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RELIABILITY ANALYSIS OF COMPLEX UNCERTAINTY MULTI-STATE SYSTEM

BASED ON BAYESIAN NETWORK
ZASTOSOWANIE SIECI BAYESOWSKIEJ DO ANALIZY NIEZAWODNOSCI

Reliability analysis of complex multi-state system has uncertainty, which is caused by complex structures, limited test samples,
and insufficient reliability data. By introducing fuzzy mathematics and grey system theory into the Bayesian network, the model
of the grey fuzzy Bayesian network is built, and the reliability analysis method of complex uncertainty multi-state system with the
non-deterministic membership function and the interval characteristic quantity is proposed in this paper. Using the trapezoidal
membership function with fuzzy support radius variable to describe the fault state of the component, it can effectively avoid the
influence of human subjective factors on the selection of the membership function and solve the problem that the fault states of the
system and its components are difficult to define accurately. And the conditional probability table containing interval grey numbers
is constructed to effectively express the uncertain fault logic relationship between the system and its components. Moreover, a pa-
rameter planning model of the system reliability characteristic quantities is constructed, and the system reliability characteristic
quantities are expressed as the form of interval values. Finally, two sets of numerical experiments are conducted and discussed,
and the results show that the proposed method is an effective and a promising approach to reliability analysis for complex uncer-
tainty multi-state systems.

Keywords: reliability analysis, Bayesian network, complex uncertainty multi-state system, fuzzy mathematics,
grey system theory.

Analiza niezawodnosci zlozonych systemow wielostanowych obarczona jest niepewnoscig zwigzang ze zlozonoscig ich struktu-
ry, ograniczonq liczbg probek badawczych i niewystarczajgcymi danymi dotyczqcymi niezawodnosci. W przedstawionej pracy,
wprowadzenie elementow matematyki rozmytej i teorii szarych systemow do sieci bayesowskiej umozliwito budowe modelu szarej
rozmytej sieci bayesowskiej i zaproponowanie metody analizy niezawodnosci zlozonych systemow wielostanowych w warunkach
niepewnosci, ktora wykorzystuje niedeterministyczng funkcje przynaleznosci oraz pojecie interwatowej wielkosci charakterystycz-
nej. Zastosowanie trapezoidalnej funkcji przynaleznosci z rozmytq zmienng promienia nosnego do opisu stanu uszkodzenia kom-
ponentu, pozwala zniwelowac wplyw subiektywnego czynnika ludzkiego na wybor funkcji przynaleznosci i eliminuje koniecznos¢
precyzyjnego definiowania stanu uszkodzenia systemu i jego elementow skiadowych. Opracowana tabela prawdopodobienstw
warunkowych zawierajqca szare liczby interwatowe pozwala wyrazi¢ niepewne zaleznosci logiki uszkodzen miedzy systemem a
Jjego skladnikami. Ponadto, w pracy skonstruowano model planowania parametrow charakterystycznych wielkosci niezawodnosci
systemu wyrazonych w postaci wartosci interwatowych. W ostatniej czesci artykutu omowiono dwie serie eksperymentow nume-
rveznych, ktorych wyniki pokazujg, ze proponowana metoda stanowi skuteczne i obiecujgce podejscie do analizy niezawodnosci
zlozonych systemow wielostanowych w warunkach niepewnosci.

Stowa kluczowe: analiza niezawodnosci, sie¢ bayesowska, zlozony system wielostanowy, niepewnos¢, matema-
tyka rozmyta, teoria szarych systemow.

ZLOZONYCH SYSTEMOW WIELOSTANOWYCH W WARUNKACH NIEPEWNOSCI

1. Introduction

In modern engineering, multi-state system (MSS) is a kind of sys-
tem that represents a capability allowing for more than two perform-
ance states in a system besides perfect functionality and complete
fault [21]. Compared with the two-state system, MSS can define the
components states of a system, and express the effect of the changes
of component performance on system performance more flexibly and
precisely. In the 1970s, Barlow and Wu [2] first proposed the concept
of MSS and gradually established the related theory. Then, the reli-
ability theory of MSS has been widely concerned by scholars. And the
following reliability analysis methods for MSS have been developed:
the extended Boolean model method [22, 26], random process theory

[1, 14, 18], Monte-Carlo simulation method [23, 25], function model
method [8, 16, 31], Bayesian network method [13, 29], and so on.

