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1. Introduction 

Currently, the level of quality and reliability of the products of-
fered to customers is essential to maintain competitiveness in the 
market. Furthermore, to obtain highly reliable products, very large 
experimentation times are required, an alternative that mitigates this 
drawback are the accelerated degradation tests (ADT), in which a 
group of products suffer high levels of environmental stress [17]. In 
this way, it is possible to obtain the degradation measurements of a 
particular performance characteristic and the failure times in the 
shortest time possible. In addition, by including random effects on 
the variables [32], it is possible to describe the variation of the initial 
conditions of the devices as a function of the parameters of the model 
and to improve the accuracy of the predictions of reliability under 
conditions of normal use [22].

According to Peng & Tseng [26] in this situation the degradation 
models that are described by stochastic processes (gamma process, 

Wiener process, Gaussian inverse process), are useful for the analysis 
of the performance of one or several magnitudes that vary randomly 
as a function of time. Where some of its parameters can be affected 
and modified in order to incorporate the variability and the explana-
tory variables that affect the increase in degradation. Finally, with the 
correct specification of the model and the adequate supervision of the 
degradation processes, it is  possible to predict the remaining use-
ful life of the product, precise when maintenance or replacements are 
necessary or appropriate, be certain of the products useful life time, 
and provide greater reliability to the client [46,43].

Therefore, manufacturers must constantly innovate and produce 
value-added components [18] and in order to avoid or reduce fail-
ures, stochastic process models are naturally applicable and allow to 
counteract the previous problems. Among them is the Wiener process, 
[33] this stochastic process has been used to model the light intensity 
of LED lamps; Joseph & Yu [15] to improve reliability; Wang, et al. 
[42] proposed an adaptive method and a numerical example about 
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Ocena niezawodności z wykorzystaniem stochastycznego 
modelu wzrostu temperatury w metalowych wytłoczkach, 
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Many products wear out over time even before they fail or stop working, therefore, through accelerated degradation tests one is 
able to make inferences about statistical parameters or the distributions of a product useful life. Since many devices experience 
different types of variation due to unobservable factors during the manufacturing processes or under certain operating conditions; 
these situations lead to the need in developing accelerated degradation models with several variables of acceleration and random 
effects. The proposed model in this paper, is a model based on the gamma process with random effects to have a better analysis 
of degradation. This model is applied to the analysis of the temperature increase of metal stampings that are affected by multiple 
explanatory variables. In addition, a statistical inference method based on a Bayesian approach is used to estimate the unknown 
parameters to then perform a reliability analysis after obtaining the first-passage time distributions.
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Wiele produktów zużywa się z upływem czasu zanim nawet ulegną uszkodzeniu lub przestaną działać. Badania przyspieszonego 
starzenia pozwalają wyciągać wnioski na temat parametrów statystycznych lub rozkładów okresu użytkowania produktu. Wiele 
urządzeń podlega różnym rodzajom zmienności pod wpływem działania nieobserwowalnych czynników występujących podczas 
procesu produkcyjnego lub w pewnych warunkach pracy; sytuacje te  wymagają opracowania modeli przyspieszonego starzenia 
uwzględniających wielorakie zmienne przyspieszenia oraz efekty losowe. Zaproponowany w przedstawionym artykule model opie-
ra się na procesie gamma z efektami losowymi, dzięki czemu pozwala na lepszą analizę degradacji. Model ten zastosowano do 
analizy wzrostu temperatury w metalowych wytłoczkach, na które oddziałuje wiele zmiennych objaśniających. Ponadto do oszaco-
wania nieznanych parametrów wykorzystano metodę wnioskowania statystycznego opartą na podejściu bayesowskim. Umożliwiło 
to analizę niezawodności po uzyskaniu rozkładów czasu pierwszego przejścia.

