissions, has an adverse 
influence on vehicle reliability that may have catastrophic conse-
quences. Therefore, the wear in a mechanical transmission should be 
monitored regularly to avoid possible unscheduled maintenance, and 
proactive maintenance should be implemented in a timely manner to 
extend the period during which the transmission is in a healthy state. 
Currently, the condition monitoring (CM) and prognostics of a me-
chanical transmission, which uses CM data to evaluate the residual 
life before wear failure of friction couplings and provides a vital foun-

dation for condition-based maintenance, has attracted considerable at-
tention in research and plays a key role in industries [3,7].

CM data (e.g., vibration, temperature and oil analysis data) that 
are measured during machine operation, which can characterize the 
severity of underlying degradation and failure processes, are typically 
regarded as degradation data. A typical assumption is that the machine 
failure will occur when the degradation data cross a threshold that is 
usually prescribed by practitioners [14,19]. Therefore, the degree of 
degradation and the residual life of a machine can be determined by 
comparing the degradation data with the predetermined failure thresh-
old. With the residual life evaluated, condition-based maintenance 

Shufa Yan
Biao Ma
Changsong Zheng

Health index extracting methodology for degradation 
modelling and prognosis of mechanical transmissions

Metodologia ekstrakcji wskaźnika stanu technicznego 
do modelowania i prognozowania degradacji 

przekładni mechanicznych
Condition monitoring and prognosis is a key issue in ensuring stable and reliable operation of mechanical transmissions. Wear 
in a mechanical transmission, which leads to the production of wear particles followed by severe wear, is a slow degradation 
process that can be monitored by spectral analysis of oil, but the actual degree of degradation is often difficult to evaluate in 
practical applications due to the complexity of multiple oil spectra. To solve this problem, a health index extraction methodology 
is proposed to better characterize the degree of degradation compared to relying solely on spectral oil data, which leads to an 
accurate estimation of the failure time when the transmission no longer fulfils its function. The health index is extracted using a 
weighted average method with selection of degradation data with allocation steps for weight coefficients that lead to a reasonable 
mechanical transmission degradation model. First, the degradation data used as input are selected based on source entropy which 
can describe the information volume contained in each set of spectral oil data. Then, the weight coefficient of each set of degrada-
tion data is modelled by measuring the relative scale of the permutation entropy from the selected degradation data. Finally, the 
selected degradation data are fused, and the health index is extracted. The proposed methodology was verified using a case study 
involving a degradation dataset of multispectral oil data sampled from several power-shift steering transmissions.

Keywords:	 health index, mechanical transmission, condition monitoring, spectral oil data, degradation mod-
eling, remaining useful life.

Monitorowanie i prognozowanie stanu to kluczowa kwestia dla zapewnienia stabilnej i niezawodnej pracy przekładni mechanicz-
nych. Zużycie w przekładni mechanicznej, które prowadzi do wytwarzania cząsteczek zużycia a następnie ciężkiego zużycia, to pro-
ces powolnej degradacji, który może być monitorowany poprzez analizę widmową oleju, ale rzeczywisty stopień degradacji często 
trudno jest ocenić podczas praktycznego użytkowania z uwagi na złożoność wielu widm oleju. W celu rozwiązania powyższego 
problemu, zaproponowano metodologię ekstrakcji wskaźnika stanu technicznego, aby lepiej scharakteryzować stopień degradacji 
niż polegając wyłącznie na danych widmowych oleju; pozwala to na dokładne prognozowanie czasu uszkodzenia, gdy przekładnia 
przestanie spełniać swoją funkcję. Wskaźnik stanu technicznego ekstrahowany jest za pomocą metody średniej ważonej z wyborem 
danych o degradacji i etapami alokacji dla współczynników wagowych, dając w efekcie odpowiedni model degradacji przekładni 
mechanicznej. W pierwszym etapie, dane degradacji stosowane jako dane wejściowe wybierane są na podstawie entropii źródło-
wej, która może opisywać zakres informacji zawarty w każdym zbiorze danych widmowych oleju. Następnie współczynnik wagowy 
każdego zestawu danych nt. degradacji modelowany jest przez pomiar względnej skali entropii permutacji z wybranych danych 
degradacji. Na koniec, wybrane dane degradacji są integrowane i ekstrahowany jest wskaźnik stanu technicznego. Zaproponowa-
na metodologia została zweryfikowana przy użyciu studium przypadku obejmującego zbiór wielowidmowych danych dotyczących 
degradacji oleju pobranego z kilku przekładni kierowniczych wspomaganych.

