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Acronyms and Abbreviations

RUL	 Remaining useful life.
ANNs	 Artificial neural networks.
HSMM	 Hidden semi-Markov model.
POF	 Physics-of-failure.
KF	 Kalman filter.
PF	 Particle filter.
SPM	 Stochastic process model.
DRAMA	Debris risk assessment and mitigation analysis.
MOL	 Mission orbital life.
SPL	 System platform life.
SML	 Specific mission life.
SMSs	 Structure and mechanism subsystem.
POSs	 Propulsion subsystem.
GNCSs	 Guidance navigation and control subsystem.
MCSs	 Measurement and communication subsystem.
TCSs	 Thermal control subsystem.
POSs	 Power subsystem.
ECLSSs	 Environment control and life support subsystem.

DTMSs	 Docking and transposition mechanism subsystem.
TPSs	 Thermal protection subsystem.
ORU	 Orbital replacement unit.
FMEA	 Failure mode and effect analysis.
JSA	 Job safety analysis.
CALCE	 Center for Advanced Life Cycle Engineering.
PCoE	 Prognostics Center of Excellence.
ISS	 International Space Station.
MCS	 Monte Carlo Simulation.

Notations

PT 	 Propellant service time.

0M 	 Amount of propellant in service.

cM 	 Deorbit recapture propellant consumption.

1M 	 Unusable residue.
M ′ 	 Calculation error.

yM 	 Average annual consumption of propellant.
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Remaining useful life prediction model of the space station 

Model predykcji pozostałego czasu pracy stacji kosmicznej
Space station is a very complex system, and its remaining useful life will be affected by the key equipment, cosmonauts’ mainte-
nance activities as well as space environments. It is important for the operation management of a space station to predict its re-
maining useful life (RUL). A valid RUL prediction model is the key foundation for this issue, which motivates the research present-
ed in this paper. Firstly, different types of space station life are defined. Secondly, the function and performance requirements as 
well as the operation mission program of the space station are analysed, which are further used to confirm the model development 
precondition. A life prediction model is then proposed by synthetically taking account of the safety, reliability and maintainability 
restrictions. Finally, the data requirement for supporting the RUL prediction is determined. Based on this work, a comprehensive 
procedure for RUL prediction model development is constructed for the operation management engineers of the space station. If 
the data of the development and operation is adequate, RUL prediction of the space station can be well implemented, and can be 
further leveraged to support the space station operation management.

Keywords:	 Space station, remaining useful life prediction, key equipment, key activity, Monte Carlo simulation.

Stacja kosmiczna stanowi wysoce złożony system, którego pozostały czas pracy (ang. remaining useful time, RUL) zależy od klu-
czowego sprzętu, czynności konserwacyjnych przeprowadzanych przez kosmonautów, a także warunków panujących w kosmosie. 
Zarządzanie operacyjne stacją kosmiczną wymaga przewidywania RUL. Podstawą tego zagadnienia jest stworzenie prawidłowe-
go modelu predykcji RUL, co jest przedmiotem niniejszej pracy. W artykule, w pierwszej kolejności, zdefiniowano różne kategorie 
czasu pracy stacji kosmicznej na orbicie. Następnie, przeanalizowano wymagania dotyczące funkcji i eksploatacji stacji a także 
program jej misji operacyjnych. Wyniki tych analiz wykorzystano do weryfikacji wstępnych warunków koniecznych do budowy 
modelu. W dalszej kolejności, zaproponowano model predykcji czasu pracy stacji, który w sposób syntetyczny uwzględnia ogra-
niczenia dotyczące bezpieczeństwa, niezawodności i możliwości konserwacji. Na koniec określono rodzaje danych wspierających 
predykcję RUL. Na podstawie opisanych etapów prac skonstruowano kompleksową procedurę opracowywania modeli predykcji 
RUL dla inżynierów zarządzania operacyjnego pracujących na stacjach kosmicznych. Jeśli dane dotyczące rozwoju i operacji są 
prawidłowe, zaprojektowany algorytm predykcji pozostałego czasu pracy stacji kosmicznej można z powodzeniem zaimplemento-
wać, a także rozszerzyć tworząc skuteczne narzędzie wsparcia personelu zarządzającego pracą stacji kosmicznej.

Słowa kluczowe:	 Stacja kosmiczna, przewidywanie pozostałego czasu pracy, kluczowy sprzęt, kluczowe działa-
nia, symulacja Monte Carlo.
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BT 	 Cycle life.