Słowa kluczowe:	 badanie przyspieszonego starzenia, proces gamma, efekty losowe, ocena niezawodności.
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cracks (low intensity) due to fatigue; Barker & Newby [3] to describe 
the degradation of a multi-component system and develop an optimal 
non-periodic inspection policy; in areas such as medicine, to describe 
a series of biomarkers that represent the deterioration of systems over 
time, in a population of individuals infected with HIV to predict the 
residual time since the entry into the study until the moment in which 
a critical limit is reached [9]. Another model is the inverse Gaussian 
process which has been used by Wang & Xu [40] to fit the laser GaAs 
data; Peng [25] and Ye et al. [45] discussed when the underlying 
degradation follows the Gaussian inverse process; Zhang, et al. [50] 
describe a model to characterize the growth of depth defects by cor-
rosion in underground energy pipelines; in fatigue cracks of structural 
components from metallic aircrafts, mainly in aluminum parts [19]; in 
the location of wireless sensor networks [28]; for the analysis of the 
degradation of industrial bearings [13]; in a series of biomarkers that 
represent the deterioration of the systems over time, in a population 
of individuals infected with HIV to predict the latency time from the 
moment of infection until the moment in which it is detected [9]. The 
Poisson process has also been presented as a model to deal with the 
reliability estimation of systems and processes. Andrzejcza et al. [2] 
presented a Poisson based model to estimate the cost of corrective 
maintenance of public mass transport vehicles.

On the other hand, the gamma process has been used extensively 
in the literature, this due to its important characteristics that it can be 
used when a large number of product failures is caused by the impact 
of external random factors that tend to be very small, with independ-
ent increases, with base of zero and up to infinity (not negative) and 
where performance can only decrease with respect to time [43, 16 10]. 
Therefore, it is adequate to model gradual damage where a stochastic 
monotonous deterioration accumulates [35], the increments are sta-
tionary [37]. Some applications have been presented as worn-out, with 
propagations of fissures, crack growth, erosion, consumption, creep, 
swelling, degrading health index, corrosion, consumption and fatigue, 
among other factors [29,36]; by Iervolino, et al. [14] to model the 
effect produced by earthquakes; van Noortwijk [36] studied the appli-
cation in maintenance Wang, et al. [41] proposed an adaptive method 
applied to the growth of fatigue cracks; Bordes, et al. [4] considered 
a degradation model that consists of two independent processes, in 
addition they illustrated their method through a study and an applica-
tion to a set of real data presented in the article by Takeda & Suzuki 
[31]; Pan, et al. [21] proposed reliability models for systems with two 
degrading components depending on an example of a railway.

This article presents a case study related to the increase of tem-
perature in metal stampings which were exposed to different levels 
of electric current, apart from considering different explanatory vari-
ables during an ADT. The analysis of this case study is carried using 
the gamma process by considering the use of a life-stress relation-
ship such as the exponential link function. This life-stress relation-
ship is commonly used when the case of multiple stress variables 
is presented, some important applications can be found in: Park & 
Padgett [24] that suggested a hyper-cuboidal volume approach as a 
measure of acceleration that can incorporate several acceleration vari-
ables. A special case that includes the Weibull model and the law of 
power [20].  By considering the proportional hazard model [6] as an 
extended model with a weak link, with hyper-cuboidal volume and 
the consideration of random effects. In different applications such as 
bridge beam data that includes degradation due to the entry of chlo-
ride ions [39]. To compare a set of fatigue-cracks growth data [47]; 
to evaluate the effectiveness of laser photocoagulation to delay visual 
loss in patients with diabetic retinopathy [49]. As a model that has ap-
plications in maintenance [7], and in the degradation of light intensity 
of an electronic device [48]. On the other hand, random effects are 
considered in the gamma process model in order to include the unit 
to unit variation. The parameters of interest are estimated based on a 
Bayesian approach via Markov chain Monte Carlo (MCMC). Like-

wise, a comparison was made with other stochastic processes in order 
to obtain the one that best fits the data that was used.

The rest of this document is organized as follows. In Section 2, the 
characteristics, functions and the first-passage time distribution of the 
gamma process are presented. First, the gamma process is introduced 
with random effects, and then the exponential link relationship is pre-
sented as a life stress function that best fits the explanatory variables 
that affect the case study. In Section 3, an estimation scheme for the 
gamma process parameters is presented, under a Bayesian analysis 
with MCMC approach. In Section 4, a case study based on the tem-
perature increase of metal stampings is provided to illustrate the appli-
cation and utility of the proposed model; the estimation of the model 
was made based on Bayesian inference, to obtain the first passage 
time distributions; finally, a comparison with other stochastic proc-
esses is discussed. The conclusions can be seen in Section 5.

2. Stochastic model based on the gamma process

2.1.	 General Characteristics

In this paper, it is considered that the degradation of a perform-
ance characteristic at time t  ( ){ }; 0Z t t ≥  is governed by a gamma 
process. The gamma process has been widely used in the literature as 
described in Section 1. The main properties of this process are:

( )0 0;Z ≡1.	