Słowa kluczowe:	 wskaźnik stanu technicznego, przekładnia mechaniczna, monitorowanie stanu, dane widmowe 
oleju, modelowanie degradacji, pozostały okres użytkowania.
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techniques essentially promote severe operation avoidance and proac-
tive maintenance strategy, which can lead to less unexpected failure 
and higher user satisfaction [4, 9].

For a mechanical transmission, wear of friction couplings is not 
directly observable and can only be indirectly assessed via measured 
CM data. As a widely used CM technique, oil spectral analysis, which 
has been demonstrated to be effective and widely applicable to me-
chanical transmissions with oil lubrication, is always performed at 
discrete epochs to obtain spectral oil data that can be used to assess 
the wear debris in lubrication oil [28,29]. Metal debris produced from 
different friction couplings are uniformly mixed in lubrication oil, 
and the level of the metal debris is one of the most common types of 
degradation data that can be used to evaluate the degree of wear in 
mechanical transmissions [5,6]. When the mechanical transmission is 
in operation, wear debris accumulates in the lubrication oil, and the 
concentration increases, which leads to transmission degradation [22, 
26]. Therefore, the objective of this paper is to utilize the spectral oil 
data to build the degradation model and evaluate the residual life of 
mechanical transmissions.

For many years, numerous methods and techniques have been 
used in practice to model the evolution of mechanical transmission 
degradation and failure process and the association with the oil spec-
tral analysis [2, 3, 12, 22, 26]. A comprehensive review of the applica-
tion of different approaches in oil analysis-based CM and prognostics 
can be found in [6,18] and the references therein. However, the pri-
mary limitation of these studies is that the proposed methods consider 
only a single spectral oil data for degradation modelling, for example, 
Fe [3] and Cu [12], and studies have not considered multiple spectral 
oil data. Although it is possible to use multiple degradation data indi-
vidually to build the degradation model, this process may lead to sig-
nificant under- or over-prognosis of the degree of degradation [8,10]. 
In other words, the wear mechanism of a mechanical transmission has 
numerous paths and is complex, and it is difficult to characterize the 
degradation process considering only a single degradation data point. 
As a result, considering only one degradation data point will lead to 
the inaccuracy of CM and residual life evaluation.

To solve this problem, the multiple oil spectra must be fused for 
extracting a composite health index (HI), which can characterize the 
degree of degradation of the transmission and be used for degradation 
modeling and residual life evaluation. The two challenges of extract-
ing the HI are the following: 1. the wear debris in a sample has been 
categorized into 15 groups of concentrations using oil spectral analy-
sis, and different spectral oil data often have different physical mean-
ings [11, 12]. Thus, we must decide which data to use for extracting a 
composite HI. 2. Not all CM data have the same importance in deci-
sion making. Often the CM data that exhibit a clear degradation trend 
are highly related to machine degradation process, while others may 
not be so high related [10, 21]. Thus, we need to measure the cred-
ibility of different degradation data from heterogeneous sources when 
fusing the multiple degradation data.