0U 	 Discharge initial output voltage.

tU 	 Discharge termination voltage at specified threshold.
d 	 Linear degradation rate.

LT 	 Lower life limit.

UT 	 Upper life limit.
T 	 Total test time.
r 	 Failure times.
á 	 Confidence level.
θ 	 Average life.
ç 	 Scale parameter the two-parameter Weibull distribution.
m 	 Shape parameter of two-parameter Weibull distribution.
TAMR 	 Total time for the specific addition, maintenance and replace-

ment activity.
it 	 i th activity operation time.

AMRm 	 Total number of specific addition, maintenance and replace-
ment activities.

SRUL 	 Space station RUL.

EiRUL 	RUL of the corresponding key equipment.

AMRiT 	 Key addition, maintenance or replacement activity’s time.

1. Introduction

The space station is the most complex spacecraft in the space, 
and it normally operates with long-life requests due to the high opera-
tion cost. The accuracy of remaining useful life (RUL) prediction is 
of great importance for the life assurance and extension of the space 
station. The operation decisions are deeply based on the RUL predic-
tion.

The space station consists of thousands of key components, which 
constitute the main structure and functions of the space station. The 
space station’s life mainly depends on these key components. On the 
other hand, the cosmonauts’ maintenance activity will affect the RUL 
of the space station under different maintenance quality. In addition, 
the space environment’s influence will be reflected by the key equip-
ment operation state and the cosmonauts’ maintenance activity.

After decades of research and application, the approaches of RUL 
prediction can be divided into two categories, including data-driven 
approaches and model-based approaches [29]. The classical data-
driven approaches, including Bayesian inference [20], machine learn-
ing [27], artificial neural networks (ANNs) [36], and hidden semi-
Markov model (HSMM) [15], are adopted to the electromechanical 
rotating equipment’s RUL prediction. For the model-based approach-
es, such as physics-of-failure (POF) [11] [28], Kalman filter (KF) [4], 
particle filter (PF) [14], and stochastic process model (SPM) [9] are 
widely used for life prediction of electrical products. In the aerospace 
field, for the small satellite, the orbit lifetime analysis is examined 
using AGI’s STK [1] and ESA’s debris risk assessment and mitigation 
analysis (DRAMA) [5] lifetime simulation tool during the pre-launch 
phase [21]. By the certain relation via neural network and the learned 
network, which can be partly perceived as degradation pattern, the air-
craft engine’s RUL is predicted [37]. In other fields, the approaches, 
in the literature about RUL estimation for decision-making in the off-
shore oil and gas industry, are classified either as physics-based, data-
driven based, or fusion-based which is a hybrid of the physics and 
data driven based methods [31], and the experiment-based approach 
is also added as the fourth classification [2]. However, most of these 
methods and their applications mainly focus on the equipment and 
product RUL prediction. Although Hamed [7] and Zhang [38] paid 

special attentions to the issue of system-level RUL prediction, this 
issue still faces many challenges. The space station RUL prediction is 
much more complex than the other system, because it is a synthesis 
problem related to the equipment operation, cosmonaut’s maintenance 
activities and conformational changes [23] [24]. It is difficult to use 
these methods to predict the space station RUL before the prediction 
rules and preconditions are clear.

This paper aims at developing a model for RUL prediction of a 
space station by taking account of key equipment states and the cos-
monaut orbital maintenance activities. A model building framework 
is shown in Fig. 1.

Fig. 1. Model building framework of space station RUL prediction

Firstly, different types of space station life will be studied. This 
aspect is mainly out of the consideration that different types of life 
definition will affect the research scope of this paper, and the pre-
condition will be confirmed according to the life type, including the 
function and performance requirements and composition of the space 
station. When the factors that affecting different types of space station 
life have been analyzed, the relevant subsystems can be listed out for 
further model development. Through the safety, reliability and main-
tainability restriction and further adopting practical analysis methods, 
the key equipment and the key maintenance activities will be identi-
fied. After the feature analysis, the life prediction model will be devel-
oped based on the equipment types and maintenance time [18] [19]. 
After defining the RUL function and giving the calculation method, 
the RUL prediction model of space station will be constructed. Based 
on the relevant data, the space station RUL can be predicted.

