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1. Introduction

The lithium-ion battery is a popular power source and is common-
ly used in a range of applications such as portable electronic devices 
and electric vehicles. Compared with other widely used energy sourc-
es, the lithium-ion battery possesses high energy density, high power 
density, long service life, and is environmentally friendly [14]. Early 
prediction of remaining discharge time (RDT) is crucial to battery 
health management and system stability. If a battery runs out without 
timely charging, it is harmful to battery health and longevity and can 
sometimes lead to system failure, or even precipitate a disaster. 

In most previous studies of RDT prediction, methods have uti-
lized state-of-charge (SOC) and state-of-energy (SOE) as the indica-
tors that announce the end of discharge, e.g., [6,32,12,28,11]. When 
the SOC or the SOE of a battery reaches a certain level, the battery 
is considered to have run out of power. In these methods, accurate 
values for SOC and SOE are of vital importance in RDT prediction. 

However, for most real applications, accurate estimation of SOC or 
SOE is difficult, for they are indirectly measured and require the intro-
duction of additional relevant variables for estimation [17]. Therefore, 
some research has resorted to using more easily measured variables 
in RDT prediction, such as battery output voltage. Saha et al. [20, 
22] and Dalal et al. [4] used battery output voltage to predict RDT in 
a lumped parameter battery model with particle filter, and Orchard 
et al. [16] used it in an empirical state-space model with sequential 
Monte Carlo.

After indicators are selected, the usual way of predicting RDT in 
existing literature is through a physical model and a filtering-based 
method that updates the model parameters when observations become 
available. Particle filtering (PF) is a commonly used filtering-based 
method. PF is an entirely nonlinear state estimator based on prob-
ability that can be used to update battery model states and parameters 
based on new voltage data [34,15]. However, although PF can provide 
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an accurate characterization of uncertainty in the filtering stage, it is 
very sensitive to the initial conditions of the state-space model and 
does poorly in long-term prediction, especially when uncertain initial 
conditions related to usage, and age or battery degradation progress 
exist [18]. Therefore, measures that avoid or alleviate dependence on 
initial states are a consideration in PF-based prediction methods. 

Examples of such measures in the literature are radial basis func-
tion neural network [23], relevance vector regression [33], recursive 
least-square-algorithm method [5], and expectation-maximum meth-
od [29]. These methods are used in combination with PF-based meth-
ods in RDT prediction. They are effective to some extent because they 
better exploit all available information in adaptive updating but they 
only consider current and historical battery information. If future in-
formation about battery discharge could be incorporated, knowledge 
about the future values of model parameters would enable more relia-
ble predictions, especially at the early stage of the discharge. Informa-
tion about future battery degradation is one example of data that could 
improve RDT prediction for it allows examination of battery charac-
teristics over the whole lifecycle as a factor influencing the discharge 
process. Liu et.al [13] employed data-driven method to learn systems 
degradation patterns so as to predict future measurements, and the-
ses predicted measurements are incorporated into PF update the pa-
rameters of model. Wang et.al [27] proposed a capacity prognostics 
method consisting of RVM and a conditional three-parameter capac-
ity degradation model. RVM was used to obtain the most representa-
tive relevant vectors and to determine the parameters of the capacity 
degradation model. Xu et al. [30] proposed a hierarchical model that 
included a comprehensive consideration of both the discharge proc-
ess and degradation process for predicting RDT in different cycles. 
Yu et al. [31] described different voltage trajectory patterns using a 
Dirichlet process mixture model that considered different periods in 
the lifetime of a battery. 

In this paper, we consider information about future battery dis-
charge process in achieving an early prediction of RDT. Early predic-
tion of RDT is important because it provides vital information that 
could enable electric machines and vehicles to organize operation 
tasks and avoid power run-out emergencies. Instead of analyzing the 
whole degradation process of a battery, as in existing studies, we de-
rive information about future battery discharge by decomposing the 
discharge model into three stages according to voltage loss. Correla-
tions between the values of model parameters at first and last stages of 
discharge provide us with knowledge about the values of parameters 
in the future, allowing us to better estimate model parameters at early 
stages of discharge. To combine the observations in prediction, we use 
particle swarm optimization (PSO) and particle filter (PF) to update 
model parameters when new observations of voltage data become 
available. In a case study employing real data, we demonstrate that our 
proposed method predicts RDT more accurately than benchmark PF-
based methods, regardless of the degradation period of the battery. 

