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1. Introduction

System prognosis is a key factor within the condition-based main-
tenance (CBM) strategy and has been highlighted in different fields of 
science (Widodo and Yang [54]; Sutharssan et al. [47]). In this context, 
Remaining Useful Life (RUL) is a rather common measure used to 
characterize equipment performance (Sikorska, Hodkiewicz and Ma 
[46]). According to Si et al. [42], RUL is the useful life left at a par-
ticular time of operation, and is typically random and unknown. In 
fact, RUL is related with several factors (e.g. current degradation state, 
operating environment, system function) and should be estimated from 
available sources of information such as condition and health monitor-
ing sensors. Even though there is no universally accepted best model 
to estimate RUL (Liao and Köttig [25]), current promising statistical 
methods have dealt with real-time big data (Bousdekis et al. [5]).

In fact, different signals can be collected in order to track the deg-
radation of a system, and then build an accurate relationship between 
the current health condition state and RUL. Many signals (e.g. vibra-
tion, acoustic emission, temperature) can represent the evolution of 
degradation, and their analyses are as necessary as arduous (Chang 
et al. [7]; El-Thalji and Jantunen [13]; Ambhore et al. [2]). In this 
context, rotating equipment has received special attention due to its 
critical operating regimes, frequent failure modes and availability of 
measurements (e.g. vibration), allowing detection and isolation of in-
cipient failures (Vachtsevanos et al. [54]).

Support Vector Machines (SVM) have been a successful technique 
for RUL estimation once it can deal with relative multi-dimensional 
datasets (Liu et al. [28]). Several SVM-based methods (Soualhi, 
Medjaher and Zerhouni [44]; Saha, Goebel and Christophersen [41]; 
Patil et al. [34]) have been proposed to predict RUL, taking into ac-
count that hybrid methodologies usually improve estimation accuracy 
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Okres użytkowania sprzętu jest ważną zmienną związaną z prognozowaniem pracy systemu, a możliwość jego dokładnej oceny 
daje zakładom przemysłowym znaczną przewagę konkurencyjną. W tym artykule pozostały czas pracy (Remaining Useful Life, 
RUL) szacowano za pomocą maszyn wektorów nośnych zoptymalizowanych rojem cząstek (SVM+PSO) z uwzględnieniem dwóch 
technik przetwarzania wstępnego pozwalających na poprawę jakości danych wejściowych: empirycznej dekompozycji sygnału 
(Empirical Mode Decomposition, EMD) oraz transformat falkowych (Wavelet Transforms, WT). W niniejszej pracy, EMD i falki 
w połączeniu z SVM wykorzystano do prognozowania RUL łożyska ze zbioru danych IEEE PHM Challenge 2012 Big Dataset. W 
szczególności, przeanalizowano dwa przypadki: uwzględniający kompletny zestaw danych o drganiach oraz drugi, biorący pod 
uwagę okrojoną wersję tego zbioru. Prognozy otrzymane na podstawie modeli, w których zastosowano obie techniki przetwarza-
nia wstępnego porównano z wynikami uzyskanymi za pomocą PSO + SVM bez wstępnego przetwarzania danych. Wyniki pokazały, 
że model EMD + SVM generował dokładniejsze prognozy i tym samym przewyższał pozostałe badane modele.

Słowa kluczowe:	 duże dane, sygnał drgań, łożyska, pozostały okres użytkowania, empiryczna dekompozycja 
sygnału, transformata falkowa, maszyna wektorów nośnych, optymalizacja rojem cząstek
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and overcome limitations of individual methods (Souto Maior et al. 
[48]).

However, SVM learning performance strongly depends on the 
quality of the input data. In fact, the direct use of the original series as 
input variables could consider irrelevant information (e.g. noise) and/
or miss important features, which may generate imprecise predictions. 
Hence, specific techniques can be used as pre-processing tools in or-
der to improve data input quality, and then obtain superior predictions 
from the learning method.

