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on aggregated covariates 
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Algorytm do oceny wpływu konserwacji na 
zagregowane zmienne towarzyszącei jego zastosowanie 

w odniesieniu do kolejowych napędów zwrotnicowych
We propose an algorithm for estimating the effectiveness of maintenance on both age and health of a system. One of the main 
contributions is the concept of virtual health of the device. It is assumed that failures follow a nonhomogeneous Poisson process 
(NHPP) and covariates follow the proportional hazards model (PHM). In particular, the effect of maintenance on device’s age is 
estimated using the Weibull hazard function, while the effect on device’s health and covariates associated with condition-based 
monitoring (CBM) is estimated using the Cox hazard function. We show that the maintenance effect on the health indicator (HI) 
and the virtual HI can be expressed in terms of the Kalman filter concepts. The HI is calculated from Mahalanobis distance be-
tween the current and the baseline condition monitoring data. The effect of maintenance on both age and health is also estimated. 
The algorithm is applied to the case of railway point machines. Preventive and corrective types of maintenance are modelled as 
different maintenance effect parameters. Using condition monitoring data, the HI is calculated as a scaled Mahalanobis distance. 
We derive reliability and likelihood functions and find the least squares estimates (LSE) of all relevant parameters, maintenance 
effect estimates on time and HI, as well as the remaining useful life (RUL).

Keywords:	 virtual health indicator, virtual age, maintenance effectiveness, preventive and corrective mainten-
ance, Cox-Weibull hazard function, proportional hazards model.

W artykule zaproponowano algorytm służący do szacowania skuteczności utrzymania ruchu w odniesieniu do wieku i stanu tech-
nicznego (kondycji) systemu. Główny wkład proponowanej metody stanowi koncepcja wirtualnego stanu urządzenia. Metoda 
zakłada, że uszkodzenia można zamodelować za pomocą niejednorodnego procesu Poissona, a zmienne towarzyszące za pomocą 
modelu proporcjonalnego hazardu. Mówiąc precyzyjniej, wpływ konserwacji na wiek urządzenia szacuje się z wykorzystaniem 
funkcji hazardu Weibulla, natomiast wpływ na stan urządzenia i zmienne towarzyszące związane z monitorowaniem stanu ocenia 
się stosując funkcję hazardu Coxa. W artykule pokazujemy, że wpływ konserwacji na wskaźnik stanu i wskaźnik stanu wirtualnego 
można wyrazić w kategoriach filtra Kalmana. Wskaźnik stanu oblicza się na podstawie odległości Mahalanobisa między bieżący-
mi a początkowymi danymi z monitorowania stanu. Ocenia się także wpływ utrzymania na wiek i kondycję systemu. Proponowany 
algorytm zastosowano w odniesieniu do napędów zwrotnicowych. Zapobiegawcze i naprawcze typy konserwacji zamodelowano 
jako różne parametry utrzymania ruchu. Korzystając z danych z monitorowania stanu, obliczono wskaźnik stanu jako skalowaną 
odległość Mahalanobisa. Wyprowadzono funkcje niezawodności i wiarygodności oraz obliczono metodą najmniejszych kwadra-
tów szacunkowe wielkości wszystkich istotnych parametrów, a także szacunkowy wpływ konserwacji na wskaźniki czasu i stanu 
technicznego oraz pozostały okres użytkowania (RUL).

Słowa kluczowe:	 wirtualny wskaźnik stanu technicznego, wiek wirtualny, skuteczność konserwacji, konserwa-
cja zapobiegawcza i korygująca, funkcja hazardu Coxa–Weibulla, model proporcjonalnego 
hazardu.
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TA Thickness adjustment.

TS Tightening of screws.

UCL Upper confidence limit.

W Weibull model identifier. 

X


Vector of covariates.

d Mahalanobis distance.

i Device index.

j Manoeuvre index.

l Number of observations in the baseline.

m Number of covariates.

n Total number of manoeuvres.

t Time.

V jt Virtual age after j th manoeuvre.

z Health indicator.

V jz +
Virtual health indicator after j th manoeuvre.

* Optimality.

Greek Symbols

Λ Cumulative hazard function.

α Confidence level.

β Shape parameter in Weibull distribution.

η Scale parameter in Weibull distribution, characteristic 
life.

θ Effect of maintenance on the health (as gauged by the 
health indicator) of the system.

λ Power-law intensity (hazard) function.

ϕ Effect of maintenance on the age of the system.

ω Length of planning horizon (life cycle).