The remainder of this paper is structured as follows: Section 2 
describes the mechanical transmission used to illustrate the develop-
ment of the HI extraction method and describes the degradation da-
taset used in the experiment. Section 3 develops the HI extraction 
method based on weighted average and describes some key elements 
related to the method, including degradation data selection and weight 
coefficients allocation procedures. Section 4 applies the method that 
has been developed to extract the HI and demonstrates the improved 
performance for degradation modelling and residual life prediction 
based on the dataset provided in Section 2. Section 5 provides the 
conclusions of this study and discusses future research.

2. Overview of the system and dataset

2.1.	 System model description

This paper considers a power-shift steering transmission (PSST) 
[12, 27] monitored using regular oil spectral analysis to illustrate the 
HI extraction methodology and the application of the HI to degrada-
tion modeling. The PSST (shown in Fig. 1) combines a multispeed 
shift system with an infinite steering system, which is widely used in 
tracked armoured vehicles, large engineering machinery and other in-
dustries. Fig. 2 shows the test bed that was used in this paper. The test 
bed contains a diesel engine as a power unit and bilateral symmetrical 
loads, including inertia discs and loading piston pumps.

Fig. 1.	 Sketch diagram of the PSST	  
1: Hydraulic torque convertor; 2: CV clutch; 3: CH clutch; 4: First 
shaft; 5: Steering pump; 6: Second shaft; 7: C1C2 clutch; 8: Third 
shaft; 9: Steering motor; 10: C3 clutch; 11: CLCR clutch

Fig. 2.	 Life-cycled test bed of the PSST 	  
 1: Diesel engine; 2, 4, 5: Torque and speed sensors; 3: PSST; 6, 7: 
Inertia discs; 8, 9: Loading piston pump

To simulate actual operating conditions, all of the tested PSST 
units were tested under the cyclic operation of multi-gear, load vari-
ance and multi-speed that was prescribed by the manufacturer and 
defined by the owner. Moreover, the sampling location was selected 
at the entry of the fine-filter to collect more details regarding wear 
debris.
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2.2.	 Oil sampling and analysing principles

Oil samples have been collected during the life-cycle test. The 
sampling method is based on the methodology agreed between the 
entrepreneur and the oil analysis laboratory. Specified, oil samples 
should be collected/stored/transported and analysed using clean and 
identical equipment and instrumentation, and a corresponding vol-
ume of unpolluted oil should be added to ensure normal lubrication. 
Despite well-trained and -instructed site operators, inherent human 
error is still inevitable. To ensure an identical collection error in all 
instances, the procedural principle for sampling and analysing proc-
esses are as given below [22]:

Oil samples are collected at homogeneous time intervals every •	
5 hours during the operational life of each PSST unit (motor 
hour, Mh);
A sample is always taken immediately in case of failures, such •	
as functional fault, abnormal vibration or noise;
For the case where the test bed is normally started, the oil sample •	
is taken after the test bed is running stably for at least 15min;
For the case where the test bed is normally shut down, the oil •	
sampling must be performed within a maximum of 10 min;
All of the oil samples taken should be analysed by the same in-•	
strument at the same day (or at least the following day).

All of the oil samples are obtained at the same location only 
through systematic sampling, always analysed using the same instru-
ment under standardized operation. Therefore, any measurement error 
of the oil field datum can be regarded as the same distribution. 

2.3.	 Dataset description

We possess oil field data consisting of more than one thousand 
samples collected over a period of more than 10 years. The dataset 
used in this paper consists of 20 training units and 5 testing units. 
Each unit was run to failure under the same cyclic operating condi-
tion, and more than 30 oil samples in total are collected from 0 Mh 
to up to 284 Mh according to the sample period of nearly 5 Mh. The 
concentrations in parts per million of 15 elements were obtained after 
oil spectral analysis using AE spectroscopy. Due to space restrictions, 
the spectral oil datum of one PSST is shown in Tab. 1.

Using these element concentration data, the degradation model 
can be established and then the degree of degradation of the PSST 
can be determined. However, not all the CM data can show the same 
degradation pattern. Thus, to establish the degradation model and to 
evaluate the residual life, the degradation dataset must be fused, and a 
composite HI that can be used to characterize the degree of degrada-
tion must be extracted.