The rest of the paper is organized as follows. First, the types of the 
space station life will be studied according to the engineering practice. 
Then, the main functions of the space station will be decomposed in 
accordance with relevant space station subsystems. According to the 
safety, reliability and maintainability restrictions, the key equipment 
and maintenance activities will be identified, and their RUL predic-
tion model building methods will be given. After that, the space sta-
tion RUL model can be built, and the data request will be presented., 
Then, the case study is given to validate the model. Finally, the work 
conclusion and the future work will be addressed.
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2. Types of space station life definition

For the space station, there are three types of orbital lives, includ-
ing the mission orbital life (MOL), the system platform life (SPL) and 
the specific mission life (SML) [10]. MOL means the lifetime spent 
on maintaining the mission orbit, which depends on the propellant 
and resource consumption, and it generally refers to the time interval 
between orbit to deorbit. SPL represents the lifetime when the space 
station has the ability of autonomous flight in mission orbit. SML in-
dicates the lifetime when the space station can perform specific mis-
sions of the mission plan. SML is the time which is spent on a specific 
mission, for example, orbit adjustment or rendezvous and docking, by 
the space station.

Normally, MOL and SML mainly depend on the propellant resi-
due, and are unrelated to the cosmonauts’ maintenance activities and 
the key equipment operation states. Thus, the RUL prediction of the 
space station is primarily for SPL.

3. Model Building Precondition

The function and performance requirements are the criteria for 
space station RUL prediction. The operation mission program is one 
of the influence factors of the space station RUL prediction. Through 
the aforementioned analysis, the precondition of the life prediction 
model can be confirmed.

3.1.	 Function and Performance Requirements

The space station provides living and work environment for the 
cosmonauts and ensures the planned test in the orbit can be carried 
out. The space station must satisfy some functions and performances 
requirements, such as the structural bearing function, gas seal func-
tion, and orbit adjustment function etc. The main functions of the 
space station are shown in Fig. 2. The losses of the above-mentioned 
functions will cause serious safety consequences and lead to the end 
of the space station life.  

3.2.	 Composition 

The space station includes structure and mechanism subsystem 
(SMSs), propulsion subsystem (PRSs), guidance navigation and con-
trol subsystem (GNCSs), measurement and communication subsys-
tem (MCSs), thermal control subsystem (TCSs), power subsystem 
(POSs), environment control and life support subsystem (ECLSSs), 
docking and transposition mechanism subsystem (DTMSs), and 
thermal protection subsystem (TPSs). Some of the above-mentioned 
subsystem are relevant to a specific function, and the relationship is 
described as shown in Fig. 3.

3.3.	 Operation Mission Program

Generally speaking, the operation mission program will be con-
firmed before the flight mission, which includes the orbital replace-
ment unit (ORU) transport plan, the propellant filling plan, and the 
crew plan. All these plans will affect the orbital life of the space sta-
tion. The emergency flight missions are not included in the scope of 
this paper.

This paper defines the orbital life of the space station and analyzes 
the preconditions as following:

One of the loss of the main functions indicates the end of the (1)	
space station life;
ORU, propellant, and the astronauts’ maintenance abilities in (2)	
the orbit are adequate;
The life of the space station mainly depends on the cosmo-(3)	
nauts’ maintenance activities and the key equipment operation 
states;
The influence of space environment on the life of space station (4)	
is reflected by the astronauts and equipment health states.

4. Model Building Methods

4.1.	 Relationships Between Main Functions and Relevant 
Subsystems 

In Fig. 3 major functions are related to the SMSs, TCSs, and POSs 
subsystem. Accordingly, these three subsystems are the key subsys-
tems. But for the space station, providing the proper living and work 
environment is the foundation of its application, the ECLSSs is also 
the key subsystem of the space station. Through the determination 
of the key subsystems, the key equipment and the key maintenance 
activities should be identified according to the safety, reliability and 
maintainability restrictions, and provide the model objectives.

4.2.	 Key Equipment and Key Maintenance Activities Identifi-
cation based on Safety, Reliability and Maintain-
ability Restrictions 

Both the key equipment operation states and the 
cosmonauts’ maintenance activities must first satisfy 
the safety requirements. For the key equipment, they 
should be reliable and replaceable. Through the safe-
ty, reliability and maintainability restrictions, the key 
equipment and key maintenance activities can be iden-
tified. The identification process is shown in Fig. 4.