1. Introduction and background

Maintenance is critical for the longevity, reliability and availabil-
ity of a vast majority of industrial, consumer and specialised systems 
and devices. However, a well-known postulate from reliability theory 
states that maintaining an entity (i.e. anything from the most basic 
component to a complex system) is justified and is beneficial only 
if the system displays a certain degradation in its performance with 
the passage of time. Such a deteriorating behaviour is called “aging”, 
for the obvious analogy with the biological world. For this reason, in 
identifying the most effective maintenance, a common criterion for 
categorising maintenance actions is by effects these have on some 
general system metric, or parameter, which is usually age. In this re-
gard, a common approach found in the literature on complex main-
tenance models of various industrial systems divides maintenance 
actions into four categories: worse repairs (increase the age when ap-
plied), minimal repairs (do not change the age when applied, leaving 
the system in the as-bad-as-old (ABAO) state), imperfect repairs (re-
duce the age by some factor between 0 and 1) and perfect repairs (ef-
fectively reduce the age to 0, amounting to as-good-as-new (AGAN) 
state) (Pulcini, 2003; Wu & Zuo, 2010). A preventive or corrective 
maintenance action affects the system’s health state, and the effect 
of maintenance ranges from minimal (ABAO) to that equivalent to a 
complete renewal (AGAN). We are interested in measuring the main-
tenance effect and investigating how it impacts the system’s health 
indicator (HI). The maintenance effect can range from 0 for AGAN 
state to 1 for ABAO state of the system.

Because the majority of real-life maintenance actions do not re-
sult in either ABAO or AGAN states, it is fair to state that, generally, 
maintenance actions amount to imperfect repairs (Pham & Wang, 
1996), which may be classified into models featuring age reduction 
(Kijima & Nakagawa, Replacement policies of a shock model with 
imperfect maintenance, 1992), hazard rate reduction (Chan & Shaw, 
1993), combined age-hazard reduction (Zhou, Xi, & Lee, 2007) and 
other models (Corman, Kraijema, Godjevac, & Lodewijks, 2017; 
Syamsundar, Muralidharan, & Naikan, General repair models for 
maintained systems, 2012). However, the age of a machine or even 
of a component is not always known. As an example, components 
or subsystems in protective devices, such as batteries in uninterrupt-

ible power supplies, may exhibit hidden failures, which are not mani-
fested immediately, therefore making estimation of the age at failure 
difficult. Alternative methods for finding the optimal maintenance 
policy have been developed for different arrangements and systems 
subject to both evident and hidden failures, such as estimating the 
optimal number of minimal repairs before replacement (Babishin & 
Taghipour, Optimal maintenance policy for multicomponent systems 
with periodic and opportunistic inspections and preventive replace-
ments, 2016; Babishin, Hajipoiur, & Taghipour, Optimisation of Non-
Periodic Inspection and Maintenance for Multicomponent Systems, 
2018; Babishin & Taghipour, Joint Maintenance and Inspection Opti-
mization of a k-out-of-n System, 2016; Babishin & Taghipour, Joint 
Optimal Maintenance and Inspection for a k-out-of-n System, 2016).

Historically, imperfect repair has been quantified through 
improvement factors (Malik, 1979), (p, q) rule (Brown & Proschan, 
1983), virtual age process (Uematsu & Nishida, 1987; Kijima, Some 
results for repairable systems with general repair, 1989) and super-
posed renewal process (Kallen, 2011), among others. Of those listed, 
the virtual age Models I and II due to Kijima assumed general repairs 
and utilised conditionally-distributed failure times (Kijima, Some 
results for repairable systems with general repair, 1989). Kijima’s 
models were subsequently further developed by Dagpunar (Dag-
punar, 1998), where functional dependency of the maintenance effect 
on both the time since previous maintenance action and the previ-
ous virtual age was assumed. Fuqing and Kumar (Fuqing & Kumar, 
2012) generalised Kijima’s Models I and II from constant to time-
dependent repair effectiveness parameter (Fuqing & Kumar, 2012). 
Using Kijima’s modelling framework, Doyen and Gaudoin classify 
the effects of maintenance as having a failure intensity-reducing, or 
an age-reducing effect, also allowing for a Markovian memory prop-
erty (Doyen & Gaudoin, Classes of imperfect repair models based 
on reduction of failure intensity or virtual age, 2004). Furthering the 
framework of Kijima (Kijima, Some results for repairable systems 
with general repair, 1989) and Doyen and Gaudoin (Doyen & Gau-
doin, Classes of imperfect repair models based on reduction of failure 
intensity or virtual age, 2004), in the present paper, virtual age and 
virtual health indicator are used, and the effects of maintenance are 
considered simultaneously on both intensity and age.
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Maintenance optimisation in railway-related applications is con-
sidered, for example, by Corman et al. (Corman, Kraijema, Godjevac, 
& Lodewijks, 2017), where they propose a data-driven approach to 
optimising preventive maintenance of a light rail braking system in 
terms of reliability, availability and maintenance cost. Based on the 
data, they model reliability degradation by a Weibull distribution and 
use sequential optimisation to find optimal preventive maintenance 
intervals resulting in 30 % cost reduction (Corman, Kraijema, Godje-
vac, & Lodewijks, 2017). Corman et al. further suggest using multi-
component optimisation to capture complex economic and structural 
dependence (Corman, Kraijema, Godjevac, & Lodewijks, 2017).