3. Development of HI extraction methodology

In this section, we develop an HI extraction methodology for 
combining multiple degradation data from oil spectral analysis to 
characterize the underlying degradation process accurately and carry 
out the prognostic analysis precisely.

3.1.	 HI extraction method formulation

The weighted average functions are commonly used to fuse mul-
tidimensional data for extracting an index that characterizes the im-
plicit information [1,10]. Among these functions, the linear function 
has been widely used due to its quick calculation properties. There-
fore, we formulate our HI extraction methodology using the linear 
weighted average function to fuse the multiple degradation data. The 
HI is given by:

	 d j = Xi j, 'ωω ,	 (1)

where ωω∈ ×RN 1  is a vector of weight coefficients that fuses multiple 
degradation data at each sampling epoch and N  is the number of se-
lected degradation data; jd  and ,i jX  represents the value of the HI 
and the vector for degradation data i  in sampling epoch j , respec-
tively; ωω , ,M 1 1= , where N NR ×∈M  is a diagonal matrix denoting 
the degradation trend information and the diagonal element is 1 (-1) 
when the corresponding degradation data have an increasing (decreas-
ing) trend.

The HI is a weighted average of all degradation data using vector 
ω to measure the relative importance of each degradation datum. The 
linearity assumption is not suitable for all applications, and nonlinear 
functions may have to be used to extract the HI in some cases.

3.2.	 Data selection and weight allocation

3.2.1.	 Degradation data selection

As noted above, determining which CM data will be selected as 
the input for extracting a composite HI is a challenge of HI extraction 
methodology. To solve this problem, we developed a data selection 
method based on source entropy for selecting degradation data from 
multiple oil spectra. Assume that the multiple oil spectra are repre-
sented by , ,{ | 1,2, , ; 1,2, ,i jy i N j M= = … = …i jY }, where ,i jy  is the 
spectral oil datum of the i th element at jt  monitoring time that indi-
cate the measurement of the target degradation data ,i jx  with noise. 
Thus, the degradation dataset iX  can be described by the probability 
distribution ( )ip iX  estimated from the spectral oil dataset iY . In 
information theory, the Shannon entropy defined in Eq. (2) is used to 
measure the information volume in the data series [17]:

	 ( ) ( )
1

log
N

i i
i

H p x p x
=

= −∑ ,	 (2)

where ( )ip x  is the probability of the i th condition, and N  is the 
number of conditions that the process iX  has.

To select the degradation data for modelling, the CM data that 
contain more information are more suitable. Based on this criterion, 
degradation data are selected based on the value of the Shannon en-
tropy, which can measure the information volume in the spectral oil 
dataset [13, 25]. The objective is to quantitatively select degradation 
data that leads to a reasonable HI for degradation modelling and re-

Table 1. Data of oil spectral analysis for one PSST test (unit: ppm )

Sample Time/Mh Zn Ca Cr Ni Sn Na Cu Al Mn Pb Mg Fe P Mo Si

1 5 1030 2357 0.5 0.2 0 15.7 10.2 3.1 0.2 6.2 19.2 10.8 1033 0.1 3.8

2 10 1019 2545 0.6 0.4 0 16.2 10.4 3.1 0.6 6.3 18.5 17.1 1027 0.1 5.1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

35 175 1025 2374 5.2 9.7 0 14.3 17.1 3.2 4.2 6.4 17.6 614 986 0.8 4.8

36 180 1034 2412 5.4 9.9 0 15.6 17.8 3.4 4.4 7.0 18.2 636 1022 0.9 4.9
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sidual life evaluation. Without loss of generality, all degradation data 
are standardized.