The uncertainty, which is caused by the insufficient information
about internal structures, the scarcity of historical data and the change-
ability of operation environment, is one of the most crucial problems
in MSS reliability analysis. Therefore, it is very difficult to define
and obtain the component state performances and state probabilities.
Meantime, the boundaries among component fault states fail to define
and obtain with precision. So the traditional probability-based method
is no longer applicable. However, non-probabilistic methods, such as
evidence theory [7], grey system theory [33], probability-box [27],
and fuzzy theory [15, 30], have been proposed and developed for reli-
ability analysis of complex uncertainty MSS.
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Based on the probability theory and the graph theory, Bayesian
network not only can effectively express the complex logical relations
in the system, but also has a unique two-way reasoning mechanism,
so it is particularly suitable for the reliability analysis of complex sys-
tems which have characteristics of high reliability, longevity, small
samples. Bayesian network has been widely used in reliability analy-
sis [3, 24], security analysis [9, 12], fault diagnosis [4, 17] and other
fields. By introducing fuzzy set theory to Bayesian network model,
a novel method of multi-state system reliability analysis is proposed
by He et al.[11], which considers the multi-state, the fuzziness, and
the changes of failure probability with time of the system, and its va-
lidity and practicality are verified by the flexible lifting system of a
high-speed elevator. In view of the shortcomings of Bayesian network
method and T-S fault tree method, Yao and Chen [28] propose the
fuzzy reliability evaluation method, and conduct reliability evaluation
on the hydraulic system of roadway transportation vehicles. Consid-
ering the relevant failure and incomplete coverage, Cai et al. [5] pro-
pose a reliability evaluation method for redundant systems based on
Bayesian network, and evaluate the reliability of the subsea blowout
preventer control system. In reference [10], a multi-state system relia-
bility analysis method based on intuitionistic fuzzy Bayesian network
is proposed, which effectively solves the problem that the accurate
probability of different state of Bayesian network root node is difficult
to determine. To sum up, although certain research results have been
achieved based on Bayesian network, such as using the precision val-
ue for reasoning analysis, the introduction of fuzzy technology, and
so on, there are still shortcomings in the existing reliability analysis
methods by using Bayesian network model for complex uncertainty
multi-state systems, the main problems are as follows:

(1) In the traditional reliability analysis methods, the fuzzy support
radius variable of membership function of descripting fault state is a
fixed value, such as in references [6, 28]. Although the traditional reli-
ability analysis method can solve some reliability analysis problems
of MSS, it is hard to avoid introducing too much subjective informa-
tion in the process of constructing the membership function, which
can lead to deviation and affect the accuracy of the analysis results.

(2) The traditional Bayesian network reliability method is under
the precondition of the determined fault logic relationship, for exam-
ple, in references [5, 10]. But due to the lack of reliability data, the
limited test samples and the complicated running environment, using
the exact value to describe the uncertain fault logic relationship be-
tween the system and its components cannot satisfy the requirement
of reliability analysis for complex systems.

Fuzzy mathematics and grey system theory are the most active
uncertain system theories which have attracted more and more atten-
tion in the field of reliability [19]. In order to solve the above prob-
lems, the membership function in fuzzy mathematics and the interval
grey number in grey system theory are introduced to the Bayesian
network. Then, the model of the grey fuzzy Bayesian network is built,
and the reliability analysis method of complex uncertainty multi-state
system with the non-deterministic membership function and the in-
terval characteristic quantity is proposed in this paper. The proposed
method uses the trapezoidal membership function with fuzzy support
radius variable to describe the fault states of the component, and uses
the conditional probability table containing interval grey numbers ®
to substitute for the traditional conditional probability table. Further-
more, a parameter planning model of the system reliability character-
istic quantities is constructed, and the obtained reliability characteris-
tic quantities of system are expressed in the form of interval values.

This paper is organized as follows: in Section 2, grey fuzzy Baye-
sian network method for system reliability modeling and analysis is
introduced, and the flow chart and its specific process interpretation
are given. Detailed steps of grey fuzzy Bayesian network method are
introduced in Section 3. Two sets of numerical experiments are car-

ried out and discussed to show the validity and advantages of the pro-
posed method in Section 4. In Section 5, conclusions are drawn.

2. Grey fuzzy Bayesian network method for system reli-
ability modeling and analysis

Bayesian network (BN) is a directed acyclic network that is com-
posed of a directed acyclic graph (DAG) and a conditional probability
table (CPT). Directed acyclic graph consists of nodes and edges. A
node of DAG is used to represent the variable, which may be a unit,
a failure mode, an attribute, a fault status, and so on. The edge points
from the parent node to the child node, which represent the depend-
ent relation between the parent node and the child node in the DAG.
A node that does not have a parent node is called a root node which
can represent a component variable. A node that does not have a child
node is called a leaf node which can represent a system variable.
Other nodes are called intermediate nodes which can represent the
subsystem variables. Conditional probability table can quantitatively
describe the causal failure logic relationship among nodes, that is, the
logical relationship between the system and its components.

Fuzzy mathematics studies the uncertainty problem by means of
membership function. Therefore, the trapezoidal membership func-
tion with fuzzy support radius variable r is constructed to describe the
fault state of the component in our study. Grey system theory studies
the uncertainty problem that part of the information is known, part
of the information is unknown and part of the information is scarce
[19]. According to the known partial information, the range of values
of some parameters can be determined, but the exact values of some
parameters can not be known in system reliability analysis, so inter-
val grey number ® is introduced to the conditional probability table.
Thus, the conditional probability table containing interval grey num-
bers ® is constructed to describe the uncertain fault logic relation-
ship between the system and its components. Taking advantages of
the above two theories, the grey fuzzy Bayesian network method for
system reliability modeling and analysis is shown in Fig.1.

The proposed method extends the traditional node variables to the
grey fuzzy Bayesian network nodes to express the fuzzy uncertain
fault state during the fault evolution process of the system and its
components, and the traditional conditional probability table is ex-
tended to the conditional probability table with interval grey numbers
to express the uncertain fault logic relationship between the system
and its components. As can be seen from the Fig.1, the specific pro-
cesses are as follows:

(1) Analyze the basic principle of the system, clarify the fault
states and failure modes of the system and its components, and
establish the directed acyclic graph of the system Bayesian
network.