The rest of the paper is structured as follows. Section 2 introduces 
the discharge model. Section 3 develops the quantitative correlation 
between parameters. Section 4 describes RDT Prediction using the 
PSO and PF methods with age-related parameters correlation between 
discharge stages. The results and analysis of the case study are pre-
sented in section 5. Conclusions are presented in section 6.

2.Battery Model

2.1. Description of the individual discharge process 

As a battery discharge progresses, its voltage will decrease over 
time until it hits a threshold. The electrochemical model can be used 
to describe the voltage trajectory [25, 3, 9]. However, it is difficult 
and usually time consuming to build an accurate model of the battery 
discharge process because of the complexity of the electrochemical 

reaction. Therefore, this paper adopts the empirical model proposed 
by Saha and Goebel [20]. The critical advantage of empirical models 
is their flexible and simple structure. Although the empirical model is 
only based on the analysis of experimental data and does not consider 
the electrochemical reaction process, the parameters in our model de-
scribe real physical characteristics of batteries. Empirical models are 
also easy to establish, compared to other models. Our proposed model 
consists of several parts representing different levels of voltage loss in 
the discharge process, as shown below:

	 ( ) ( ) ( ) ( )0t sd mt rdE E E t E t E t= − ∆ − ∆ − ∆ 	 (1)

where t  is the time variable during the discharge process, 0E  is the 
Gibbs free energy, i.e. the theoretical output potential for the given 
chemistry, and can also be regarded as the terminal voltage with full 
charged, ( )sdE t∆  is the voltage loss of self-discharge, ( )mtE t∆  is 
the voltage loss of internal resistance to mass transfer, and ( )rdE t∆  
is the voltage loss of cell reactant depletion. The several parts can be 
represented as:

	 ( )
2

1

a
t

sdE t a e
−

∆ = 	 (2)

	 ( ) 5mt initE t E a t∆ = ∆ − 	 (3)

	  ( ) 43
a t

rdE t a e∆ = 	 (4)

where initE∆  is the initial voltage drop. This model can also be rep-
resented by:

	 ( )
2

40 1 3 5

a
a ttE t E a e a e a t

−
′= − − + 	 (5)

where 0 0 initE E E= − ∆′ , 0  E′ is the initial voltage value. The model 
has 5 parameters { 1 2 3 4 5, , , ,a a a a a }, 1 2,a a  are related to self-dis-
charge, 3 4,a a  are related to cell reactant depletion, and 5a  is related 
to internal resistance to mass transfer. Fig. 1 shows the different volt-
age loss levels in a single discharge. In Fig. 1, ( ) ( )1 0 sdE t E E t′= − ∆ ,

( ) ( )2 0 mtE t E E t= − ∆ , ( ) ( )3 0 rdE t E E t′= − ∆ . As we can see in Fig. 
1, the discharge process consists of three stages related to the above 
three levels. In the first stage, the voltage decreases rapidly because 
of self-discharge. In the second stage, the decline is at a constant rate 
for a long time due to internal resistance to mass transfer. In the third 
stage, voltage has fallen dramatically because of cell reactant deple-
tion. In the rest of this paper, we use the terms “self-discharge stage”, 

Fig. 1.	 Decomposition of Li-ion discharge process into different voltage loss 
levels
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“mass transfer stage”, and “reactant depletion stage”, respectively, 
when referring to the above three stages. Note that 1E  is decreasing in 
first stage only and remains unchanged later, while 3E  is decreasing 
in the third stage only and remains unchanged earlier. So, ( )sdE t∆  
plays a leading role in the first stage and ( )rdE t∆  plays a leading role 
in the third stage. 