3.2.2.	 Fusion weight allocation

As noted above, another challenge of the HI extraction methodol-
ogy is to determine the credibility of different degradation data from 
heterogeneous sources before fusing the multiple degradation data. 
To solve this challenge, some researchers proposed an average func-
tion to combine the degradation data by assuming equal weight [15], 
but this proposal seems unreasonable since different degradation data 
have different creditability, and the contribution of different degrada-
tion data on the whole is different.

In machine degradation modeling and prognostics, often CM data 
that exhibit a clear degradation trend are highly related to the machine 
degradation and failure, while others may not be as related [11, 21]. On 
this basis, permutation entropy, which is an effective way of measuring 
the monotonous trend degree of data series [8, 11], is used to allocate 
the weight in data fusion. According to information theory, the data 
series iX  has !M  possible permutation order types. Then, the relative 
frequency of each possible permutation type  π  is defined by:

	 p
t j M n x x has type

M n
j j n

π
π

( ) =
≤ ≤ − …( )

− +
+ +#{ | , , , }0

1
1        (3)

where n  means the different numbers for the possible order types. 
The permutation entropy of order 2n ≥  can be determined by:

	 H n p p( ) = −∑ ( ) ( )π πlog 	 (4)

Among these entropies, 2!  permutation entropy calculated in Eq. 
(5) has been widely used in engineering practice:

	 H p p p p2 1 1( ) = − − −( ) −( )log log 	 (5)

where p  is the monotony probability of order 2n = . If p  represents 
the increasing trend probability, then 1 p−  represents the decreasing 
trend probability.

Therefore, the increasing or decreasing trend of degradation 
data will be measured by the 2!  permutation entropy. Clearly, 

( )0 2 1H≤ ≤
 
, where the lower bound can be obtained for an increas-

ing or decreasing data series. In other words, the smaller permutation 
entropy value ( )2H  of degradation data has the better characteristic 
of monotony. Furthermore, there may be less conflict between the 
degradation data and the whole dataset. Thus, the weight of each deg-
radation datum in the frame of data fusion is defined in Eq. (6) based 
on the proportion of permutation entropy.

	
1

1 i
i N

ii

Hw
N H=

−
=

−∑
	 (6)

The weight of each degradation datum is determined by the per-
mutation entropy based on the degradation trend. The main idea of the 
weight allocation method is that if a degradation datum exhibits more 
degradation trend, this degradation datum has more 
impact on the final fusion result. In other words, we 
think smaller permutation entropy, greater weight.

3.3.	 Flow chart of the method

The flow chart of the proposed HI extraction 
methodology is shown in Fig. 3. The methodology 

includes degradation data selection, weight coefficients allocation 
and data fusion steps that lead to a better degradation model and 
accurate prognostic results. Based on five steps that are included 
in Fig. 3, the degradation modeling and residual life prediction of a 
mechanical transmission can be achieved based on the multiple oil 
spectra from CM.

Fig. 3.	 Flowchart of the HI extraction methodology for degradation modeling 
and prognostics

The proposed data fusion method has two main advantages com-
pared with the existing data fusion method for extracting an HI for 
degradation modeling and prognostics: 1) The degradation data used 
in the data fusion method are quantitatively selected based on Shan-
non entropy of each CM dataset. Compared to selecting degradation 
data relying on experience [10, 22], the proposed selection method 
can address more important information by measuring the informa-
tion volume contained in the CM data, which means less information 
loss and contributes to a more accurate characterization of machine 
condition. 2) The multiple degradation data are properly combined 
with the proposed weight coefficient, which is useful for combining 
degradation data from heterogeneous sources and indicates that the 
proposed method is a practical and efficient tool for fusion of multiple 
CM data.

4. Case study

In this section, a case study is presented using the multiple oil 
spectra obtained for samples from each PSST in Section 2 to illustrate 
the entire HI extraction, modelling fitting and residual life prediction 
procedures and investigating the rationality and effectiveness of the 
proposed HI extraction methodology. 