A notable pre-processing technique is Empirical Mode Decom-
position (EMD), which decomposes the original series into a sum of 
Intrinsic Mode Functions (IMFs). According to Huang et al. [21], 
EMD is adaptive, empirical, direct and intuitive. Other specific pre-
processing approach based on time-frequency analysis is Wavelet 
Transforms (WT). The idea behind WT is the same for the short-time 
fourier transform (Allen [1]), concentrating analysis on frequency fil-
ters. However, WT presents the best frequency/time resolution trade-
off once it applies windows (filters) of various lengths. 

Hence, this work proposes analyzing the ability of EMD-based 
models and WT-based models to correctly predict RUL when coupled 
with optimized-SVM. We compared and evaluated the prediction per-
formance when applying both pre-processing techniques as well as 
predictions obtained without them. The big database considered was 
provided by FEMTO-ST Institute for the IEEE PHM 2012 Data Chal-
lenge focused on the estimation of the RUL for bearings (Nectoux et 
al. [35]) from vibration data. 

The remainder of this article is organized as follows: Section 2 
presents concepts and a theoretical background about rolling bearing 
and vibration signals, EMD, WT and SVM. Section 3 describes the 
methodology and steps adopted on the creation of models to estimate 
RUL of bearings. Section 4 presents the vibration big database and 
two cases in which the methodology was applied as well as the results 
of this application. Section 5 concludes remarks.

2. Theoretical background

2.1.	 Rolling Bearings and Vibration Signal

Rolling bearings are critical components of rotating machines and 
its fault diagnosis has subject of extensive research (Rai and Upad-
hyay [37]; Nikolaou and Antoniadis [33]). Generally, the main com-
ponent considered on the analysis of localized defects in rolling bear-
ings are the outer race, inner race, ball and cage (Prabhakar, Mohanty 
and Sekhar [38]).

Regarding to monitoring information (i.e. data), signals are broad-
ly classified depending on the its specific type: vibration and acoustic, 
temperature and wear debris analysis (Tandon and Choudhury [52]). 
Particularly, vibration signals are a remarkable indicators for deter-
mining failure modes because they are easy-to-measure and provides 
adequate information, being commonly used in the condition monitor-
ing and diagnosis of the rotating machinery (Chang et al. [7]; McKee 
et al. [30]). In this context, several standard vibration-based measures 
are commonly used for diagnosis purposes, including entropy, root 
mean square, signal amplitude, variance, kurtosis, as well as higher 
order statistics (Lybeck, Marble and Morton [29]).

In a fault state, vibration signals presents different pattern from 
healthy state, which allows failure identification (Chang et al. [7]). 
Indeed, localized faults in rolling bearing components produce a se-
ries of broadband impulse responses in the acceleration signals. Each 
component of the bearing rolling (e.g. outer and inner race; ball) has 
its own rotation frequency and wave behavior, which leads to a com-
posed and complex signal (Randall and Antoni [41]) as depicted in 
Figure 1. Pre-processing techniques (e.g. EMD and WT) represents 
an alternative to deal with complex series creating a more manageable 
data, yet still carrying the important information.

Fig. 1. 	Signals from local faults in rolling element bearings. Adapted from 
Randall and Antoni [38]

2.2.	 Empirical Mode Decomposition

A robust method to analyze non-linear and non-stationary data, 
Empirical Mode Decomposition (EMD) was developed by Huang et 
al. [19] and have been used in many types of applications. Its main 
idea is that a data series could be decomposed into a small number of 
simpler oscillation functions, called Intrinsic Mode Functions (IMFs). 
Then, the objective is to obtain IMFs regarding data characteristics in 
time scale (Huang and Wu [21]). Figure 2 depicts a general example 
of EMD decomposition (6 IMFs and a residue).