(2) According to the fault states and fault modes of the component,
the trapezoidal fuzzy number (TrFN) with fuzzy support radius
variable r is constructed to describe the fuzzy uncertainty of
the fault state during the fault evolution process of the system
and its components, as shown in Section 3.1.

(3) The conditional probability table with interval grey numbers is
constructed to substitute for the traditional conditional proba-
bility, which can describe the uncertain fault logic relationship
with grey system information characteristics between system
and its components, as shown in Section 3.2.

(4) According to the steps (1)-(3) and the corresponding defini-
tions of the system reliability characteristic quantities, the
corresponding system reliability characteristic function is ob-
tained, as shown in Section 3.3.

(5) Taking the system reliability characteristic function as the ob-
jective function, and taking the intervals of the interval grey
numbers as the constraints, the parameter planning model of
the reliability characteristic quantities is constructed. The op-
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timization algorithm is used to analyze the reliability of the
leaf node and the state importance measures of the root nodes.
Based on analysis results, system reliability and component
state importance measures can be evaluated, as shown in Sec-

tion 3.4.
Interval grey Analyze system TrEN with
number & basic principle variable »
A 4 A 4 A 4
Construct the CPT Construct the 1 Fault
with the variable r DAG for the BN Risdhpisdes status
A 4
System reliability
characteristic function
Y
J::E::;?:;; « Optimization algorithm

v

State importance measures
analysis of root nodes

Reliability analysis
of leaf node

Fig. 1. Grey fuzzy Bayesian network method of reliability modeling and anal-
ySis

3. Detailed steps of grey fuzzy Bayesian network
method

3.1. The construction of the TrFN with fuzzy support radius
variabler

In engineering practice, the system and its components tend to ex-
hibit multiple failure modes and multiple fault states during the evolu-
tion from normal operation to complete failure, and there is no strict
boundary among fault states, which has certain fuzzy uncertainty. The
membership functions describing the fault states of the system and its
components include a triangular membership function, a trapezoidal
membership function, a rectangular membership function, and so on.

The trapezoidal membership function is widely used in practical
engineering and reliability analysis because of its intuitive expres-
sion and simple algebraic calculation. For ease of use, the trapezoidal
membership function X is selected to describe the fault states of sys-
tems and components, and represented as:

X= (e 1 1 1o f) (D

In equation (1), x,. is the center of the fuzzy number support set, »
is the support radius variable, f'is the fuzzy area, as shown in Fig. 2.
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Fig. 2. Trapezoidal membership function

It is assumed that the system and its components have two fault
states (fault-free and fault) or three fault states (fault-free, semi-fault
and fault), represented by fuzzy numbers 0, and 1 or 0, 0.5 and 1 re-
spectively, and the fault state of the node x; (i=1, 2,***, n) is xf i (k=1
2,°**, 0;). Then the sum of the membership degrees of the components’
current fault state must be 1. In other words, the components for the
two fault states must satisfy equation (2), and the components for the
three fault states must satisfy equation (3):

M)+ () =1 @)
Mg () + g5 () + () =1 (3)

If the fault state of the node x; (i=1, 2,+**, n) is xik" (k=1,2,...,a))
in grey fuzzy Bayesian network, making use of the trapezoidal mem-
bership number function shown in Fig.2, combining equation (2) and
equation (3) at the same time, then the trapezoidal membership func-
tion with the fuzzy support radius variable 7 is constructed, and shown
in Fig.3. The variable » (0 < < 0.25) is the fuzzy support radius of the
trapezoidal membership function.

L

Membership degree s(x'")

0.5
Fault state x

(a) Two fault states x{c ‘

gl | 0.5 1
=Y % r
; : s
5 s 5
- ' '
o H '
= : :
g ' :
=) '
£ :
: : s

2r |E r‘;] >
0.5 1
Fault state

(b) Three fault states xf"

Fig. 3. Membership function of the component fault states xik‘ with variable r

According to Fig.3, the deterministic region and the uncertain region
of the trapezoidal membership function vary with the value of the
fuzzy support radius variable r. Take Fig.3 (b) for an example, when
r =0, the trapezoidal membership function is transformed into the tri-
angular membership function, as shown in Fig.4, and when r = 0.25,
the trapezoidal membership function is transformed into the rectangle
membership function, as shown in Fig.5. From Fig.3 (a) and (b), by
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the calculation of the equation (2) and equation (3), the membership
degree of each fault state can be obtained, as shown in Table 1 and
Table 2.