In the context of many repairable systems, “events” can be con-
sidered points at which a system changes its state, or exchanges in-
formation with its surroundings. Common events include failures, 
inspections and various kinds of maintenance. Identifying these prop-
erly and unambiguously, however, can be challenging, if the effects of 
such events are not readily observable.

An aspect of interest to the present investigation is the type of 
maintenance, classified into preventive maintenance (PM) and cor-
rective maintenance (CM). Doyen and Gaudoin proposed a model 
for each type of PM and CM, each with just one maintenance policy 
available (Doyen & Gaudoin, Imperfect maintenance in a generalized 
competing risks framework, 2006). Nasr et al. consider failure-point 
virtual age for CM and repair-point virtual age for PM (Nasr, Gasmi, 
& Sayadi, 2013). Said and Taghipour further expanded this by con-
sidering three maintenance types for PM events and minimal repair 
for CM events (Said & Taghipour, 2016). They derive the likelihood 
function for estimating the parameters of the failure process and the 
effects of preventive maintenance, as well as provide the conditional 
reliability and the expected number of failures between two consecu-
tive PM types (Said & Taghipour, 2016). Other methods included 
using feed-forward artificial neural networks (ANN) on condition 
monitoring data with asset targets’ being asset survival probabilities 
estimated by Kaplan-Meier (KM) and degradation failure probability 
density function (PDF) estimator (Heng, et al., 2009).

Reliability and availability of multicomponent systems were ob-
tained, for example, in (Babishin & Taghipour, Optimal maintenance 
policy for multicomponent systems with periodic and opportunistic 
inspections and preventive replacements, 2016; Babishin, Hajipoiur, 
& Taghipour, Optimisation of Non-Periodic Inspection and Mainten-
ance for Multicomponent Systems, 2018). Chen et al. use queueing 
theory to find reliability and availability expressions for a 2-compon-
ent cold standby system with repairman who may have vacation under 
Poisson shocks (Chen, Meng, & Chen, 2014). For more complex sys-
tems, however, Monte Carlo simulation is widely used, such as in 
Wang and Cotofana (Wang & Cotofana, 2010), Conn et al. (Conn, 
Deleris, Hosking, & Thorstensen, 2010) and Lim and Lie (Lim & Lie, 
2000). Bayesian methods have also been used to estimate the param-
eters for reliability and maintainability in Nasr et al. (Nasr, Gasmi, 
& Sayadi, 2013), Yu et al. (Yu, Song, & Cassady, 2008) and Fuqing 
and Kumar (Fuqing & Kumar, 2012). In addition, Nasr et al. (Nasr, 
Gasmi, & Sayadi, 2013) derive log-likelihood functions correspond-
ing to failure-point and repair-point virtual age models (Nasr, Gasmi, 
& Sayadi, 2013). In this paper, both reliability and log-likelihood ex-
pressions are provided.

Presently, a large-scale move towards Internet of Things (IoT) is 
being implemented in various industries. This makes the data from 
monitoring equipment and sensors ever more ubiquitous and access-
ible. With this in mind, a question arises as to how to incorporate such 
operating condition data into the reliability models. One widely-used 
method is to treat condition monitoring or operating condition data 
as covariates within the Cox proportional hazard models’ framework 
(Syamsundar & Naikan, Imperfect repair proportional intensity mod-
els for maintained systems, 2011; Cox, 1992; Bendell, Wightman, & 
Walker, 1991). An obstacle to the universality of such models is that 

they assume that covariates are time-independent, thus ignoring any 
influence of changing operating conditions. Previously, accelerated 
failure time model (AFTM) has been incorporated with virtual age 
model by Martorell et al. (Martorell, Sanchez, & Serradell, 1999). 
However, combining imperfect repair models with either proportional 
hazards model or AFTM and considering the effect of covariates is 
rare, and the attempts found in the literature adopt some simplifying 
assumptions, such as piecewise-constant operating conditions (Hu, 
Jiang, & Liao, 2017). Proportional hazards model has also been ap-
plied to covariate data for railway maintenance effectiveness estima-
tion in (Babishin & Taghipour, Maintenance Effectiveness Estimation 
with Applications to Railway Industry, 2019).