Fig. 2. General decomposition presented by EMD

Generally, any complex signal can be possibly separated into a 
small number of IMFs and a trend (or residue) r , indexed on t T∈  , 
where T  is the time interval (set of moments) considered. For a num-
ber N  of IMFs, the original series ( )x t  is expressed as follows: 

	 ( ) ( ) ( )
1
IMF  

N
i

i
x t t r t

=
= +∑ 	 (1)

Huang et al. [19] defines IMF as a function that satisfies two con-
ditions: (1) in the whole data set, the number of extrema and zero 
crossings must either equal or differ at most by one; and (2) at any 
point, the mean value of the envelop defined by the local maxima 
and the envelope defined by the local minima is zero. Then, EMD 
empirically identifies the IMFs through a process called sifting, which 
is based on three assumptions: (1) the signal has at least two extrema 
– one maximum and one minimum; (2) the characteristics time scale 
is defined by the time lapse between the extrema; and (3) if data has 
not extrema, but only contains inflection points, then it can be dif-
ferentiated once or more times to reveal the extrema. The sifting goal 
is to remove riding waves to make the wave profile more symmetric. 
The sifting process can be described in the following steps (see. Fig-
ure 3):
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Identify all local extrema (maximum and minimum) of the 1.	
series ( )x t ;
Connect all the local extrema with a cubic spline line to create 2.	
the upper and lower envelopes, ( ) ( ),u le t e t , respectively;

Calculate the envelope mean 3.	 ( ) ( ) ( )
2

u le t e t
m t

+
=

Obtain 4.	 ( ) ( ) ( )h t x t m t= − , which is candidate to be IMF;
Verify if 5.	 ( )h t  satisfies conditions defining an IMF. If it satis-
fies, an IMF was generated and the new series ( ) ( )x t h t−  
replaces the initial series ( )x t . Otherwise, ( )h t  would be 
processed again in step 1.

Fig. 3. Sifting process in EMD. Adapted from Souto Maior et al. [45]

At the end of the sifting process, a number of IMFs are generated 
as well as a final residue ( )r t . The number of IMFs may vary de-
pending on the intrinsic characteristics of ( )x t . If the sifting process 
is carried to an extreme, the candidate IMF could have no physical 
meaning in sense of both amplitude and frequency modulations. Thus, 
a stop criterion for the sifting process has to be determined, which can 
be accomplished by limiting the standard deviation value computed 
from two consecutive sifting and/or the number of sifting iterations, 
as originally proposed by Huang et al. [19] and still in use (Eftekhar, 
Toumazou and Drakakis [13]). In practice, the number of IMFs cre-
ated is lower than 10. 

Generally, ( )1IMF t  should contain the finest scale or the short-
est period component of the signal. Since the reminder signal ( )1r t , 
i.e. ( ) ( )1IMFx t t− , still contains information of longer periods (small 
frequencies), it is treated as the new data and it is subjected to the 
same sifting process as described above. This procedure can be re-
peated an all the subsequent iterations (Equation 2):

	 ( ) ( ) ( ) ( ) ( ) ( )1 2 2 1, , N n Nr t IMF t r t r t IMF t r t−− = − = 	 (2)

Finally, the original series ( )x t  is represented as a sum of a num-
ber N  of IMFs ( )t  and a residue ( )Nr t , as presented in Equation 
(1).

2.3.	 Wavelet transform

Wavelet Transforms (WT) was first proposed by Morlet et al. [31] 
and has been a widespread technique applied in the field of signal 
analysis. WT is a mathematical tool that converts a signal of time 
domain using a wavelet basis function (i.e. a series of wavelet coef-
ficients in time-scale domain) into a different form (Mallat [28]; Yan, 
Gao and Chen [57]). Kumar and Foufoula-Georgiou [22] remarks that 
a WT is chosen so that it has two important properties: admissibility 
(i.e. zero mean) and regularity (i.e. sufficient fast decay, to obtain lo-
calization) conditions. 

The representation of the transform process occurs by an infinite 
series expansion of dilated/contracted and translated versions of a 
mother wavelet, each multiplied by an appropriate coefficient. Hence, 
the same signal could be represented in different forms, allowing mul-
tiple analysis. In practical applications, it is possible to use different 
well-known WT for distinct purposes and its choice depends on the 
specific signal characteristics. Figure 4 depicts a general signal proc-
essed by WT. 