—

Membership degree u(x)*)

=]

0.5 1
Fault state x

Fig. 4. The membership function of fault state x’ when r=0

Table 1. The membership degree of fault states x{(i with two fault states

Membership degree
k O~r r~1-r 1-r~1
of x;*
() 1 Ior-y 0
o 1-2r
() 0 Xy 1
" 1-2r

Table 2. The membership degree of fault state xlk" with three fault states

Member- 0.5
ship degree | 0~r r~0.5-r . 0.5+r~1-r | 1-r~1
k; r~0.5+r
of x;
oy
() 1 | Qoo 0 0 0
0.5-2r
ko i
M (x) 0 /il 1 1r-x, 0
0.5-2r 0.5-2r
k’_ -
() 0 0 0 X' =05-r 1
0.5-2r
~ A
RS | 0 0.5 1
S ' H
2 : .
& : !
& : :
= : :
= ] "
'_E:: : H
= H '
v " .
£ : :
|5 H H
2 ; L g
0 0.5 1

Fault state x"
Fig. 5. The membership function of fault state x when r=0.25

From Table 1 and Table 2, when xl-k’ €10, 1], xl-k’ all satisfies
equation (2) or equation (3). For example, when xl.k T €(r, 0.5-r), we
O.5—r—xl.k‘ xx.’" —-r

+
05-2r 05-2r

which verifies the correctness of Table 2. Similarly, Table 1 can be
verified.

. ko .
substitute X;* in equation (3) and get +0=1,

3.2. The description of conditional probability table

Due to the cognitive limitations on the internal structures, the op-
erational behavior, the constituent element parameters, and the lack
of historical data related to the product, the fault logic relationship
between the system and its components has a large degree of grey
information characteristics in the system. In the process of analysing
system reliability, if this relationship is simply represented as the ex-
act value, this will lead to the loss of some important information and
the result of system reliability analysis will be deviated. In order to
fully exploit system reliability information and clarify the fault logic
relationship between the system and its components, interval grey
number ® defined in interval [0, 1] is used to replace the exact value
of conditional probability in traditional Bayesian network. For any
grey fuzzy Bayesian network containing n nodes with m fault states,
the conditional probability table can be expressed in Table 3.

In Table 3, each row represents the conditional prob-
ability that the child node is in a certain fault state under differ-
ent combinations of fault states of the parent nodes, for example
P(y=1|x=0,x,=0,---,x,=0)=®,, , indicates that the con-
ditional probability that node y in the fault state 1 is interval grey
number ®, , when the nodes xj, x,, ..., x,, are all in the fault state 0,
and satisfy the ®, |  +--+® +--+®,  =1.Inthe ficld
of engineering, ®,, ., represents the conditional probability of node y

in completely fault state caused by external factors like human opera-
tion errors, environmental factors, and so on.

3.3. System reliability characteristic quantities

3.3.1. Fault state of leaf node

In the grey fuzzy Bayesian network, we assume the root node var-
iable is x; (i=1, 2, ..., n), the intermediate node variable is y; (j=1,2,...,
m), and the leaf node variable is 7. According to the bucket elimina-
tion, if the current fault states of nodes x; are x{ , x5 ..., xj, , the grey
fuzzy possibility of the leaf node 7'in the fault state 7, is:

P®(T:Tq): z P®(xl’f“7xr'z;yla'“aym;T:Tq)
-
Vi Vm

=Y B(T=T,|MT)) X Po(yy [My)x--ox

P® (ym | }"(ym ))u\-,/q(xl,) XeerX uikn(xnl)
AMT) A M) E !

“4)

In equation (4), Fp(T =T,) is the grey fuzzy possibility of the

leaf node T in the fault state 7, g’ AMT) is the parent nodes set of leaf
node 7; A(y;) is the parent nodes set of intermediate node y;; uikl(xi')

is the membership degree of the current fault state x; corresponding
to the fuzzy set.

3.3.2. Grey fuzzy state importance measures

The state importance measure Ig °(x;) indicates the possibility
which separately causes the system leaf node 7 to be the fault state 7,
when the root node x; is in the fault state x;. It reflects the influence
degree of the root node x; in the fault state x; to the leaf node T in the
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Table 3. Conditional probability table of grey fuzzy Bayesian network

X1 X, Xn P(y=0]x,x,-,x,) Py =i]x,%,",x,) Py =1]x,%,-,x,)
0 0 0 ®, 1o ®. ®om
1 1 1 ®i.i 1 ®:,i, i ®i,i. m
1 1 1 - L O em

fault state 7. The grey fuzzy state importance measure of the root
node x; can be defined as:

17 (x) = max{[By(T =T, | x; =) = Po(T =T, | x; = 0)1.0}  (5)

In equation (5), Fp(T =T, | x; =x;) indicates the grey fuzzy pos-
sibility of the leaf node T in the fault state 7, when the root node x;
is in the fault state xj; Pg(T =T, 1% =0) indicates the grey fuzzy
possibility of the leaf node 7 in the fault state 7, when the root node
Xx; is in the fault state 0.

3.4. The algorithm for solving system reliability characteris-
tic quantities

When fault state of the component is described by the membership
function with the fuzzy support radius variable 7, and the conditional
probability table containing the interval grey number ®; is used to
describe the uncertain fault logic relationship between the system and
its components, the parameter planning model of the system reliabil-
ity characteristic quantities can be constructed, as shown in equation
(6). The system reliability characteristic quantities can be obtained by
the parameter planning model:

max(min)f(®l > ®2 PR ®n)
ay < ®1 < bl

<®,<b
s.t. “ .2 2 ©)

The essence of the above parameter planning model is to solve the
problem of the extreme value of the function mapping by a series of
interval grey numbers in a certain interval, which can be obtained by
commercial optimization software, such as Matlab, Isight, and so on.
The objective function in the parameter planning model is obtained
by above Tables and equations. For the comparison of the reliability
characteristic quantities between the nodes, each size of quantity can
be determined in the light of the interval value size comparison rule
proposed by Nakahara et al.[20].