( )Z t2.	  has independent increments.
For any 3.	 ( ) ( ) ( ); t s Z t Z s Z t> − = ∆  follows a gamma distribu-
tion Ga v t s u Ga v t u−( )( ) = ( ), ,∆

where ( ); 0v t t ≥  is a non-negative increasing function with 0t ≥  
and ( )0 0v ≡ , also known as the shape function. And, 0u >  is the 
scale parameter. Supposing that the stochastic gamma process de-
scribe the degradation level of some performance characteristic at 
time t , then the probability density function (PDF) can be denoted 
as in (1), with mean vt u⋅ , variance 2vt u⋅ , and compact notation as 
( ) ( )~ , Z t Ga vt u .
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The moment of failure is an important characteristic that can be 
obtained from (1) and occurs when the degradation ( )Z t  reaches a 
critical level of degradation ω  [5]. This moment of failure is a ran-
dom variable Tω  with expression denoted as:

	 ( ){ }.T inf Z tω ω= ≥ 	 (2)

On the other hand, the cumulative distribution function (CDF) of 
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where /x z u= , the integral in the last previous equation can be sim-
plified by considering the incomplete gamma function, 

Γ a b e d
b

a,( ) =
∞

− −∫ζ ζζ1 . Thus, under the notation a vt=  and 

/b uω=  , the CDF results as denoted in (3).

	 F t
vt u

vtGa ω
ω( ) = ( )
( )

Γ
Γ

, /
.	 (3)

Now suppose that an ADT has been performed to N  devices that 
are observed during M  inspections until the test termination time 
T  . Then, ( )i jZ t  degradation measurements are observed for the tra-
jectories 1,2, ,i N= …  at the corresponding times , 1,2, ,jt j M= … . 
Considering the independent increment property of the gamma proc-
ess, and ∆Z t Z t Z t ti j i j i j( ) = ( ) − ( ) =−1 0 0,  and 1j j jt t t −∆ = − , thus 
the variable ∆Z ti j( )  is governed by a gamma process model as de-
noted in (4) with compact notation ∆ ∆Z t Ga v t ui j j( ) ( )~ , .
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2.2.	 Random effects in the gamma process

Random effects are considered in the gamma process when it 
is suspected that non observable factors can cause variations in the 
observed degradation. Specifically random effects are incorporated 
to describe unit to unit variability, i.e., heterogeneity among unities 
under test [46,10]. According to Rodríguez Picón, et al. [30], when 
performing a degradation test each unit under test may be affected by 
different sources of variation which denotes the need of incorporate 
random effects in the model.  In the case of the gamma process, ran-
dom effects can be incorporated as a function of the scale parameter. 
Then, it is considered that iu  is a random variable for the 1,2, ,i N= …  
devices under test. It can be noted that as the mean of the gamma proc-
ess is described as vt u⋅  and the variance is described as 2vt u⋅ , the 
randomness of  iu  have an impact over the mean degradation and the 
variance degradation. This means that it is expected that the degrada-
tion paths exhibit a large variation among paths (the mean degradation 
is a function of iu ) and a large variation within each path (the vari-
ance is also a function of iu ).

In the literature, it has been found that the random scale param-
eter ( )iu  is described by a gamma distribution Ga δ ϕ,( )  [38]. This 
model is known as the classical gamma process model with random 
effects. By considering this, the PDF of the degradation ∆Z ti j( )  is 
represented as:

	 f Z t f Z t v t u f u dui j Ga i j j i Ga i i∆ ∆ ∆( )( ) = ( )( ) ⋅ ( )
∞

∫
0

| |, , .δ ϕ       (5)

Thus, the CDF of the lifetime when the degradation path reaches 
the critical level of degradation ω can be obtained by solving the in-
tegral presented in (6):

	 F t F t f u duR Ga Ga i iω ω δ ϕ( ) = ( ) ⋅ ( )
∞

∫
0

| , . 	 (6)

2.3.	 The exponential link relation as a function of the shape 
parameter

The ADTs are used to accelerate the degradation process and thus 
accelerate the failure time in the aims of obtaining a reliability estima-
tion in less time. Of course, these type of tests consist in submitting 
a device to high levels of stress during a determined period of time, 
which allows to obtain the degradation increments that lead to the 
failure in a short time [34]. Furthermore, a product may be exposed 
to multiple covariates (s) that affects the degradation process, such as 
temperature, humidity, voltage, etc., and other characteristics such as 
material type, geometrical characteristics, etc. Then, it is important to 
incorporate such covariates in the model. Specifically as a function of 
a parameter of the proposed model [46].