Fig. 4. General decomposition presented by WT

In time domain, a general wavelet dictionary ψu s,{ }  can be de-

fined as the dilated with the parameter 0s > , and translated by u R∈  
of the mother wavelet ψ  as follows(Chen et al. [8]):

	 ψ ψs u t
s

t u
s, ( ) = −








1 	 (3)

Hence, the WT of a function ( )x t  is calculated by:

	 W u s x t t dts u, ���,( ) = ( ) ( )
−∞

∞

∫ ψ 	 (4)

Guohua et al. [17] argues that wavelet analysis decomposes a sig-
nal into two parts, called approximations and details, in which the 
former consists of high scale low frequency components and offers 
general information, while the latter corresponds to the low scale high 
frequency portions and provides detailed hidden patterns. 

Daubechies [10], along with Mallat [30], popularized WT, allow-
ing more liberty in the choice of the basis wavelet functions at a little 
expense of some redundancy, and is credited with the development of 
the wavelet from continuous to discrete signal analysis. Considering 
Equation (3), if s  represents a continuous variable, then ( ),W u s  is 
the continuous WT of ( )x t  while if is a= , a  is the scale parameter, 
then ( ),W u s  is the discrete WT of ( )x t  (Chen et al. [8]). Daubechies 
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wavelets basis relies on the scaling function φ t( ) , with set of (filter) 
coefficients { } k k Za ∈ , and wavelets function ψ t( ) , with set of (filter) 
coefficients { } k k Zb ∈ , satisfying the following refinement (Bakhoday-
Paskyabi, Valinejad and Azodi [3]):

	 φ φk
k

kt a t k( ) = −( )∑2 2 	 (5)

	 ψ φk
k

kt b t k( ) = −( )∑2 2 	 (6)

Hence, in WT decomposition, the discrete series ( )x t  of M  
points is decomposed in distinct levels (e.g. j  layer) of φk t( )  and 
ψ j k t, ( ) , each one related with a specific time-frequency characteris-
tic, was follows (Chun-Lin [10]):

	 x t
M

W j k t
M

W j k t
k

k
j k

j k( ) = ( ) ( ) + ( ) ( )∑ ∑∑
1 1

0, , ,φ ψ       (7)

For discrete WT, Daubechies wavelets were used in this work due 
to its successful and acknowledged applications (Rafiee, Rafiee and 
Tse [36]; Genovese et al. [16]). 

2.4.	 Support vector machine and particle swarm optimiza-
tion

Support Vector Machine (SVM) is a supervised learning method 
which aims at create an mapping function between an input vector x  
and an output scalar y  based on the training data set 
D y ym= ( ) …( ){ }x xm1 1, , ,  (Wang [56]). The objective is to find the 

function ( )f x  with the smallest penalization with respect to the de-
viation from the real data and, at the same time, as flat as possible. 
Depending on the nature of output y  (i.e. whether binary/categorical 
or real numbers), SVM assess different learning problems: (i) classi-
fication problem, when dealing with categorical classes (e.g. heath 
state of a machinery); and (ii) regression problem, when dealing with 
quantitative and real-valued parameters (e.g. RUL estimation) (Lins 
et al. [26]).

SVM is based on the principle of the Structural Risk Minimization 
and its concepts are built on the Statistical Learning Theory (Vapnik 
[55]). This means to solve a convex and quadratic optimization prob-
lem in which the Karush-Kuhn-Tucker (KKT) condition are necessary 
and sufficient conditions to guarantee a global optimum. The goal is 
not to look for the perfect alignment between the function ( )f x  and 
D , but the best representation for the mapping (i.e. a trade-off be-
tween the data fitness and the generalization ability to predict new 
data). The regression hyperplane equation is represented by:

	 ( )  f b= +Tx w x 	 (8)

with x  expressing the input data, and Tw  and b  the coefficients to 
be estimated minimizing the following regularized risk function:

	 min ,
,ω

εψ
b i

m
i iC

m
y f1 1

20=
∑ ( ) + w wT 	 (9)

in which:

	 ψ
ε ε

ε y f
y f if y f

otherwisei i
i i i i,

�( ) = − − − ≥

 0

	 (10)

where iy  is the i -th real output (i.e. the original data) while if  is 
the i -th estimated value. Equation (10) is known as the Vapnik’s 
ε-insensitive loss function, which implies a non-penalization when 
the points are inside a tube with radius ε. Hence, ε measures the per-
formance in the training process related to the first term of Equation 
(9). The second term of the same equation is used as a smoothness 
function of ( )f x  and is related to the machine’s capacity of gener-
alization represented by Tw w . Yet, C  is a trade-off for penalization 
between the empirical risk and the model’s smoothness. 