To numerically evaluate the improved performance of the extract-
ed HI when used for degradation modelling and residual life predic-
tion, the Wiener-based stochastic degradation modelling methodology 
[20] is used to estimate the residual life distribution of each PSST. In 
other words, we compare the accuracy of the residual life prediction 
using the extracted HI and the result using each individual degrada-
tion datum based on the same degradation modeling methodology.

4.1.	 HI extraction

4.1.1.	 Degradation data selection

The source entropies were calculated to describe the information 
contained in the degradation data sets. Set the logarithm in Eq. (2) to 
base 2, the source entropies of 15 spectral oil data in Tab. 1 are shown 
in Tab. 2. The base of the logarithm in the entropy may be changed in 
other applications.

The greater source entropy value of CM data contains more in-
formation, as illustrated in Section 3.2.1. Considering the results of 
source entropy in Tab. 2, Zn, Ca, Sn, Na, Al, Pb, Mg, P, and Si are 
discarded because the probability of this spectral oil data with a con-

Table 2.	 Source entropies of preliminary selected degradation data (unit: bits )

Element Zn Ca Cr Ni Sn Na Cu Al

Value 0.47 0.62 6.38 6.53 0 0.27 5.46 0.08

Element Mn Pb Mg Fe P Mo Si -

Value 2.39 0.21 0.15 7.26 0.35 4.86 0.18 -
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stant value is close to 1 and the result of the entropy of such spectral 
oil data is near 0, which means that the information it contained makes 
no sense. Based on this criterion, the other 6 (i.e., 6N = ) spectral oil 
data are selected, namely, Cr, Ni, Cu, Mn, Fe and Mo. In addition, the 
corresponding diagonal elements of M  are identified as [ ],1,1 ,1 ,1 ,1 ,1  
based on the degradation trend. Note the value of the diagonal ele-
ments may be -1 in other cases, which refers to a decreasing trend. 
The selected 6 degradation data are shown in Fig. 4.

4.1.2.	 Weight coefficient allocation

Using the selected degradation data in Section 4.1.1, the 2!  per-
mutation entropy values are calculated with Eq. (5), and the weight of 
each degradation dataset for data fusion is further calculated by Eq. 
(6), as shown in Tab. 3.

4.1.3.	 Data Fusion and HI Extraction

In the proposed HI extraction methodology, the weight coeffi-
cients of each degradation dataset reports are measured based on the 
2!  permutation entropy, and at present, the selected multiple oil spec-
tra can be fused with Eq. (1) for extracting a composite HI. The HIs at 

each sampling times are shown in Tab. 4.
When the mechanical transmission is monitored based on the 

proposed method, we can assume that the machine failure will oc-
cur when the HI crosses a predetermined threshold ∆. Therefore, 
in engineering practice, potential failure will be determined by 
comparing HI with the threshold ∆. How to decide the value of ∆ 
is still an open issue.

4.2.  Degradation modeling

4.2.1.	 Degradation model devel-
opment

The Wiener process model has 
been widely used to model the deg-
radation process due to its useful 
mathematical properties and clear 
concept [11,15]. Therefore, we as-
sume that the degradation process is 
represented by the Wiener process, 
and the degradation model is given 
by:

	X t X B t t( ) = ( ) + ( ) +0 σ θ 	 (7)

where the degradation process ( ){ }, 0X t t ≥  is driven by standard 
Brown movement ( ){ }, 0B t t ≥ ; σ  represents the diffusion coeffi-
cient; θ  represents the drift coefficient; and σ σB t N t( ) ( )~ ,0 2  de-
notes the randomness and time-varying uncertainty of the degradation 
process.

4.2.2.	 Parameter estimation

Using the degradation data of training units, the value of parame-
ter σ θ2,  in the degradation model can be estimated using the MLE 
method to initialize the model defined in Eq. (7). The degradation data 
of the i th training unit at time jt  are denoted as ,i jx , and the entire 

dataset is X t x i N j Mi j i j( ) = = … = …{ }, , , , , , ,1 1 . We further 

denote the degradation model parameter vector as ΘΘ = ( )σ θ2,
'
 . 