Cha and Finkelstein (Cha & Finkelstein, 2016) considered per-
iodic and age-based imperfect PM and minimal repairs in-between 
(Cha & Finkelstein, 2016). In the present paper, however, neither PM, 
nor CM events are limited to minimal or perfect repairs, which makes 
the model more general and widely applicable.

Predicting degradation of a system, machine or device and choos-
ing the best maintenance actions allow preventing or reducing its 
damage or failure. This is where prognostics and health management 
(PHM) becomes important. We make use of condition monitoring 
data, which are observations of different parameters (e.g. tempera-
ture, weather, current, voltage). Galar et al. previously proposed fea-
ture extraction through data reduction, where only significant data are 
retained, and irrelevant information is discarded (Galar, Gustafson, 
Tormos, & Berges, 2012). These observations are aggregated into 
a health indicator, which represents the system’s condition. Health 
indicator was used by Kumar et al. for detecting the degradation of 
electronic products (personal computers) (Kumar, Vichare, Dolev, & 
Pecht, 2012). Their health indicator represents a weighted sum of the 
fractional contributions of each bin in a time window (Kumar, Vi-
chare, Dolev, & Pecht, 2012).

In repairable systems, the passage of time, the number of operat-
ing cycles and/or the changes in the system’s operating conditions 
signify deterioration of the system and its approaching failure. This 
motivates preventive maintenance, which improves the system’s con-
dition and extends its remaining useful life (RUL). RUL is defined as 
“the expected number of remaining manoeuvres that can be achieved 
before reaching the failure state” (Letot, et al., 2015).

The main objectives of the present research are to demonstrate an 
algorithm for quantifying the effectiveness of corrective and preven-
tive maintenance performed on a machine, and to estimate the ma-
chine’s degradation rate and remaining useful life, given the mainte-
nance effectiveness. 

In the current paper, condition monitoring data are used for esti-
mating the effect of maintenance on both the age of a railway point 
machine and its covariates. A railway switch, or point machine, is a 
device for allowing the trains to pass from one railway track onto an-
other one, which makes these devices both necessary and ubiquitous 
for simultaneous operation of trains in multiple directions. A man-
oeuvre is a 7-phase sequence of operations performed by components 
of a point machine (Letot, et al., 2015).

Because of the function point machines perform, they greatly af-
fect the service of rail transportation. This, in turn, affects the safety 
of passengers, the economic benefits, efficiency and timeliness of 
train travel. All of these factors can potentially incur huge costs and 
penalties, including loss of life from accidents, if the system does 
not perform as expected. For this reason, excessive funds are spent 
every year on inspection and maintenance of such systems as point 
machines in order to minimise their failures and to ensure they per-
form correctly and reliably. For example, the Swedish Rail Adminis-
tration estimates the costs of railway track maintenance falling under 
the category of switches and crossings to account for almost 1/3 of the 
total maintenance costs (Innotrack, 2009). Thus, improving reliability 
and maintainability in this sector may not only result in the improved 



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 21, No. 4, 2019622

Science and Technology

safety and lower accident occurrence, but can also bring significant 
cost reductions to the railroad industry.

Condition monitoring and health management of railway assets, 
such as point machines, has received some coverage in the literature 
(Atamuradov, Medjaher, Dersin, Lamoureux, & Zerhouni, 2017; Ar-
dakani, et al., 2012). For example, Ardakani et al. (Ardakani, et al., 
2012) use feature extraction techniques and principal component an-
alysis (PCA) as the methods for prognostics and health management 
for analysing the degradation of electromechanical point machines for 
railway turnouts. A turnout is a point machine with the switch rails 
connected to it.

The present article is structured as follows: Section 2 contains the 
relevant background; Section 3 presents the model; Section 4 contains 
reliability and likelihood functions; Section 5 illustrates the models 
by providing numerical examples; lastly, Section 6 summarises the 
conclusions.

2. Model

2.1.	 Health indicator calculation

Since a maintenance action can affect the age of a system as well 
as the condition monitoring data, we investigate both effects. More 
specifically, we estimate how much reduction in the system’s age is 
caused by a maintenance type, and how the health indicator (which is 
constructed solely based on the condition monitoring data) is affected 
by the maintenance action. Health indicator is a measure quantifying 
the deterioration of the system.