2.2.	 Description of battery degradation

We present a case study of Li-ion batteries to demonstrate the 
performance of our proposed method for battery RDT prediction. We 
used the 18650 Li-ion batteries data set provided by NASA Ames Re-
search Center for illustration [2]. A set of four 18650 Li-ion batteries 
were continuously operated by repeatedly charging them to 4.2V and 
then discharging them to 3.2V using a randomized sequence of dis-
charging currents between 0.5A and 4A. The sequence of discharging 
currents in the discharge process mimicked randomized use in real 
practice. Here, this type of discharging profile is referred to as random 
walk (RW) discharging. In this paper, we tested three 18650 Li-ion 
batteries identified as RW3, RW4, and RW5 and extracted overall ref-
erence cycles and numbered them from the 1st cycle, for convenience. 
Reference charging and discharging cycles were performed twice af-
ter every fifty random walk cycles. In charging cycles, batteries are 
first charged at 2A (constant current), until they reach 4.2V, at which 
time the charging switches to a constant voltage mode and continues 
charging the batteries until the charging current falls below 0.01A. 
And in discharging cycles, batteries are then discharged at 2A until 
the battery voltage crosses 3.2V. Fig. 2 shows all reference discharg-
ing cycles for RW3. One can see that the third stage of all discharge 
process is moving left as battery ages, while the first stage is moving 
down as battery ages. And, we can see that the third stage is dynamic 
and changes rapidly, making RDT prediction difficult.  

However, we have already seen that ( )sdE t∆  plays a leading role 
in the first stage and ( )rdE t∆  plays a leading role in the third stage. 
Therefore, we can assume that ( )rdE t∆  and ( )sdE t∆  parameters 
have a known aging trend, we can specify the quantitative relation-
ship between them. If we can use the relationship between a parameter 
in ( )rdE t∆  and a parameter in ( )sdE t∆ , then the prediction of RDT 
will be more accurate. In the prediction of RDT, we can often get an 
accurate 1a  early but 4a  is unknown initially. To build the relation-
ship between the first and the last stages, we assumed that only one 
parameter in ( )rdE t∆  and ( )sdE t∆  cause the decrease of voltage. 
Considering parameter orders of magnitude and the main factors in 
voltage drops, we chose 1 a  in ( ) sdE t∆  

and 4a  in ( )rdE t∆ . In test-
ing, we found that 1 a and 4a  have a linear relationship. We propose 
an approach to identify the parameters and define this linear relation 
in the following section. 

Fig.2. All reference discharge cycles in RW3

In conclusion, an individual discharge profile includes three 
stages, i.e. the self-discharge stage, the mass transfer stage and the 
reactant depletion stage. Our empirical model includes three parts rep-
resenting the different levels of voltage loss related to the three stages 

above. When information from the third stage is not available, we 
can’t obtain accurate parameters.

From the perspective of group discharge profiles in the whole life 
of a battery, the third stage of all discharge profiles is moving left as 
battery ages, while the first stage is moving down as battery ages. 
So, we can use age-related parameters to describe battery degrada-
tion. The third stage is dynamic and changes rapidly, making RDT 
prediction difficult. The quantitative relationship between age-related 
parameters in the first and third stages makes it possible to predict 
RDT in early stages of the discharge process.

3. Modeling procedure

3.1. Parameter identification

Particle swarm optimisation (PSO) is a global random search 
algorithm based on swarm intelligence, proposed by Kennedy and 
Eberhart in 1995 [10]. PSO is widely used in nonlinear parameter 
identification [24, 19, 8] because the approach is simple, efficient, 
easy to implement, and has fewer parameters to adapt. In this study, 
we used Particle Swarm Optimization for parameter identification to 
obtain all parameter degradation trends. In PSO, each particle remem-
bers the optimal solution for itself and the whole swarm and moves 
toward the global optimal solution. At the same time, particles share 
information with each other. PSO’s equations are shown below:

v t wv t c r p x t c r p x tp d p d
ind

p d p d
glo

d p d, , , , ,( ) = −( ) + − −( )( ) + −1 11 1 2 2 −−( )( )1

(6)

	 x t x t v tp d p d p d, , ,( ) = −( ) + ( )1 	 (7)

where p is the particle, d is the search direction, and t is the iteration 
number; indp  is the best solution for the particle itself while glop  
is the optimal solution for the whole swarm; ,p dx  is the position of 
a particle and ,p dv  is the velocity of the particle; w , 1 c , 2 c  are the 
search parameters of PSO; 1r  and 2r  are uniform random numbers 
within the range of 0 and 1. In Equation (6), the first term represents 
inertia and demonstrates that particles tend to maintain prior veloc-
ity. The second term describes cognition and shows that a particle 
is inclined to move toward the optimal solution for itself. The last 
term represents the social behavior of particles in PSO and describes 
how particles have a tendency to arrive at the optimal solution for the 
whole swarm. 