Then, the likelihood function ξ ΘΘ |X( )  of all degradation data 

histories is expressed as:

ξ θ θΘΘ | 'X( ) = − ( ) − − −( ) −( )
=

−∑
NM N x t x t

i

N
i i2

2
2

1
2 1

1ln lnπ Ω Ω  

(8)

where x N u N t Qi ~ , ~ ,Ω( ) ( )θ σ 2 , Q t t i j Mi j= { } ≤ ≤min , , ,1 . 

The maximum likelihood estimation of σ θ2,  can easily be ob-
tained by maximizing ξ ΘΘ |X( ) . See article [23] for more details on 
the estimation steps of the MLE method. Tab. 5 illustrates the esti-

mated σ 2  for all selected degradation data and the extracted HI. The 
extracted HI clearly fits the degradation process better than the origi-
nal degradation data.

Recall that we recorded the actual residual life of 25 units. We de-
note the dataset of the last sampling times before failure in all training 
units for degradation data k  as 

1, , 1, , , , ,  ,  
Mk n M k nX X = … m k nX . 

We denote the average and variance of the failure threshold for degra-
dation data k  as k

fu  and k
fv  respectively. Tab. 6 shows the k

fv  val-
ues for all selected degradation data and HI. k

fv  in the HI is less than 

Table 3.	 2!  Permutation entropies of degradation data (unit: bits )

Element Cr Ni Cu Mn Fe Mo

( )2H 0.7362 0.7869 0.9681 0.9975 0.5538 0.9826

iw 0.2776 0.2186 0.0327 0.0026 0.4577 0.0178

Table 4.	 Health index of PSST

/ Mhjt x j / Mhjt jx

5 0.092 160 0.838

10 0.229 165 0.852

15 0.221 170 0.868

20 0.226 175 0.882

… … 180 0.906

Table 5.	 Estimated σ 2  for each selected degradation data and HI

Element Cr Ni Cu Mn Fe Mo HI

Value/ 310− 2.737 3.723 2.477 3.245 2.262 4.238 0.6825

Fig. 4. Curves for degradation data
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in any other selected type of degradation data. The extracted HI have 
little variation in the failure threshold between different unit, which 
can provide a reliable foundation for condition-base maintenance.

4.3.	 Prediction results

Since the degradation model parameters are obtained, the model 
is preferable for predicting the residual life of the testing units. Nu-
merically, after initializing the degradation model with the estimated 
parameters, the degree of degradation of each unit is estimated using 
the original degradation data and the extracted HI. 

The degree of degradation of a random testing unit is shown in 
Fig. 5. The first hit time of the HI is 180 Mh, which represents the 
PSST degradation failure period and provides a foundation for formu-
lating the maintenance interval [16]. Next, the PDF of the predicted 
residual life is calculated at several monitoring times, which charac-
terizes the uncertainty of the predicted residual life. The PDF curves 
are provided in Fig. 6.

  

Fig. 5. Degradation estimation for unit #21

Fig. 6. Predicted PDF for unit #21

To evaluate the performance of the HI extraction meth-
odology for degradation modeling and residual life predic-
tion, the relative error between the predicted residual life 
and actual residual life is calculated. Two cases are con-
sidered for this comparison: 1. The predicted residual life 
based on the extracted HI and 2. The predicted residual 
life based on each selected type of degradation data. Spe-
cifically, the relative error, ,i kerr , is defined as the relative 

difference between the predicted and actual residual life for unit i  and 
degradation data k  and is given by:

	 ,
,

î k i
i k

i s i

T T
err

n t T
−

=
+

	 (9)

where iT  is the actual residual life for testing unit i , ,î kT  is the pre-
dicted residual life for unit i  and degradation data k ; in  is the num-
ber of sampling epochs of unit i  at the end of sampling and st  is the 
sampling interval (i.e., 5Mhst = ).