The exponential link function has been used in the cases when 
multiple covariates have an effect on the performance of a character-
istic of interest. This function relates a life characteristic and the stress 
variables through exponential functions [11]; the general form of this 
function is presented in (7) [44]:

	 h s ek
sk k( ) = β β

0 , 	 (7)

where ( ) kh s  can repesent a life characteristic that is observed under 
the effect of 1 2, ,  k ps s s s= …  stress variables, where p  represents the 
number of covariates. On the other hand, β0  and βk k p= …( )1 2, ,  
are constant parameters to be estimated [23]. In the case of the gamma 
process, in the literature it has been found that the shape parameter 
describes the effect of stress on the performance of products, such 
that v  can relate the effect of ( ) kh s . Thus, it is considered that 
v s h s ek k

sk k( ) = ( ) = β β
0  for 1,2,k p= … . In this way, the PDF of 

the gamma process with the kth  stress variable can be expressed as 
in (8):

f Z t f Z t v s t u f ui j k Ga i j k j i Ga i∆ ∆ ∆( )( ) = ( ) ( )( ) ⋅
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∫| | |δ ϕ β β δ ϕ, , , , ,0
0

(( )dui ;

	 1,2, ; 1,2, , ;  1,2, ,k p i N j M= … = … = … 	
(8)

The CDF of the moment of failure when the degradation path 
reaches the critical value ω can be found by solving the integral in (9):

	 F t s F t v s t u f u duk Ga k j i Ga i iω ω δ ϕ| | |( ) = ( )( ) ⋅ ( )
∞

∫
0

, , 	 (9)

According to Lawless & Crowder[16], the integral in (9) results in 
terms of the Fisher distribution. Then, by considering the exponential 
link function, the CDF of the first passage times result as in (10):

	 F t s F
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δω
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3. Estimation of parameters 

Certainly, it results of interest to estimate the parameters  
β β δ ϕ0, , ,k( )  from the model presented in (8), such that it is possi-

ble to obtain reliability estimations through the function presented in 
(10). However, it can be noted from the integral presented in (8) that 
the classical methods of estimation, such as the maximum likelihood 
estimation (MLE) method, result too complicated to implement given 
the complexity of the function in (8). On the other hand, in the last 
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years there have been important advances in numeric approximation 
techniques to deal with complex functions via MCMC [12]. Specifi-
cally, the estimation of complex functions via a Bayesian approach 
with MCMC has been presented as an important alternative. Definite-
ly, the implementation of a numerical technique such as a Bayesian 
MCMC estimation scheme to solve complex functions requires the 
use of a specialized software. Fortunately, there several open source 
softwares such as OpenBUGS and R which can be used. In this paper, 
we consider an estimation scheme based on a Bayesian approach with 
MCMC to estimate the parameters in the model (8). This approach has 
the practical advantage that it can incorporate subjective information 
in a natural way when there is little information about the historical 
behavior of the parameters on interest. 

In Figure 1, we present the general estimation scheme based on 
a Bayesian approach. For the parameters of interest β β δ ϕ0, , ,k( ) , 
we consider non-informative prior distributions (which are denoted 
as π β π β0( ) ( ) …, ,k ), given that no prior knowledge of these pa-
rameters is available. Specifically, the next prior distributions were 
considered:

	
π β τk N k p( ) ( ) = …~ , ; , ,0 1 22

	
π β τ0

20( ) ( )~ ,N

	
u Gai ~ ,δ ϕ( )

	
π δ δ( ) ( ); ~ . , .fGa 0 01 0 01

	
π ϕ ϕ( ) ( ); ~ . , .fGa 0 01 0 01

Non-informative prior normal distributions N 0 2,τ( )  were 
considered for the parameters of the exponential link function 
β β0 1 2, ; , ,k k p= …( )  with mean 0 and τ 2 0 001= . , where τ σ2 21= /  

is know as a precision parameter. While, non-informative prior gam-
ma distributions were considered for the parameters of the random 
scale u Gai ~ ,δ ϕ( ) , with shape parameters a aδ ϕ= =0 01 0 01. , .  and 
scale parameters b bδ ϕ= =0 01 0 01. , . , respectively. Considering these 
prior distributions and the likelihood function of (8), the posterior dis-
tribution can be expressed as in (11). This estimation scheme was pro-
grammed in OpenBUGS and solved via MCMC.
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	 1,2, ; 1,2, , ; 1,2, ,k p i N j M= … = … = … 	
(11)

4. Case study

The case study consists in an ADT performed to obtain the tem-
perature increase of metal stampings that are incorporated in printed 
circuit boards (PCB). These PCBs are used in the fuse box of a cer-
tain automobile. The ADT was performed by applying different levels 
of current into the stamping as 60, 80 and 100 amperes. In addition, 
three types of materials were used in the test, which are: CDA151, 
CDA210 and CDA425, and four lengths of the stamping were also 
considered as 100, 150, 200 and 250 mm. This test configuration re-
sulted in a total of five replicates each with 28 combinations of the de-
scribed levels of the three factors. A total of 140 metal stampings, i.e. 