In addition, the problem could be formulated using the primal-
dual relation, which states that the solution from dual problem is also 
solution for the primal one. In practice, the dual problem is the one 
actually solved and, from the KKT conditions, a global solution is 
achieved. For more information related with the primal-dual problem, 
see Wright [55]. Hence, ( )f x  is obtained in terms of the dual prob-
lem from Equation (8) as follows:

	 f b
i

l
i i i

Tx x x, , * *α α α α( ) = −( ) +
=
∑

1
	 (11)

where iα  and * iα  are the dual Lagrange multipliers. To solve the 
linear regression, it is necessary to calculate the dot products, T

ix x , 
1, 2, , i l= … . The generalization for non-linear regression is possible 

by using kernel functions, ( ),iK x x , 1, 2, , i l= … . Hence, Equation 
(11) becomes Equation (12):

	 f K b
i

l
i i ix x x, , ,* *α α α α( ) = −( ) ( ) +

=
∑

1
	 (12)

We here adopted the gaussian Radial Basis Function (RBF) as the 

kernel function, which is expressed by K x x x xi j i j,( ) = − −





exp γ

2
 , 

where γ is also a model parameter. One of several advantages of RBF 
over others kernel functions is to provide great flexibility requiring 
just one parameter (Lins et al. [26]). 

A considerable challenge is to provide the best set of parameters 
to be used in training step. Therefore, metaheuristics, such as Par-
ticle Swarm Optimization (PSO), may lead to satisfactory parameters’ 
values. PSO is a probabilistic optimization heuristic inspired by the 
social behavior of biological organisms (e.g., birds and fishes) and on 
the ability of animal groups to work as a whole in order to find some 
desirable position. This seeking behavior artificially modeled by PSO 
provides useful results in the quest for solutions of non-linear optimi-
zation problems in a real-valued search space (Bratton and Kennedy 
[6]). PSO-optimized SVM have been successfully applied in reliabil-
ity problems (Droguett et al. [11]; Lins, Moura and Droguett [25]; 
García Nieto et al. [15]) and thus were here adopted for choosing to 
enhance models performance.

3. Methodology 

The methodology proposed in this paper is presented in Figure 
5 and was applied to an public bigdata set provided by FEMTO-ST 
Institute (Nectoux et al. [35]). The data was generated in the IEEE 
PHM 2012 Data Challenge focused on the estimation of the RUL for 
bearings based on vibration signals. Further details about the data set 
are exposed in next section.

The big datasets contain large quantity of information and, due to 
the computational cost and hardware restrictions, the learning model 
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cannot directly handle such an extensive data. Hence, to cover the 
massive data, two previous steps were performed for data dimension 
reduction: (i) feature extraction and (ii) data sampling. The former 
aims to reduce 2,560 vibration signal points into a representative 
measure (e.g. mean, kurtosis, or the highest absolute value), while 
the latter consists in sampling from original data (e.g. with frequency 
rate depending on the degradation state). Indeed, for healthier states 
of bearing, lower sampling frequency is necessary, while for more de-
graded states, higher sampling frequency is required. The procedures 
described above intended to extract only substantial information to be 
handled by the pre-processing techniques (EMD/WT). 