A crucial component of PSO methods is the fitness function, or 
the objection function, and here we choose the root mean squared er-
ror (RMSE) as the fitness function, expressed as:

	 ( ) ( )( )2
1

1RMSE
N

i i
i

V t E t
N =

= −∑ 	 (8)

where t  is the time variable, N  is the number of data points, V  
is the measured experimental voltage output, and E  is the model’s 
voltage output.

In the test below, we use RW3, RW4, RW5 to extract all the refer-
ence discharge cycles in the entire battery life cycle. We apply PSO 
to identify the parameters of the model and to find all the parameter 
depletion trends. Figs. 3-5 display the results of the parameters ageing 
trends as the number of cycles increases. We can see from the graphs 
that parameters 1 a  and 4a  have the same linear aging trend, indicat-
ing that they may be related. In the next, we attempt to define the 
relationship between them. 

Fig.1. Decomposition of Li-ion discharge process into different 
voltage loss levels
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Fig. 3.	 RW3 parameters aging trend of (a) 1a , (b) 4a , (c) 5a , and (d) 
RMSE

Fig. 4.	 RW4 parameters aging trend of (a) 1a , (b) 4a , (c) 5a , and (d) 
RMSE

Fig. 5.	 RW5 parameters aging trend of (a) 1a , (b) 4a , (c) 5a , and (d)
RMSE

3.2.	 Age-related parameters correlation between stages

Here, we use the least squares method to describe the linear re-
lationship between 1 a  and 4a . Fig. 6 shows curve fitting for RW3, 
RW4, RW5. We see a high degree of linear correlation between 1a  
and 4a . This linear relationship between 1 a and 4a  can be ex-
pressed as:

	 4 1 1 2a m a m= + 	 (9)

where 1m  and 2 m  are the coefficients of the linear equation. The 
estimation of coefficients for Equation 9 are shown in Table 1. As we 
saw in Fig. 2, the third stage of the discharge process is dynamic and 
changes rapidly, increasing the difficulty of arriving at a prognosis 
for battery RDT. While in the early prediction there is no information 
about 4a  prior to RDT prediction, the value of 4a  will directly im-
pacts RDT prediction accuracy. Therefore, once having specified the 
relationship between 1 a and 4a  using historical data, we can obtain a 
more accurate parameter 4a  for use in early prediction. 

Fig. 6. 1 a  and 4a  linear relationship results of (a) RW3, (b) RW4, (c) RW5

4. RDT Prediction 

4.1. Revising parameters in process with the PSO Method 

In this section, we describe how parameters are revised in PSO 
for new discharge cycles. As mentioned previously, in this model, we 
suppose that 2a  and 3a  remain fixed. Due to the relationship be-
tween 1 4 and a a , we can derive 4  a when the value of 1a  is given. 
Therefore, we only need to update the parameter values, 1 5,a a . From 
the section 2, ( ) 43

a t
rdE t a e∆ = , or very nearly zero, so our model can 

be expressed as:

	  ( )
2

0 1 5E t
a
tE a e a t

−
−′= + 	 (10)

Parameter identification with PSO was introduced in section 3. 
The fitness function used here is the same as described in that section. 
Using the PSO method, we obtain approximate values of the param-
eters that will be updated after new discharge cycles complete. PF is 
used to update the parameters and make the RDT prediction. 

4.2.	 RDT Prediction via the Particle Filtering Method

Particle filtering is an effective method in battery RDT predic-
tion, considered more accurate than other methods. Walker et al. [26] 
showed that PF is more precise than non-linear least squares (NLLS) 
and the unscented Kalman filter (UKF) for predicting the RDT of a 
lithium-ion battery. The PF is a non-linear filter, combining a Bayes-
ian learning method with important sampling to obtain a good state 
for tracking performance online. 