1,2, ,140i = … , were subjected to the different levels of current during 
30 minutes. Thus, all the devices were observed simultaneously at 

0 1 2 3 430, 60, 90, 120, 150t t t t t= = = = =  and 5t =180. Given that the 
fuse box has a limit of temperature of 170°C, and for safety reasons, 

Fig. 2.	 Test configuration to obtain the temperature increase of the metal 
stampings

Fig. 1.	 Bayesian estimation scheme for the stochastic gamma process with 
random effects and link exponential function. Based on [27] Fig. 3. Temperature increase paths for a sample of metal stampings
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the maximum allowance for the temperature was set at 145°C (maxi-
mum design temperature). In Figure 2, the general configuration of 
the test is presented, the material type and the test equipment can also 
be seen. Furthermore, as can be noted in Figure 2 all the temperature 
readings were obtained in the middle of the stamping, this in the aims 
of obtaining homogenous readings for all the stampings under test. In 
Figure 3, a sample of paths of the temperature increase of different 
metal stampings is presented.

4.2.	 Estimation of the model

Considering the stochastic gamma process with random effects 
and the exponential link function for the current, material type and 
the length of the stamping, then the posterior distribution described 
in (11) results in:

f Z t

f u f Z t v s u

k i j

i

N
i

j

M
i j k i

β β δ ϕ

δ ϕ

0

1 1

, , ,

[ , ,

|

| |

∆

∆

( )( )
∝ ( ) ( ) ( )

= =
∏ ∏ (( ) ⋅ ( ) ⋅ ( ) ⋅ ( ) ⋅ ( )] ;π β π β π δ π ϕ0 k

	
1,2,3; 1,2, ,140; 1,2,3,4,5k i j= = … =

The estimation scheme proposed in Figure 1 was considered 
for the estimation of the parameters of the model described above 
β β β β δ ϕ0 1 2 3, , , , ,( ) . According to the proposed scheme, the Open-

BUGS software was used for the implementation of the MCMC 
method. The algorithm was constructed considering the model pre-
sented in (8) and non-informative prior distributions as follows: non-
informative normal distributions were considered for the parameters 
of the link exponential function as β β β β0 1 2 3 0 0 0001, , , ~ ,�.N ( ). In 
addition, non-informative prior gamma distributions were consid-

ered for the parameters of the random effects parameter iu  as 
δ ϕ, ~ . , .Ga 0 01 0 01( ) . A total of 400,000 iterations were con-
sidered, from which a total of 50,000 were disregarded for burn-
in purposes. In Table 1, a summary of the obtained estimations 
is presented. While, in Figure 4 the posterior distributions for 
β β β β δ ϕ0 1 2 3, , , , ,( )  are presented.

The Brooks-Gelman Rubin (BGR) diagnostic statistic was 
used in the aims of determining convergence in the estimation 
of parameters. For this, two chains of initial values were defined 
for the parameters of interest. The first chain of initial values was 
defined as  β β β β δ0 1 2 30 005 0 006 0 007 0 002 2= = = = =. , . , . , . ,  
and φ 0.001ϕ =  , while the second chain the next initial values 

were considered 0 1 2 30.1, 0.1, 0.1, 0.1, 1β β β β δ= = = = =  and φ
0.1ϕ = . In Figure 5, the BGR graphs are presented for the parameters 

of interest under the two chains of initial values. Given that for all the 

Table 1. Obtained estimations of parameters under the Bayesian approach

Mean Sd MC error 0.025t Median 0.975t

0 β̂ -4.688 0.4074 0.004095 -5.479 -4.69 -3.887

1 β̂ 1.171 0.02764 2.99E-04 1.117 1.171 1.225

2 β̂ 0.3002 0.06246 9.42E-04 0.1745 0.3014 0.4188

3 β̂ -0.06096 0.07387 8.00E-04 -0.2082 -0.06007 0.08192

δ̂ 28.99 6.769 0.1169 17.94 28.29 44.48

ϕ̂ 11.1 2.185 0.0356 7.403 10.91 15.96

Fig. 4. Posterior distributions for β β β β δ ϕ0 1 2 3, , , , and( )ˆ ˆ ˆ ˆ ˆ ˆ

Fig. 5. BGR diagnostic for the parameters of interest

Fig. 6. Reliability functions under different levels of current
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parameters of interest, the behavior of the two chains is around 1, then 
it can be said that convergence was achieved.