4. Numerical examples

The two sets of numerical examples are conducted in this sec-
tion. The first set is a validation experiment based on the example
presented by Chen et al.[6]. The second set is an example of satellite
propulsion system, which is exemplified to show the advantages of
the proposed method in terms of coping with complex uncertainty
multi-state systems.

4.1. Set of experiments #1: validation example

To verify the effectiveness of the proposed method, the hydraulic
suspension system in the large hydraulic truck is presented in this sec-
tion. The detailed results and related discussions are as follows.

The large hydraulic truck is a special vehicles with electro-hy-
draulic driving, steering and lifting. It possesses the characteristics of
heavy load handling, manoeuvrability, high stability, and so on, which
is widely used in high-speed railway construction, shipbuilding, high-
way bridges, petrochemical, military and other fields. The hydraulic
suspension system is the control system of driving and steering, which
plays an important role in the large hydraulic truck.

Take the Bayesian network model of the hydraulic suspension sys-
tem in reference [6] as an example, according to the presented method
in our study, the membership function with fuzzy support variables
is established and substitute into the Bayesian network model. It is
assumed that the fuzzy support variable » = 0.1 and the values in the
conditional probability table are all the exact values in the grey fuzzy
Bayesian network. In this situation, the model parameters that we con-
structed are the same as those in reference [6].

4.1.1. Fault states of leaf node for the hydraulic suspension system

With Table 2, equation (4) and equation (6), the grey fuzzy pos-
sibility of leaf node 7 in different fault states is obtained, as shown in
Table 4.

The analysis results in Table 4 show that the maximum and mini-
mum values of grey fuzzy possibility of leaf node 7 in different fault
states are the same. Therefore, the analysis results are the same as the

Table 4. Grey fuzzy possibility of leaf node T in different fault states

Leaf node Fault state Interval value
0 [0.082, 0.082]

T 0.5 [0.111,0.111]

1 [0.807,0.807]

previous methods in reference [6], and the correctness and feasibility
of the proposed method can be verified in the reliability analysis of
leaf node.

4.1.2. Grey fuzzy state importance measures for the hydraulic
suspension system

With Table 2, and equation (4) to equation (6), state importance
measures of root nodes are obtained in the grey fuzzy Bayesian net-
work, as shown in Table 5.

Table 5 shows that the results of the grey fuzzy state importance
measures of root nodes are the same as the results in reference [6], and
the correctness and feasibility of the proposed method can be verified
in the analysis of state importance measures.
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Table 5. Grey fuzzy state importance measures of root nodes

Grey fuzzy state importance measures
Xj
175(x) 1P (x)

X1 [0.096, 0.096] [0.000, 0.000]
X, [0.000, 0.000] [0.000, 0.000]
X3 [0.000, 0.000] [0.013,0.013]
X4 [0.000, 0.000] [0.031,0.031]
Xs [0.000, 0.000] [0.041, 0.041]
X [0.000, 0.000] [0.011,0.011]
X7 [0.000, 0.000] [0.029, 0.029]
Xg [0.000, 0.000] [0.073,0.073]
Xg [0.000, 0.000] [0.071,0.071]

From the discussion in this section, it is conclude that in the proc-
ess of modeling and method validation, setting
the fuzzy support radius variable as a fixed val-
ue (» = 0.1) and setting the value of the condi-
tional probability table as all the exact values is
a special form of the proposed method based on
the grey fuzzy Bayesian network, which does
not affect the accuracy of verification results. In
Section 4.2, we apply the proposed method to
the satellite propulsion system to illustrate the

lines and ensure the one-way flow of propellant. The pressure sensor
measures the current pressure of the propellant in the pipeline in real
time and sends the measured value to the ground receiving equipment.
The thruster is the core component of the propulsion system, provid-
ing propulsion for the system.

The monopropellant propulsion system adopts redundant struc-
ture, where the TH2 is backup branch for the TH1 branch, and if there
is a normal operation, the system will work properly. If both branches
fail, the system is in the fault state. Because of the uncertain fault logic
relationship between the system and its components, when any branch
is in fault and another branch is in semi-fault, the system may be in
fault, semi-fault, or work properly. Based on Fig.6, Bayesian network
of monopropellant propulsion system is constructed, as shown in
Fig.7. Node y; of series subsystem represents the fault state of the
TH1 branch that is formed by connecting PS1, SLV1, F1 and TH1 in
series. Similarly, node y, of series subsystem represents the fault state
of the TH2 branch that is formed by connecting PS2, SLV2, F2 and
TH2 in series. And node y; represents the fault state of a subsystem
that is formed by connecting PS3, FDV1, FDV2 and TK in series.
Leafnode T'represents reliability of the entire monopropellant propul-
sion system which is made up of a parallel system y (formed by con-
necting y; and y, in parallel) and a series subsystem y; in series.