After sampling, EMD or WT was performed. In each case, two 
distinct regression models were created. For EMD, one model con-
tained all IMFs and the residue, while the other model contained just 
the final residue. For WT, one model consisted in wavelet functions 
of each level and the last scaling function, while the other model con-
sisted in just the last scaling function. Given that SVM highly depends 
on the data input, the idea of using just the final residue (EMD-case) 
and the last scaling function (WT-case) was to provide an input possi-
bly smooth enough yet still carries valuable aspects of the signal. For 
EMD, the number of IMFs generated directly depends on the char-
acteristics of signal; a maximum tolerance of 20 sifting was used. In 
WT, Daubechies function was used as mother wavelet and 4 decom-
position levels were applied. 

The next step was to input PSO+SVM model with the previous 
processed data. Then, we evaluated each model (1 – IMFs + Resi-
due; 2 – Residue; 3 – Wavelets + Scaling; 4 – Scaling; 5 – No pre-
processing) based on the performance of RUL prediction. This meth-
odology was applied in two different cases. The first application was 
performed with the complete data set provided. In this case, we con-

sidered data until failure (red dotted line in Figure 6), and a regression 
model was created to estimate the RUL considering each data point. 
The second application was more challenging once only part of the 
test set is provided, i.e., there was vibration signals just until some 
point far from failure time (yellow dotted line in Figure 6). In this 
case, the goal is to estimate correctly the RUL based on the current 
behavior of the vibration signals. Further details about both cases are 
presented in next session. 

4. Application example

The presented methodology was applied to a real bigdata set pro-
vided by FEMTO-ST Institute (Nectoux et al. [35]). Experiments were 
carried out on a laboratory experimental platform (PRONOSTIA), 
that enables accelerated degradation of bearings under constant and/or 
variable operating conditions, while gathering online health monitor-
ing data (e.g. vibration). The main objective is to provide experimen-
tal data that characterize the degradation of ball bearings along their 
complete operational life (until their total failure). Yet, considering 
the nature of a PHM challenge, data was complex and tricky, which 
really jeopardize the prediction capacity of the proposed models. The 
database have become popular during recent years, however many 
applications only use the complete dataset (Ren et al. [39]; Fumeo, 
Oneto and Anguita [14]) or do not reproduce the design and metrics 
of the Challenge (Boškoski et al. [4]; Mao et al. [29]) which is done in 
this work. For further information, see Nectoux et al. [32].

In our applications, we divided the dataset into training and test 
groups, where the former is necessary to teach SVM about the bear-
ing degradation behavior, while the latter tries to predict correctly 
the behavior of an unseen bearing. The IEEE PHM Data Challenge 
provided one set of vibration data from a bearing to be used in the 
training phase, which is here called as ‘Training Bearing’, and had 
2,803 observations in a run-to-failure experiment. Based on its be-
havior, estimations for RUL should be performed for another bearing 
(i.e. the test phase), here named as ‘Test Bearing’. Finally, comparison 
between predictions obtained from models with EMD, WT and with-
out a pre-processing technique are made in order to identify the most 
suitable approach.

SVM supervised learning method requires both y  (i.e. the re-
sponse variable) and x  (i.e. the regressor/input) variables. In all 
cases, the response variable was the RUL and the regression variables 
were the vibrations signal. As previously mentioned, in EMD case, 
two models were created: one considering each IMF and the residue 
as regressors, and the other considering only the residue as the regres-
sor. In WT case, two other models were also created: one containing 
each Wavelet and the last Scaling function as regressors, and the other 
considering only the last scaling function. The last model, without 
EMD or WT as pre-processing techniques, had the direct signal used 
as regressor. 

In both application cases, it is not expected the direct point pre-
diction to be enough precise due to the high variability of the data. 
However, the trend of all predictions should express the realistic RUL 

Fig. 5. Methodology applied for RUL prediction

Fig. 6. Different cases considered on the test phase of application example Fig. 7. Expected estimated RUL behavior. Adapted from Sutrisno et al. [48]
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estimation, as seen in Figure 7 (Sutrisno et al. [51]). Thus, we expect 
the final residue for EMD and/or the last scaling function for WT to 
provide interesting results since both have intrinsic attributes related 
with flatness and physical meaning of the signal trend.