We use the PF framework for RDT prediction in our proposed 
method. We consider the model coefficients { 1 2 3 4 5, , , ,a a a a a } as the 
state variables in the state transition model. Using the PSO method, 

Table 1.	The linear relationship between 1 a  and 4a

              Battery
Coefficient

RW3 RW4 RW5

1m 0.006122 0.005816 0.006470

2m 0.001584 0.001708 0.001182
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we obtain the initial parameters { 1 4 5, ,a a a }, in which 4 1 1 2a m a m= +  . 
So, the system transition and measurement functions can be written as: 
State transition model:

	 a ai i i1 1 1 1, , ,+ = +ω 	 (11)

	 a ai i i2 1 2 2, , ,+ = +ω 	 (12)

	 a ai i i3 1 3 3, , ,+ = +ω 	 (13)

	 a ai i i4 1 4 4, , ,+ = +ω 	 (14)

	 a ai i i5 1 5 5, , ,+ = +ω 	 (15)

Measurement model:

	 E E a e a e a t vi i

a
t

i
a t

i i

i
i= − − + +′ +

−
+ +

+
+

0 1 1 3 1 5 1

2 1
4 1

, , ,

,
, � 	 (16)

where ω1,i , ω2,i , ω3,i , ω4,i , ω5,i  are progress noise and have a 
zero-mean Gaussian distribution; iv  is the measurement noise, which 
also follows a zero-mean Gaussian distribution; 1m , 2 m  are the coef-
ficients of the linear relationship between 1a  and 4a . With given less 
data, we can use the linear relationship between 1a  and 4a  to derive 
the parameter 4a  from 1a .

PF, as a sequential Monte Carlo method, implements a recursive 
Bayesian filter by simulation-based methods [7]. In PF, many particles 
are generated, all particles weights are updated based on new observa-
tions, and the posterior density function (PDF) of the set of particles is 
derived. To consider the evolution of the state sequence { },kx k ∈

 
, 

and the set of all available measurements { }1: , 1,2, ,k iz z i k= = …  up 
to time k, PDF can be expressed as:

	 p( | ):x z x xk k
k

N
k
i

k k
i

1
1

≈ −( )
=
∑ω δ 	 (17)

	 ω ωk
i

k
i k k

i
k k

i

k k
i

k

p z x p x x
q x x z

∝ −
−

−
1

1

1

( | ) ( | )
( | , )

	 (18)

where  i
kx  is the estimated state value of particle i at the thk  step, ωk

i  
the estimated weight of particle i at the thk  step. The 1( | , )i

k k kq x x z−  
is an importance density. N is the number of particles, and δ  is the 
Dirac delta function. Below is the benchmark PF algorithm with se-
quential importance sampling (SIR) and resampling [1]:

The PF procedure:
Step 1:		 initialise a set of particles {( xi i

0 0,ω ):i=1,2,…N} and some 
other parameters (process noise, measurement noise, etc.)

Step 2:		 Draw 1( | , )i i
k k k kx q x x z−∼  and assign the particle a weight

Step 3:		 Calculate and normalise weights 
Step 4:		 Resample  1{ }i N

k ix =  according to weight to obtain N random 
samples 1{ }i N

k ix =  with equal weights 1N −

Step 5:		 Estimate the voltage using the observation equation 
Step 6:		 Loop back to step 2 and repeat steps until the predicted time 

In PF, the model coefficients { 1 2 3 4 5, , , ,a a a a a } can be updated 
with new voltage data. For example, at lt , we can use the model with 
updated parameters to predict the voltage in the future time tτ . We 
can obtain the RDT when the predicted voltage reaches the threshold 

ξ . Supposing the number of particles is N, then at time tτ , the pre-
dicted voltage of particle i can be expressed as:

	
E t E a e a e a ti

i

a
t

i
a t

i

i

i
τ τ

τ τ( ) = − − +′
−

0 1 3 5

2

4
, , ,

,

, 	 (19)

The estimation of ( )E tτ  at time tτ  is given by:

	 E t
N

E t
i

N
i

τ τ( ) = ( )
=
∑

1

1
	 (20)

So, given the value of threshold ξ , the 
l
i

tRDT  at time lt  can be 
solved with the equation:

	 ′ − − + =

= −









−
E a e a e a t

RDT t t
i

a

i
a t

i

t
i

l

i
i

l

0 1 3 5

2
4

, , ,

,
,t ξ  	 (21)

Here it’s difficult to obtain the exact solution t in the above equa-
tion, so we adopt an approximate solution. To consider the evolution of 
the time sequence { }T , 2 , , ,l l lt t t t t m t= + ∆ + ∆ … + ∆ …  at regular in-
tervals, the predicted voltage set { }1: , 1,2, ,k iE E i m= = …  up to time m 
can be obtained with Eq. (16). We regard the first hitting time t whose 
voltage is greater than or equal to ξ  as the solution of above equation. 
Thus, the estimation of RDT at prediction time lt  is given by:

	
1

1t
l

N
i

est t
i

RDT
N =

= ∑ 	 (22)

To this point, the general procedures for predicting Lithium-ion 
Battery degradation with our method can be sketched as in Fig.7. To 
summarize, our new method has two phases, an off-line phase and 
an on-line phase. In the off-line phase, we apply PSO to identify 
the parameters { 1 2 3 4 5, , , ,a a a a a }, to find all the parameter deple-
tion trends, and to specify the relationship of age-related parameters 
{ }1 4,a a  between discharge stages. In the on-line phase, using the 
PSO method, we obtain the initial parameters { 1 4 5, ,a a a }, in which 

4 1 1 2a m a m= +  . Then we apply PF to update all parameters for track-
ing the trend of battery discharging. Lastly, given the voltage thresh-
old, RDT prediction is performed.

Fig. 7. A general procedure for degradation-based RDT prediction

5. A case study

5.1.	 Results

We take the case of RW3 as an example of RDT prediction using 
our method, here. The total number of reference discharge cycles in 
RW3 is 44. We chose three reference discharge cycles, 11, 22 and 32 
to validate our method, as these three cycles have data for the entire 
battery life period, i.e., one fourth, two fourths, and three fourths of 
battery life. In addition, we chose a starting point for prediction in the 
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2000s, about one-third of one discharge cycle. The battery voltage 
threshold was 3.2V. RDT prediction results for RW3 cycles 11, 22 
and 32 are shown in Fig. 8 (a)-(c). To express the uncertainty in our 
RDT predictions, we provide the probability density function (PDF) 
with 95% confidence bounds for the three discharge cycles. In Fig.8, 
due to the approximate nature of the empirical model, mentioned in 
Section 2, the prediction curves are not a good fit with the true curves 
in the last stage of the discharge cycle, especially later in the battery 
life cycle. However, the end of discharge (EOD) time of these four 
cycles is very close to the real EOD time. We present the prediction 
performance of the test battery RW3 in Table 2, including prediction 
error (PE), 95% confidence lower and upper bounds of RDT, and the 
root mean square error (RMSE). PE can be expressed as:

	
t t

PE
tl

r r
est truer

t r
true lt

−
=

+
	 (23)

where,  PE
l
r
t  denotes the prediction error at predicted time lt  for cy-

cle r; tr
est  is the estimation of RDT;  tr

true  is the true RDT. Meanwhile, 
the RDT prediction results of RW4 and RW5 are shown in Figs. 9 and 
10, for one fourth, two fourths, and three fourths of battery life. Table 
3 displays the prediction performance for the test battery RW4; Table 
4 shows that for RW5.

Fig. 10.	 RDT prediction in RW5 results for the (a) 10th  cycle, (b) 21st  cycle, 
(c) 32nd  cycle, at the 2000s

5.2.	 Comparison and analysis

To show that our proposed method is appropriate for all battery 
life cycles, we provide PEs at the following percentiles of RW3 bat-
tery life cycle, 10%, 20%, and 90%. We also compared the proposed 
method with a benchmark PF-based method. The mean PEs for our 
proposed method and the PF method are given in Fig.11; the PEs for 
our method are far smaller than those for the PF method. Additionally, 
the PEs for the PF method increase over time. These results demon-
strate that our proposed method, using PSO-PF and the linear rela-
tionship between age-related parameters, outperforms the PF method. 
Moreover, the established correlation between discharge stages can 
decrease future uncertainty and improve RDT accuracy. 