According to analysing the system fault modes and fault mecha-
nisms, the components possessing the three states are the filter and

Symbols

Tank

Self-locking valve

advantages of this method.

Feeding valve

4.2. Setof experiments #2: Satellite
propulsion system

The satellite propulsion system is the power
system that implements functions such as satel-
lite aberration, attitude control, orbit reposition,
and so on. Its performance directly affects the
control accuracy and longevity of the satellite.
According to statistics, due to the adverse en- | THI branch

Filter

Pressure sensor

Thruster

HOSRRE

TH2 branch

vironment in outer space, the fault possibility
of the satellite propulsion system is relatively
higher, which is of great significance for the
reliability study.

Root node x,

Fig.6. The structure of monopropellant propulsion system

4.2.1. Satellite propulsion system modeling Roctnode xz

Node v of series

The structure of monopropellant propulsion Root node x;

subsystem

system is small and compacted, which is the
most commonly used propulsion system in the
field of low and medium orbit satellites. It main- Root node x5
ly includes tank (TK), feeding valve (FDV), fil-

Root node x4

o

Node y of parallel
subsystem

ter (F), self-locking valve (SLV), pressure sen- N
sor (PS) and thruster (TH), as shown in Fig.6. 4

Node y; of series

subsystem

The tank provides propellant for thrusters, and
the amount of propellant flowing out is deter-
mined by the number of thrusters currently in Root node xy

Root node xg

Leaf node T of series
entire system

Node y;of series

operation. The feeding valve is adding and dis-
charging the pressurizing gas and propellant of
the storage tank. The filter is used to filter im- | Rootnode x;,
purities from the propellant to prevent blockage
of the piping system. The self-locking valve is
used to control the opening and closing of pipe-

Root node xo

Root node x2

url

subsystem

Fig.7. Bayesian network of monopropellant propulsion system
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Table 6. Conditional probability table of node y;

Table 8. Conditional probability table of leaf node T

Py1= 1x1~x4) P(T= ly1~y3)
X X X X
1 2 3 4 0 05 1 Y1 Y2 Y3 0 05 1
0ol o] o0 o0 1 0 0 0 0 0 1 0 0
® ® 0 0 1 0 0 1
0l 0] 0 05 ! 2 025 0 | 05| 0 1 0 0
[0.18,0.32] | [0.38,0.53]
0 0.5 1 0 0 1
0 0 0 1 0 0 1 0 1 0 1 0 0
0 0 0.5 0 0.25 0.6 0.15 0 1 1 0 0 1
® ® 05 | 0 0 1 0 0
0| 0 05|05 0.19 3 4
[0.42,0.58] | [0.27,0.38] 0.5 0 1 0 0 1
® ®
0 0 0.5 1 0 0 1 05 0.5 0 0.26 o 10
[0.35, 0.48] [0.25, 0.36]
0.5 0.5 1 0 0 1
1 1 1 1 0 0 1
®11 ®12
0.5 1 0 0.42
[0.15, 0.28] [0.32, 0.45]
Table 7. Conditional probability table of node y, 05 1 1 0 0 1
P(y,= |x5~X3) 1 0 0 1 0 0
X X X X,
ST 0 05 1 1 0 1 0 0 1
® ®
0 0 0 0 1 0 0 1 0.5 0 13 042 14
[0.15, 0.28] [0.32, 0.45]
0 0 0 0.5 ®; ® 0.25 1 0.5 1 0 0 1
[0.18,0.32] | [0.38,0.53] 1 1 0 0 0 1
0 0 0 1 0 0 1 1 1 1 0 0 1
0 0 0.5 0 0.25 0.6 0.15
be fault-free and fault, that is, x°=0, x,'=1,i=1, 2, 5, 6, 9, 10, 11,
0 0 | 05|05 0.19 ®; ®g 12. According to historical data, engineering experience and expert
[0.42,0.58] | [027,0.38] knowledge [11, 32], with interval grey number ® [19], the conditional
0 0 0.5 1 0 0 1 probability table is constructed, as shown in Table 6 to Table 8. Each
row in Table 6 to Table 8 represents the conditional probability of
child node fault under different combinations of fault states of parent
11 1|1 0 0 1 nodes.

the thrusters. The multistate of the filter is reflected in a variety of
fault modes, namely normal, poor filtering effect and blockage. When
the filtering effect is not good, the branch in which the filter is nor-
mal, semi-fault and fault has certain possibility. The multistate of the
thrusters is shown in the number of the fault thruster. That is, x,-O =0,
x%°=0.5,x'=1,i=3,4,7, 8. And other components are deemed to

4.2.2. Fault states of leaf node T for satellite propulsion system

If the current fault state of root nodes are x'; = 0.3, x', = 0.4, x5
=0.2,x4=0.6,x'5=0.3,xs=0.7,x'7,=0.1, x's= 0.7, x'9= 0.3, X'}, =
0.4, x';; = 0.2, x";, = 0.8. The membership degree of fault state of x;
can be calculated from Table 1 and Table 2, as shown in Table 9 and
Table 10.

—&— Maximum value

—A— Minimum value

—a— Maximum value|
—&— Minimum value

—m— Maximum value

—a&— Minimum value

0.000!

0.980

00 005 010 015 020 025 %
Fuzzy support radius variable r

(a) Leaf node T=0

0.