4.3.	 First passage time distribution

Considering the estimated parameters of interest that are present-
ed in table 1, it results necessary to characterize the first passage time 
distributions when the degradation trajectories cross the critical level 
145°C. As presented in equation (10) the CDF of the first passage 
times is described as:

	 ( ) ( ) ( ),2| 1
k jk v s t

k j
F t s F

v s tω δ
δω

ϕ

 
= −   

 
	

Thus, the reliability function can be described as:

	 R t s F
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


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( ) ,2 	 (12)

where the parameter ( ), 1,2,3kv s k =  is related to the link exponential 

function as v s ek
s s s( ) = + −β0

1 171 0 3002 0 060961 2 3. . . , where 1s current=  , 
2  s material type=  and 3s length= . For this case study, we coded the 

material types as 151 1CDA = , 210 2CDA =  and 425 3CDA = . Of 
course different first passage time reliability functions can be charac-
terized depending of the levels of , 1,2,3ks k = . In this case, we are 
interested in the material type 151CDA  with coded value as 1 , and 
the stamping length of 100. Under these two fixed levels of these two 
factors and the different levels of the current, we evaluated the func-
tion presented in equation (12). In figure 6, the different reliability 
functions are presented.

The effect of the current over the temperature of the stamping can 
be noted in the behavior of the reliability functions. In addition, the 
mean time to failure (MTTF) can be obtained as:

	 ( )
0

| .kMTTF R t sω

∞
= ∫

By considering the reliability function in (12) and the previously dis-
cussed levels of the material type and stamping length, the MTTF under the 
different levels of current were obtained as 313.8065 MTTF minutes=  
for 60 amperes, 98.74441 MTTF minutes=  for 80 amperes and 

64.33426 MTTF minutes=  for 100 amperes.

4.4.	 Comparison with other stochastic process

Besides the gamma process, we also considered the Wiener 
and the inverse Gaussian process to model the dataset obtained 
from the ADT. Equivalent stochastic degradation models with ran-
dom effects from these two stochastic processes were considered, 
specifically the models proposed by Cheng & Peng [5] and Ye & 
Chen [46]. The comparison was carried out based on the Akaike 
information criterion (AIC), which is obtained via the formula 

( ) ( )AlC  2 loglikelihood  2 number of parameters  = − +  [8,1]. 
The obtained AIC values for the three stochastic processes re-

sulted in: for the Wiener process a value of 239.5724, for the gamma 
process a value of 232.2521 was obtained, while for the inverse Gaus-
sian process a value of 234.3279 was obtained. Based on these results, 
it can be noted that the stochastic gamma process is more adequate 
to model the degradation dataset of the presented case study. This, 
given that the AIC value was the lowest compared to the other two 
stochastic processes.

5. Conclusions

In this paper, a stochastic degradation model based on the gamma 
process was proposed, in which random effects and multiple stress 
variables are incorporated. The estimation of parameters was carried 
out using a Bayesian approach considering MCMC. The proposed 
model as well as the estimation scheme were implemented in a case 
study that consisted in the increase of temperature on metal stamp-
ing under different electric current levels, different types of material 
and different plate lengths were also considered. Given that non-in-
formative a priori distributions were considered for the parameters of 
interest, two chains of initial values were defined in order to evaluate 
the convergence using a BGR graph. Given the behavior of the BGR 
graph it was noted that convergence was observed in all parameters. 
With the parameters obtained it was possible to estimate the reliability 
under the different electric current levels for the material type CDA-
151 and a length of 100 mm, in the same way it was possible to obtain 
the MTTF values. The effect of the current and the increase in the 
temperature on the metal stamping can be seen both in the reliability 
functions and in the MTTF’s. Finally, a comparison was made with 
the Wiener and inverse Gaussian processes based on the AIC value, 
given the obtained results it can be said that the gamma process turned 
out to be the best. As a future work, other characteristics of the stamp-
ing may be considered, to add them to the exponential link function, 
such as the width and thickness. These characteristics can be easily 
added to the proposed model.
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