The bigdata set provided for ‘Training Bearing’ had 2,803 record-
ings, each one containing 2,560 points for horizontal vibration and 
other 2,560 points for vertical vibration. Hence, more than 14 million 
points were provided only for training purposes. In our analysis, a 
third signal composed by the vectorial sum of the horizontal vibration 
and vertical vibration was also computed. For each of the three vibra-
tion signals (i.e. vertical, horizontal and vectorial sum), three metrics 
were calculated in the feature extraction step: absolute peak ampli-
tude, kurtosis and entropy. Figure 8 summarizes the data provided and 
the feature extraction process for the large amount of information. 

By conducting several investigations and tests, the absolute peak 
amplitude proved to be the most suitable feature to be used in the next 
steps, similarly as in other papers (e.g. Rohlmann et al. [40]; Chen et 
al. [9]). Specifically, the horizontal vibration signal presented better 
initial results and was the chosen one to be analyzed. Moreover, deal-
ing with the absolute amplitude, we considered the average of the five 
highest absolute peak acceleration values measured in each observa-
tion (archive). Averaging was done in order to alleviate the effect of 
data noise(Lee and Yun [24]). 

After feature extraction, the data were categorized in four differ-
ent regions in similar procedure to ISO 10816 (Standardization [49]) 
that deals with condition monitoring based on vibration. Therefore, 
each region represents a degradation phase of the bearing. We consid-
ered that a change of region takes place when the vibration trend line 
for the current region suffers a sudden increase of inclination (e.g. a 
new crack appears). In order to reduce the amount of information, a 

data sampling was performed in every region with distinct sampling 
frequency (i.e. the more unstable the bearing is, the more necessary is 
to monitoring). Table 1 depicts the sampling frequency, the total dura-
tion for each degradation region and the number of points actually 
used after sampling. To illustrate, the third region was sampled every 
100 seconds during the 2500 seconds in which the bearing stayed in 
this region, providing a total of 25 points. The four regions are shown 
in Figure 9.

4.1.	 Complete Dataset (until Failure) 

In the first case, estimations of RUL for ‘Test Bearing’ were per-
formed for all data, i.e. every test point until failure has an estimated 
RUL. As previously mentioned, it is not expected a good punctual 
prediction, but the trend should correctly express the degradation be-
havior. Hence, each model provides its own point prediction and a 
linear trend is created based on these points (i.e. take every predicted 
value from specific model and calculate the linear regression model 
representing them). This procedure was performed for the five models 
under analysis: 1) IMFs + residue; 2) residue; 3) Wavelets + last scal-
ing; 4) Last scaling; and 5) no pre-processing.

In order to measure the quality of the estimated RUL, the Abso-
lute Percentage Error (APE) was calculated, quantifying the distance 
error from the real RUL to the estimated one. Table 2 presents the 
APE as well as the number of support vectors related to each model. 
As it can be seen, EMD-based models (Model 1 and Model 2) present-
ed superior performance compared with WT-based models and the 
model with no pre-processing technique. Moreover, even the worst 
EMD-based model was almost three times better than the others. As 
one might expected, Model 2, which use only the Residue as regres-
sor, clearly presented the best performance. 

4.2.	 Truncated Dataset (IEEE PHM Data Challenge) 

The second case aims to replicate exactly the IEEE PHM 2012 
Data Challenge, which presents unclear end-of-life signature and un-
balanced dataset (Huang et al. [18]). In this case, only truncated data 
was provided for ‘Test Bearing’ and the challenge was to estimate the 
actual RUL based on its initial degradation behavior (see Figure 6). 
All procedures applied in the first case was done: feature extraction 
and sampling to reduce the amount of data, training with ‘Training 
Bearing’ and test with ‘Test Bearing’ truncated data (i.e. not data until 
failure). 

Vibration data provided for ‘Test Bearing’ consisted of 1,802 
records and is depict on Figure 10. It is expected the 
bearing to pass through all four degradations regions, 
even if the truncated data does not present all of them. 
By analyzing, ‘Test Bearing’ does not present several 
abrupt changes in the signal, seemingly representing 
only first and second degradation regions. Therefore, 
inference had to be done to further degradation zones. 