00 0.05 0.10 0.15 020 0.25 0.00 005 0.10 0.15 020 0.25
Fuzzy support radius variable r

(b) Leaf node T=0.5

Fuzzy support radius variable
(¢) Leaf node T=1

Fig. 8. The grey fuzzy possibility of leaf node T
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Table 9. The membership degree of fault state of the root nodes with two

Table 11. Grey fuzzy possibility of leaf node T in fault state 0

fault states
Fault state Fuzzy support Membership degree
of x; radius variable r 0 1
0<r<03 0.7-r 03-r
X1=03 1-2r 1-2r
03<r<0.5 0
0<r<04 0.6—r 04-r
Xy= 0.4 1-2r 1-2r
04<r<05 0
0<r<03 ?'7;’ ?‘3;’
x's=0.3 - o
03<r<0.5 0
0<r<03 ?’3;’ ?'7;
X'g=0.7 - -
03<r<0.5 1
0<r<03 0‘7; 0'3;’
Xg=03 1-2r 1-2r
03<r<0.5 0
0<r<04 0.6-r 04-r
X'10=0.4- 1-2r 1-2r
04<r<0.5 0
0<r<02 ?‘8; ?‘2;’
_or o
x'11=0.2
02<r<0.5 0
0<r<02 ?.Z;r (;.8;r
—zr —zl
x'1,=0.8
02<r<0.5 1

Table 10. The membership degree of fault state of the root nodes with three

Fuzzy support Difference be-
Fault state radius vari- Interval value tween maximum
abler and minimum
0.05 [0.00869,0.01193] 0.00324
_ 0.10 [0.00849,0.01170] 0.00321
- 0.15 [0.00515,0.00715] 0.00200
0.20 [0.00000,0.00000] 0.00000

Table 12. Grey fuzzy possibility of leaf node T in different

fault states
Leaf node Fault state Interval value
0 [0.007, 0.010]
T 0.5 [0.004, 0.005]
1 [0.985, 0.987]

The objective function in the parameter programming model can
be obtained from Table 9, Table 10 and equation (4). And the grey
fuzzy possibility of the leaf node 7 in different fault states can be
obtained by solved the parametric programming model with Matlab.
The extreme value of the grey fuzzy possibility of the leaf node 7' in
different fault states varies with the fuzzy support radius variable r,
as shown in Fig. 8.

(1) From the perspective of system reliability, under the condi-
tion of the current fault state of the components, due to the
uncertainty caused by the complex structures, the limited test
samples, and the insufficient reliability data of the modern sys-
tems, the grey fuzzy possibility of leaf node 7" may be at any
point on two curves and in the green area between two curves.
Obviously, the results of system reliability analysis are quite
different due to uncertainty.

(2) When 0 < r < 0.2, the uncertainty of the root node decreases
with the increase of the variable », meanwhile, the difference
between the maximum and minimum of the grey fuzzy pos-
sibility of fault state of the leaf node 7" decreases. Take the
grey fuzzy possibility of the leaf node 7= 0 for an example, as
shown in Table 11.

(3) When 0.2 <r <0.25, it is calculated that the membership de-
gree of the fault states of the nodes y;, y, change with the value
of the variable 7, and the membership degree of the fault states

fault states ’ o
of the nodes y; is 0. And it is calculated from Table 8 that the
Fault state Fuzzy support Membership degree grey fuzzy possibility of the leaf node T in different fault states
of x; radius variable r 0 0.5 1 is a straight line which is independent of the value of the vari-
able r.
0<r<02 03-r 02-r 0 (4) For generality, the midpoint of the fuzzy support radius vari-
x'3=0.2 05-2- 05-2- able r is selected, namely » = 0.125, to analyse the reliability
02<r<025 1 0 0 of the system. Besides, we can also choose the value of the
variable  based on expert knowledge. And the membership
0<r<0.1 0 04-r 01-r functions of the fault state of root nodes are trapezoidal mem-
x'4=0.6 0.5-2r 0.5-2r bership functions, and grey fuzzy possibility of leaf node 7 in
0.1<r<0.25 0 1 0 different fault states is obtained, as shown in Table 12.
0<r<ol 04—r 0.1-r 0 From Table 12, according to the comparison rule of interval values
x';=0.1 o 0.5-2r 0.5-2r §ize fr(?m the reference [20], Py(T'=1) > By(T =0) > Fp(T'=0.5)
01<r<0.25 1 0 0 is obtained. Under the current fault state of the components, the fault
possibility and the fault-free possibility of the satellite propulsion sys-
0<r<02 0 03—r 02—r tem are higher. than the semi-fault possibility, and the fault possibility
X'g=0.7 - 0.5-2r 0.5-2r of system is biggest.
02<r<0.25 0 1 0
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2.0E-3}F |[—®— Maximum value
—&— Minimum value

+ . : . P
0.0E {900 0.05 0.10 0.15 020 025

Fuzzy support radius variable

Fig. 9. Py(T =0.5|x; = 0) changes with variable r

2.4E-4
—u&— Maximum value
2.0E-4H—*— Minimum value
1.6E-4
5
5_‘ = 1.2E-4
8.0E-5
4.0E-5
0.0E+0
0.00 005 010 0.15 020 025
Fuzzy support radius variable r
Fig. 10. 1£§(xl) changes with variable r
1.0E-2
—8— Maximum value
8 OE-3 —&— Minimum value
~~6.0E-3
o
éj-~_4.0E-3
2.0E-3
0.0E+0

00 0.05 0.10 0.5 020 025
Fuzzy support radius variable r

0.