Failure Mode and Effect Analysis (FMEA) [25] is 
an effective method to identify the potential failures 

and key equipment related to system reliability. In the FMEA, the 
space station is treated as the initial indenture level. The composing 
subsystem and equipment are separately treated as the indenture level 
and the lowest indenture level. By calculating the risk priority number 
of each equipment, the importance of all the equipment is ordered to 
identify the key equipment. In total, 203 equipment of 9 subsystems 
have been analysed, and the 6 most critical equipment has been iden-
tified based on their risk priority number 90, 81, 80, 72, 70, and 64, 
over 60 respectively. 

Job Safety Analysis (JSA) [16] [41] is an efficient, 
proactive measure for safety or risk assessment, which 
is usually utilized to identify potential hazard factors 
existing in operation and maintenance process and fur-
ther to determine risk mitigation measures. We have 
obtained all the 34 maintenance activities and identi-
fied potential hazards of each activity. The risk of each 
hazard is accessed using the product of consequence 
severity and occurrence likelihood. Both the severity 

Fig. 2. Main Functions of Space Station.

Fig. 3. Relationship Between Main Functions and Relevant Subsystems
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rates and the likelihood rates range from 1 to 5, and the risk rating 
of each hazard equals to their product which ranges from 1 to 25. By 
adding the risk rating of each hazard, the importance of all the main-
tenance activities is ordered by the sum of the risk rating, and we can 
identify the 6 most critical maintenance activities based on their sum 
number 73, 71, 67, 59, 53, 51 and 49, over 45 respectively.

Through the identification, the 6 most critical equipment and key 
maintenance activities are shown in Table 1.

Through the identifications, the key equipment 
and key activities can be classified and used to build 
the model for the RUL prediction.

4.3.	 Life model building methods for key 
equipment

considering the life characteristics, the key 
equipment of the space station can be classified into 
four types, including the resource consuming, the 
performance degradation, the random fault and oth-
ers. Each type has its life characteristic parameters, and the life model 
building methods are dependent on these parameters.

For the resource consuming equipment, the life characteristic pa-
rameters are variables that characterizes the residual quantity of the 
equipment. The life model is built based on the result of life character-
istic parameters analysis and the equipment’s own life characteristic. 
Take the propellant as an example, the life characteristic parameters can 
be the propellant service time, and the life model is described as [12]:

	 ( )0 1T c
P

y

M M M M
M

− + ′+
= 	 (1)

where PT  is the propellant service time, 0 1cM M M M ′丆 丆 丆  repre-
sents the amount of propellant in service, deorbit recapture propellant 
consumption, unusable residue, and calculation error respectively, 
and yM  is average annual consumption of propellant.

For the performance degradation type equipment, the life charac-
teristic parameters are the state variables which show the work per-
formance of the equipment. The life model is built on the changing 
trends of life characteristic parameters and the equipment's own life 
characteristic. Recent studies of the battery RUL prediction are focus 
on the model-based methods [26] [8] [33] [39]. Take the lithium-ions 
battery as an example, Yu et al. [35] proposed a method for making 
early predictions of remaining discharge time considering information 
by decomposing the discharge model into three stages according to 
the changes of output voltage. This method is consistent with engi-
neering practice. Like the above method, the lithium-ions battery life 
characteristic parameter can be the output voltage and output current, 
and the life model is shown as:

	 0 tU UT     
dB
−

亖 	 (2)

where TB is the cycle life, 0U  is the discharge initial output voltage, 
tU  is the discharge termination voltage at specified threshold, and d  

is the linear degradation rate. In fact, d is not linear. But in engineer-
ing, in the absence of enough test sample support, the application of 
the above equation has a certain practical feasibility. Center for Ad-
vanced Life Cycle Engineering (CALCE) of University of Maryland 
and Prognostics Center of Excellence (PCoE) of NASA’s degradation 
law study results for lithium-ions battery is shown in Table 2.

Through Table 2, we can find that there are three stage degrada-
tion rates for the lithium-ions battery, which include early degradation 
rate, intermediate degradation rate and terminal degradation rate. Ac-
cordingly, we can approximately assume that the intermediate aver-
age degradation rate is 4 times of the early average degradation rate, 
and the terminal average degradation rate is 2-3 times of the early 
average degradation rate.

For the random fault type equipment, the life characteristic pa-
rameters change trends are not obvious, or have the short duration, 
which should be identified earlier and paid enough attentions. The 
random fault type equipment lives mostly obey the exponential distri-

bution. Take the star sensor as an example, the life characteristic is the 
number of failure times, and the life model is shown as the equation 
(3) [13]:
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where LT  is the lower life limit, UT  is the upper life limit, T is total 
test time, r is the failures, and α is the confidence level.