Analogously to session 4.1, the first region of ‘Test 
Bearing’ lasted 12,000 seconds. Figure 10 shows that 
vibration from the healthier stage (i.e. first degradation 

Fig. 8. Feature extraction process considering the dataset

Fig. 9. The four different regions of degradation

Table 1.	 Sampling frequency and duration for each degradation region

Degradation 
Region

Sampling Frequency (in 
seconds)

Total time (in 
seconds)

Number of points 
considered 

1 400 12000 30

2 200 13000 65

3 100 2500 25

4 0 510 17

Table 2.	 Errors for all tested models

Model Regressors Number of sup-
port vectors APE

1 IMFs + Residue 62 2.54%

2 Residue 120 1.45%

3 Wavelets + Last Scaling 126 8.70%

4 Last Scaling 117 15.00%

5 Direct Vibration Data 100 7.58%
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region) is almost stationary, with negligible fluctuations, even though 
it represents most of the data. In addition, for ‘Test Bearing’, all re-
maining points belonged to the second region. Note that there is one 
outlier near the end of truncated data (even if its value is far from 
the failure vibration value presented ‘Training Bearing’ – around 47 
units), but this does not correspond to a trend change and it was prob-
ably due to a noise in test. Thus, this was still considered belonging to 
second region. Given that, using data from region 1 will not represent 
any gain about bearing degradation. Moreover, using data from region 
1 will only deviate the overall trend.

Fig. 10. Truncated test set used in second application

Therefore, in this case, none data from the first region was used. 
Also, sampling rate of the second region was adapted to provide more 
information, i.e. frequency of the fourth region was used (every 30 
seconds). Thus, data test was reduced to nearly 200 test points used 
for estimation. Again, the same concept of first case was applied, with 
the predicted RUL being based on the overall trend of predictions. To 
define RUL estimation for the challenge, the trend line was extrapo-
lated until it crosses the y -axis (i.e. trend estimate RUL equals to 0). 
Table 3 presents the models’ performance based on the APE of the 
RUL estimation and real value of RUL. Errors for WT-models are not 
displayed, once they predicted negative values for RUL, which does 
not occur in reality. 

EMD-based models (Model 1 and 2), which also presented good 
performance in the first case, actually predicted best results. However, 
it is important to highlight the difficulty of this challenge, which is 
evident by considering the magnitude of errors in Table 3. Indeed, we 
compared our models with the winner of the challenge, which, based 
on the same evaluation metric, presented prediction errors of 37% 
(Sutrisno et al. [51]). The winner’s prediction is worse than estima-
tions provided by two of our models. Moreover, our best EMD-model 
(Model 1) reduced the error in more than 58%, which confirms the 
advantage in use the pre-processing method proposed.

5. Concluding remarks

This work compares the use of pre-processing techniques (i.e. 
EMD and WT) in order to increase prediction performance of RUL 
in PSO+SVM-based models. The comparison was applied to a real 
big data set of vibration signals of rolling bearings provided by an 
IEEE PHM Challenge competition. Two cases were performed: 1) 
considering the complete dataset (until failure); and 2) considering 
truncated (replicating the IEEE challenge). Even though performing 
alone PSO+SVM learning algorithm already provides reasonable es-
timations, applying pre-processing techniques yields gain in terms of 
prediction performance 

Specifically, EMD based models (Model 1 and Model 2) presented 
the best performance compared with other approaches for both cases. 
Moreover, for the second case, two models provided better RUL pre-
dictions than the winner of the PHM Challenge competition. For fu-
ture research, investigations about variations on the Wavelets approach 
(e.g. number of layers, type of mother wavelet) should be analyzed 
to improve its poor performance. Moreover, comparison with variants 
of EMD techniques (e.g. Ensemble Empirical Mode Decomposition 
(EEMD) (Wu and Huang [59]), Complete Ensemble Empirical Mode 
Decomposition (CEEMD) (Torres et al. [53]) could be done to verify 
if an even better prediction is achieved. 
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