The absolute value of the relative error using each selected type of 
degradation data and the extracted HI at different quantiles of the ac-
tual useful life are compared in Fig. 7. The points corresponding to the 
“0” label are the percentage errors of all five testing units in the initial 
state, while points corresponding to the “20” label are the percentage 
errors equal to 20% actual sampling epochs.

Fig. 7. Relative error between predicted and actual residual life

From Fig. 7, we observe the following: 1. Compared with each 
selected type of degradation data, the extracted HI provides the best 
prognostic result when used for degradation modeling and residual 
life prediction. 2. As the unit operates from the initial state to failure, 
the prediction using the extracted HI becomes increasingly accurate. 
3. The relative error is less than 10% when the unit operates to half 
the actual lifetime, indicating that our HI extraction methodology is 
reliable. This useful characteristic of the HI has practical application, 
especially related to the reliability and safety of equipment.

In addition to the relative errors shown in Fig. 7, the engineers 
are often interested in comparing the root mean square error (RMSE) 
[24] of the predicted and actual residual life. A small RMSE value 
represents a better prediction of the residual life with less absolute er-
ror and results in a better condition-based maintenance strategy with 
lower stock costs. Tab. 7 summarizes the RMSE value for all selected 
degradation data and the HI. Based on Tab. 7, the HI extracted using 
our proposed methodology provides the smallest RMSE compared 
with using each type of degradation data. Thus, the extracted HI re-

Table 6.	 Calculated k
fv  for Each Selected Degradation Data and HI

Element Cr Ni Cu Mn Fe Mo HI

Value/
310− 1.255 2.148 1.042 1.883 0.858 1.977 0.3218
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sults in a more accurate prediction of the residual life, which provides 
a useful reference for the rational formulation of a condition-based 
maintenance strategy for integrated transmissions.

5. Discussion and conclusion

This paper developed a systematic methodology that includes 
data selection, weight coefficients allocation and data fusion proce-
dures combining the multiple spectrometric diagnostic oil data ob-
tained for samples from several mechanical transmissions to extract 
an HI that accurately characterizes the condition of transmissions. The 
novelty of this methodology is integrating multidimensional degrada-
tion data into a unified HI. Our developed methodology is advanced 
in that it selects the degradation data and allocating the weight coef-
ficient based on information theory. Our developed method has two 
advantages compared with the existing individual spectrometric data-
based degradation modelling approach: 1. The residual life prediction 
is more accurate, especially when the unit approaches failure. This 

property can help determine when to stop operation and 
maintain the transmission. 2. The RMSE of the predicted 
and actual residual life can be reduced using the extracted 
HI for degradation modeling, indicating that the methodol-
ogy is a more practical and efficient tool for the prognostic 
application of degradation systems.

The developed methodology was tested and validated 
using spectral oil data from several PSST. The Wiener-

based stochastic degradation modeling methodology was adopted to 
evaluate the validity of the extracted HI by estimating the residual life 
of each PSST in time. The results show that the extracted HI outper-
forms each type of original spectral oil data. 

The main contribution of this paper is to establish a new direction 
in the degradation modeling and residual life prediction of mechanical 
transmission by developing an HI via the fusion of multiple types of 
spectral oil data to enhance the accuracy of prognostic applications. 
There are several important directions for future research. First, more 
degradation data (e.g., ferrography) tailored to degradation modeling 
of mechanical transmission are necessary. Second, kernel methods 
that can fuse nonlinear degradation data should be investigated.
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Table 7.	 Comparison between the predicted and actual residual life using selected degra-
dation data and HI

Element Cr Ni Cu Mn Fe Mo DI

RMSE/Mh 8.4 9.5 9.7 8.4 12.7 8.6 3.0
Root mean square error (RMSE); Health index (HI).
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