Fig. 4. Identification Process of Key Equipment and Key Maintenance Activi-
ties

Table 1. Key equipment and key activity of space station

NO. Key Equipment NO. Key Activity

1 Main frame structure 1 Leakage Maintenance

2 Propellant 2 Propellant Addition 

3 Lithium-ions Battery / 
Solar Cell Wing 3 Solar Cell Wing/Power 

Supply Replacement

4 Drive Mechanism/ 
Docking Mechanism 4

Drive Mechanism/ 
Docking Mechanism 

Replacement

5
Environmental Control 
and life support Equip-

ment
5

Environmental control 
and life support Equip-

ment Replacement

6 Sensors 6 Sensors Replacement

Table 2.	 Lithium-ions battery degradation law study results

Sampleing Period

Average Degradation Rate in Different Charge-discharge Cycle

Early Intermediate Terminal

1-30 31-60 61-90 91-120 121-150

1000-1500s 0.000067 0.00043 0.0003 0.00017 0.0001

1500-2000s 0.0002 -0.0001 0.00017 0.0003 0.00087
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For the last type equipment, for example of the propellant tank and 
membrane in the creep pump, the life characteristic parameters are the 
number of actions, and it cannot be accurately predicted in space and 
is generally tested on the ground. Table 3 shows the propellant tank 
test data from ground tests. Zieja et al. [42] provided a probabilistic 
method for evaluating the durability of components and device as-
semblies which operate under the impact of destructive processes. For 
the propellant tank and membrane in the creep pump, they work under 
the impact of destructive processes, and the presented two methods 
for determining the durability can be used for the ground test.

Because of the larger design margin, the propellant tank and 
membrane rarely fail in the ground tests, their RUL can be predicted 
by the equation (4) [17]

	
θ η= +






Γ 1 1

m 	 (4)

where θ is the average life, η and m are the scale parameter and the 
shape parameter of two-parameter Wei-bull distribution.

4.4.	 Quality Model Building Method for Key Maintenance 
Activities

The masses of up-link supplies, which are expected to be shipped 
to the International Space Station (ISS) between assembly period 
(2006-2010) and after the assembly (2011-2015), are illustrated in 
Fig. 5. According to this, the maintenance supplies account for about 
1/4 of up-link supplies.

Table 3.	 Propellant tank test data on the ground

Blowdown Life Temperature Alternation Life

NO. Blowdown Times Result NO. Alternation Times Result

1 6 Success 1 12000 Success

2 5 Success 2 13000 Success

3 5 Success 3 10000 Success

4 3 Success 4 12340 Success

5 4 Success 5 14300 Success

6 4 Success 6 13200 Success

7 5 Success 7 12000 Success

8 7 Success 8 11000 Success

9 4 Success 9 13000 Success

10 4 Success 10 10000 Success

11 4 Success 11 10000 Success

12 6 Success 12 15200 Success

13 5 Success 13 12780 Success

14 4 Success 14 14200 Success

15 4 Success 15 13000 Success

16 6 Success 16 12450 Success

17 4 Success 17 12000 Success

18 5 Success 18 13500 Success

19 5 Success 19 12000 Success

20 8 Success 20 10000 Success

21 5 Success 21 10000 Success

22 5 Success 22 12000 Success

23 4 Success 23 10000 Success
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Fig. 5. Spare Parts of ISS

The maintenance activities quality will affect the maintenance 
supplies as well as the replacements of failed equipment. The perfect 
maintenance will extend the RUL by replacing the failed equipment 
with a new one. However, disturbed by human factors, the mainte-
nance activities sometimes fail to accomplish the replacement tasks at 
a given time, and this issue has already become another important in-
fluence factor, which limits the space station life as well as the equip-
ment operation states. Thus, the quality of the maintenance activities 
is as same important as the equipment life.