The RDT prediction results for RW3 cycles, 11, 21 
and 32 using the benchmark PF-based method are shown in 
Fig.12 (a)-(c). Compared with our method, the benchmark 
PF-based method performs significantly worse in early pre-
diction. Fig.13 shows the estimated values of parameters {

1 4,a a }. As expected, the estimated values of 1a  are rela-
tively close to true values for both methods. However, our 
method of estimating parameter 4a  performs better than the 
benchmark PF-based method, so we get more accurate RDT 
predictions. This is mainly because using age-related param-
eters relationship data between the first and the third stages 
in the discharge estimation process, enables us to derive 
more accurate parameters with limited data. As mentioned 
earlier, an individual discharge process includes three sepa-
rate stages, i.e. the self-discharge stage, the mass transfer 

Fig. 9.	 RDT prediction in RW4 results for the (a) 10th  cycle, (b) 
19th  cycle, (c) 29th  cycle, at the 2000s

Fig. 8.	 RDT prediction in RW3 results for the (a) 11th  cycle, (b) 
22nd  cycle, (c) 32nd  cycle, at the 2000s
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stage, and the reactant depletion stage. When information related to 
the third stage is not available for early prediction, we can’t obtain 
accurate parameters. However, once the proposed method utilizes the 
data related to the quantitative relationship between age-related pa-
rameters in the first and third stages, model parameters in the early 
stage of discharge can be revised to reflect the future model param-
eters. Thus, our proposed method predicts RDT more accurately than 
the benchmark PF-based prediction method, regardless of the degra-
dation period of the battery. 

Fig. 11. Mean PEs for our method and the PF method

6. Conclusion
This paper presents a novel method for early prediction of RDT 

in Lithium-ion batteries that incorporates future information about 
battery discharge process. Differing from previous methods, our 
method doesn’t start by analyzing the entire degradation process of a 
battery. We obtain information about future battery condition by de-
composing the discharge model into three stages, based on levels of 
voltage loss. Using this structure, we specify the correlation between 
the model parameters at the first and last stages of discharge and use 
PSO and PF methods to update parameters. The values of model pa-

rameters in the early stage of discharge can be revised to reflect the 
values of the future model parameters. With this method, we obtain 
a precise early RDT prediction regardless of the degradation period 
of the battery, if the cut-off voltage is given. A study using real data 
showed that our proposed method, which considers correlation be-
tween discharge stages, performs better than the standard PF method. 
By sharing knowledge about model parameters between discharge 
stages, we obtain more accurate parameters from new observations, 
and thus make more accurate early RDT predictions.

However, there remains considerable room for improvement. In 
this paper, our method is tested under a fixed load. In many cases, 
however, the battery has a variable load profile. The variable load-
ing condition will be investigated in the future. We believe that our 
proposed method can deal with this situation. In fact, we have already 

Table 2.	 Prediction performance for RW3

Cycle(r) True 
RDT

Predict-
ed RDT PE [lower, upper] RMSE

11 4134 4130 0.07% [4110,4250] 0.01978

22 3625 3600 0.45% [3470,3780] 0.01414

32 2805 2767 0.80% [2690,2860] 0.03241

Table 3.	 Prediction performance for RW4

Cycle(r) True 
RDT

Predict-
ed RDT PE [lower, upper] RMSE

10 4165 4174 0.15% [4040,4320] 0.02988

19 3547 3491 1.02% [3360,3700] 0.01064

29 2758 2660 2.06% [2570,2750] 0.03313

Table 4.	 Prediction performance for RW5

Cycle(r) True 
RDT

Predict-
ed RDT PE [lower, upper] RMSE

10 4031 4102 1.16% [4040,4150] 0.01802

21 3564 3447 2.11% [3340,3660] 0.01770

32 2705 2577 2.71% [2510,2680] 0.03834

Fig. 13.	 Comparison between our method and the PF method re updating pa-
rameters { 1 4,a a } for the (a-b) 10th  cycle, (c-d) 21st  cycle, and (e-f) 
32nd  cycle. On the left: the estimated value of 1a . On the right: the 
estimated value of 4a

Fig. 12.	 RDT prediction results for RW3 with the PF-based method for the  
(a) 10th  cycle, (b) 21st  cycle, (c) 32nd  cycle, at the 2000s 
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