Fig. 11. IP°(x;) changes with variable r

4.2.3. Grey fuzzy state importance measures for satellite propul-
sion system

According to the calculation and analysis in Table 9, Table 10, and
equation (4) to equation (6), when the fault state of root node x; is 0,
grey fuzzy possibility of leaf node 7 in the fault state 0.5 varies with
the fuzzy support radius variable r, as shown in Fig.9. The maximum
and minimum values of the grey fuzzy state importance of the root
node x; with leaf node 7 in the fault state 0.5 varies with the fuzzy
support radius variable 7, which can be obtained by the equation (5),
as shown in Fig.10. Similarly, the curves of the grey fuzzy state im-
portance of the root node x; with leaf node 7 in the fault state 1 can
be obtained, as shown in Fig.11. Due to space limitations, the grey
fuzzy state importance measures of other root nodes are not listed
one by one.

From Fig.10 and Fig.11:

(1) Analysing component from the state importance measures, un-
der the condition of the current fault state of the components,

Table 13. Grey fuzzy state importance measures of root

nodes

Grey fuzzy state importance measures

Xj
5 (x) 1(x)

X1 [0.000,0.000] [0.001,0.006]
X, [0.000,0.000] [0.003,0.009]
X3 [0.000,0.001] [0.000,0.003]
Xy [0.002,0.003] [0.005,0.008]
Xs [0.000,0.001] [0.000,0.003]
X [0.000,0.000] [0.004,0.010]
pa [0.000,0.001] [0.000,0.002]
Xg [0.000,0.002] [0.002,0.006]
Xg [0.000,0.000] [0.001,0.007]
X10 [0.000,0.000] [0.005,0.011]
X1 [0.000,0.001] [0.000,0.004]
X12 [0.000,0.000] [0.111,0.137]

due to the uncertainty caused by the complex structures, the
limited test samples, and the insufficient reliability data of the
modern systems, Ig “(x;) may be at any point on two curves
and in the green area between two curves. Obviously, the re-
sults of the state importance measures are greatly influenced
by the uncertainty.

(2) The state importance measures of root nodes are affected by
current fault state of the components and the value of the vari-
able ». When the current fault state of component or variable
r is different, the interval values of the state importance meas-
ures of root nodes are different, and the weak links of the sys-
tem are also different. When » = 0.125, the interval values of
grey fuzzy state importance measures of root nodes x; with leaf
node T in the fault states 0.5 and 1 are obtained, as shown in
Table 13.

According to the state importance measures of root nodes, the
weak links of the system can be identified. And the reliability of the
system can be improved effectively by improving the reliability of
the weak nodes.

From Table 13, based on the comparison rules of interval size
from the reference [20], the grey fuzzy state importance measures of
root nodes such as x3, x5 x; xg with leaf node 7"in the fault state 0.5 is
weaker, and x, is the weakest link for the fault state of the system. And

the order of the grey fuzzy state importance measures of root nodes
with leaf node T in the fault state 1is: I1{2(x5) > I7¢ (x10) > IP¢ (%)

> 1% (xg) > 1P (0) > 1P (x9) > 1P° () > 17 () > 17 () >
IlDe(x3) (IlDe(x5) )> IlDe(x7) , obviously, x5 is the weakest link for

the fault state of the system.

From the discussion in Section 4, it can be concluded that the pro-
posed method can characterize and quantify the fuzzy uncertainty of
the fault state of the system with its components and the uncertainty of
the logical relationship between the system and its components in an
actual system. Besides, utilizing unique bidirectional reasoning abil-
ity of Bayesian network, reliability characteristic quantities of system
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such as reliability of leaf node and state importance measures of root
nodes can be effectively analyzed. And some subjective information,
such as expert knowledge, may be required for our work. The results
are more consistent with the actual engineering situation.

5. Conclusions

A new complex system reliability analysis method based on
non-deterministic membership functions and interval characteristic
quantities is proposed by introducing fuzzy mathematics and grey
system theory to Bayesian network. The trapezoidal fuzzy number
(TrFN) with fuzzy support radius variable r is constructed to describe
the fuzzy uncertainty of the fault state of the system and its compo-
nents. The conditional probability table with interval grey numbers is
constructed to effectively express the uncertain fault logic relation-
ship between the system and its components. Moreover, a parameter
planning model of the system reliability characteristic quantities is
constructed, and the system reliability characteristic quantities are ex-
pressed as the form of interval values.

Two sets of numerical experiments are carried out and they show
the validity and advantages of the proposed method. The obtained re-
sults are expressed in the form of interval values, which can better
represent reliability characteristic quantities under uncertain condi-
tions caused by the complex structures, the limited test samples, the
insufficient reliability data, and so on. It also shows that the proposed
method is a powerful reliability analysis method for complex uncer-
tainty multi-state system.
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