At present, most maintenance criteria focus on maintenance level 
and maintenance strategy [32]. For the space station, the maintenance 
time is the most important aspect. Most maintenance activity failures 
are caused by the lack of maintenance time in emergency situations. 
As a result, the maintenance time is a synthetic parameter, which can 
represent the cosmonauts’ maintenance skill and capacity. On the oth-
er hand, maintenance time information can be easily collected both 
on the ground and on the orbit. Table 4 shows the orbital maintenance 
time spent on the ISS [30]. In Table 4, ACPM represents the America 
cabin preventive maintenance time, ACCM represents the America 
cabin correctional maintenance time, RCPM represents the Russian 
cabin preventive maintenance time, and PCCM represents the Rus-
sian cabin correctional maintenance time, respectively. Through Ta-
ble 4, we can figure out that the maintenance capacity is limited com-

pared with the ISS life request. Through Fig. 5 and Table 4, we can 
find that the orbital maintenance time is important to the ISS opera-
tion because of many masses maintenance supplies. Thus, the quality 
model of maintenance activities can be developed based on the main-
tenance time. Recently, the maintenance time studies are focusing on 
the maintenance time modeling and estimation [22] [40] [34]. 

Babishin et al. [3] proposed a complex optimization method for 
the non-periodic inspection and maintenance of the multicomponent 
system, such as the space station, and gave the maintenance decision 
determined methods for the k-out-of-n, hard-type and soft-type com-
ponents. Because of the restrict of the safety request, the maintenance 
activity safety is a factor that must be considered. Gill [6] presented an 
original method of optimization of the technical object maintenance 
system taking account of risk analysis results. Based on the original 
form, the original risk valuation pattern, and four-stage calculation 
algorithm, the proper maintenance-related decisions will be made. 
But for the space station, most maintenance activities are the serial 
operation modes because of the equipment’s high-level reliability, so 
the quality model of each maintenance activity can be shown as the 
equation (5):

	 1 2
1

T
m

m i
i

t t t t
=

= + + + = ∑ 	 (5)

where T  is the total time for the specific addition, maintenance and 
replacement activity, it  is the thi activity operation time, and m  is 
the total number of specific additions, maintenance and replacement 
activities.

4.5.	 Life Model Building Method for Space Station

After proposing the life model of the key equipment and the key 
maintenance activities, the space station life model is shown in Fig. 6. 
Because of the complexity, RUL prediction for the space station can-
not be implemented through an analytic method, and the Monte Carlo 
Simulation (MCS) is a useful method for the space station RUL pre-
diction. First, the initial parameters, i.e., the simulation time M, should 
be set. Then, the key equipment and key maintenance activities’ pa-
rameters should be identified. After that, through MCS the simulation 
results of key equipment life and the key maintenance activities time 
can be obtained. After defining the space station RUL and checking 
the simulation times, the space station RUL can be simulated.

In Table 1, the key equipment and key maintenance activities 
are established, and the space station RUL is determined by them. 
Through the analysis of the space station function and mission pro-

Table 4.	 Orbital maintenance time spent on International Space Station

Maintenance Order Crew Member ACPM/h ACCM/h RCPM/h RCCM/h Total/h

1 0 2 8 1 40 51

2 3 8 3 19 14 44

3 3 24 148 138 81 391

4 3 39 19 130 13 201

5 3 63 46 206 123 438

6 3 60 102 196 45 403

7 3 55 103 211 93 462

8 2 80 28 244 53 405

9 2 64 104 184 97 449

10 2 147 101 186 58 492

11 2 73 96 186 97 452

12 2 42 46 117 70 275

Total 28 657 804 1818 784 4063
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gram, failure of any key equipment will lead to the end of the life 
of the space station, and maintenance and replacement activities are 
the only way to prolong the life of key equipment. So, the space sta-
tion’s RUL depends on each key equipment and its maintenance or re-
placement activity. If the maintenance or replacement time is shorter 
than its key equipment’s RUL, the space station main function can be 
brought into full play. Otherwise, the space station will face the risk 
of loss main function, which means the end of the space station life. 

So, the space station’s RUL prediction can be divided into two steps. 
The first step is to judge whether the maintenance or replacement time 
is shorter than the key equipment’s RUL or not, and the second step 
is to confirm the shortest RUL of the key equipment. Based on the 
above analysis, the space station’s RUL can be described by the equa-
tion (6):

Table 5.	 Data request of space station RUL prediction

Type of Equipment or Activity Life Characteristic Parameters Orbital Observation Parameters Ground Test Parameters

Main frame structure Fatigue Strength Crack Growth Rate Vibration Parameters

Propellant Residual quantity Residual quantity Residual quantity

Lithium-ions Battery/Solar Cell 
Wing Output Voltage, Output Current Output Voltage, Output Current Output Voltage, Output Current

Propellant Tanks Number of Actions Orbital Pressure Differences Successful Actions Times

Drive Mechanism/Docking 
Mechanism

Output Voltage, Output Current
Journal Temperature Output Voltage, Output Current Journal Temperature

Environmental Control and life 
support Equipment Work Time Normal Output Time Normal Output Time

Sensors Normal Output Time Output Voltage, Output Current Output Voltage, Output Current

Addition Activity Addition Time Addition Time Addition Time

Replacement Activity Replacement Time Replacement Time Reparation Time and Replacement 
Time

Maintenance Activity Maintenance Time Maintenance Time Check Time and Maintenance Time

Table 6.	 Key equipment RUL prediction parameters and key activity time

Key Equipment Prediction Parameters Key Activity Activity Time/h

Main frame structure Fatigue Strength Leakage Maintenance 2.38

Propellant Residual quantity Propellant Addition 4.87

Lithium-ions Battery/Solar Cell Wing Output Voltage, Output Current Solar Cell Wing/Power Supply Replace-
ment 4.98

Drive Mechanism/Docking Mechanism Output Voltage, Output Current
Journal Temperature

Drive Mechanism/Docking Mechanism 
Replacement 3.23

Environmental Control and life support 
Equipment Work Time Environmental Control and life support 

Equipment Replacement 2.14

Sensors Normal Output Time Sensors Replacement 0.54

Table 7.	 Space station RUL simulation results

Simulation Times Failed Key Equipment RUL Mean Value/a

100 Propellant 9.67

200 Main frame structure 8.34

300 Solar Cell Wing 9.65

400 Solar Cell Wing 10.12

500 Sensors 11.43

600 Main frame structure 8.93

700 Docking Mechanism 11.54

800 Propellant 10.16

900 Sensors 11.23

1000 Environmental Control and life support Equip-
ment 10.29

Total RUL Mean Value 10.136
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{ }min Ei Ei AMRi

S
Ei Ei AMRi

RUL RUL T
RUL

RUL RUL T
 ≥= 

<
	 (6)

where SRUL  is the space station RUL, EiRUL  (i from 1 to 6) is the 
RUL of the corresponding key equipment, and AMRiT  (i from 1 to 6) 
is the key addition, maintenance or replacement activity’s time.

At this point, the prediction model of the space station RUL is 
built, and its application and rationality will be demonstrated through 
the subsequent case study.

5. Case study

For the key equipment, the orbital observation data and ground test 
data mostly have the same types. For the key addition, maintenance 
and replacement activities, each breakdown of the activity time needs 

to be counted, and they should be verified by ground tests or virtual 
maintenance when orbital data collected is difficult. Table 5 shows 
the key equipment and key addition, maintenance and replacement 

activities data request of the space station RUL prediction. 
In this paper, according to the engineering practice, the 
key equipment RUL prediction parameters, and the key 
addition, maintenance and replacement time obtained by 
the ground or virtual test are shown in Table 6. By set-
ting the simulation time as M=1000 and implementing the 
simulation, the space station RUL results are obtained and 
shown in Table 7.

According to the Table 6, the space station RUL simu-
lation results are shown in Table 7. Through the Table 7, 
the space station RUL can be predicted at 10.136 years at 
average.

6. Conclusion

This paper defines different types of lifetime for the 
space station, and further establishes a relationship be-
tween the main functions, the key equipment as well as 
the addition, maintenance and replacement activities. 
Through the identification of the model building methods 
for the key equipment and for the addition, maintenance 
and replacement activities, a RUL prediction model is 
proposed for the space station. Finally, the data request 
for implementing the RUL prediction is determined. 

For the key equipment, this paper gives their predic-
tion methods. For the key addition, maintenance and re-
placement activities, this paper introduces the activity time 
calculation methods. For the space station in the system 
level, this paper determines the RUL prediction algorithm 

based on the relationship between the RUL of key equipment as well 
as the addition, maintenance and replacement activity times. Accord-
ing to engineering practice data, this paper adopts the MCS method 
and predicts the space station RUL as 10.136 years at average.

In the future, the relationship between the space station RUL and 
the key functions, the key equipment and the key activities will be 
further quantified. In addition, the key equipment RUL and the key 
activities time prediction algorithms and their corresponding models 
will be further determined according to the ground test data or the 
orbital operation data. 

Fig. 6. RUL Prediction Model of Space Station
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