At each operational actuation of the machine, readings from the 
sensors and diagnostic modules monitoring such parameters, as tem-
perature, humidity, voltage, current, etc. are recorded. Each of the 
monitoring parameters is designated an index m  (e.g. for tempera-
ture, 1m = , for humidity 2m = , etc.). The ordinal number of an ac-
tuation is designated as j  and used as a counting index (e.g. for the 
2000th actuation of a point machine, j=2000). These are then aggre-
gated to form covariate 

jmX . The health indicator, denoted as jz , is 
obtained from Mahalanobis distance (MD) calculation as follows:
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where j  denotes the number of actuations, jX


 is the vector 

of m  covariates for j th actuation, 1 j jj mX X X =  
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tive distribution of the 0.999999th quantile of a chi-squared distribu-
tion with m  degrees of freedom, which denotes the threshold for the 
“healthy” values of the HI, µ  is the vector of means over l  observa-
tions, also called “baseline”, such that:
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Thus, when HI < 1, the MD is considered to be chi-squared dis-
tributed, and the system is “healthy”. When HI ≥  1, the probability 
that the covariates are normally distributed and their covariances are 
chi-squared distributed is very small, which suggests that the system 
is demonstrating “abnormal” behaviour.

In general, the extent to which a machine has moved away from 
its “baseline”, or usual operation, is quantified by the HI. The expec-
tation here is that a large deviation from baseline signals an ongoing 
degradation of the system and, as a result, increases failure risk. When 
the health indicator is below the predetermined threshold ( 1HI < ), 
the system is operating normally. Consequently, defining the alter-
native event, have 1HI ≥ , which corresponds to the “failed” opera-
tional state of the system.

2.2.	 Virtual health and the effect of maintenance on the 
system’s health indicator (“Cox model”)

When the ratio of the hazards for different treatments does not 
change with time, proportional hazards models can be used to de-
scribe the reliability of the system.

2.2.1. Virtual health indicator algorithm

We consider failures as having a negative effect on the HI. The ef-
fect of failures on the HI is modelled using a Cox proportional hazards 
model, where the hazard function λC is given for each machine as:

	 λ θ θ γC M Mz z, exp ,( ) = { } 	 (4)

where z  is the HI of the machine, γ is the Cox regression coefficient 
used for scaling the covariates and Mθ  is the maintenance effect on 
machine’s HI.

In order to capture the effects of each maintenance type and iso-
late them from the cumulative effects of maintenance events which 
have taken place in the past history, the health indicator values (Maha-
lanobis distances) have to be scaled by the maintenance effect factor 
(MEF) θM  after the maintenance events. The virtual health indicator 
is denoted as V jz + , with “V” standing for “virtual” and “+” indicat-
ing that it is recalculated after a maintenance event has taken place in 
order to account for the effect of the most recent maintenance.

The procedure to calculate the maintenance effect factor is as fol-
lows.

Given:
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Obtain:

Take the HI before the first maintenance event to be 1.	 1z
−  and 

after it to be 1z
+ .

Calculate the first maintenance effectiveness using the follow-2.	
ing expression:
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Take the HI after the first maintenance and just prior to the 3.	
second maintenance to be 2z− .

Taking the HI just after the second maintenance 4.	 2z+  from the 
data for the manoeuvre immediately following the second 
maintenance event, calculate preliminary estimate of mainte-

nance effect 𝜃���  2
ˆ
Mθ  as:
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Estimate the value of the virtual HI 5.	 2Vz
+  after the second 

maintenance event using the following formula:
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Calculate the new estimate of maintenance effectiveness 6.	 θM 2  
using the virtual health indicator as follows:
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Repeat the steps above to calculate new maintenance effec-7.	
tiveness estimates for events 3,4,…,i by induction using the 
following recursive formula for step 5:

                          𝑧��+ = �𝑧�− −  𝑧��−�+ � 𝜃��� + 𝑧��−�+ =   

      = �𝑧�− −  𝑧��−�+ � 𝜃��� + �𝑧�−�− −  𝑧��−�+ � 𝜃���−� + ⋯+ �𝑧�− −  𝑧��+�𝜃��� + 𝑧�−𝜃��� =               

= �𝑧�− −  𝑧��−�+ �
𝑧�+
𝑧�−

+ �𝑧�−�− −  𝑧��−�+ �
𝑧�−�+

𝑧�−�− + ⋯+ �𝑧�− −  𝑧��+�
𝑧�+
𝑧�−

+ 𝑧�+.                            (9)

For step 6 of the current procedure, use the following formula:
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In order to better visualize the calculation procedure and the for-
mulae, Figure 1 below represents a general case of a deteriorating 
machine or device subject to imperfect maintenance. In such case, the 
first maintenance action (denoted as 1M ) will result in the virtual HI 
closest to the baseline, thus representing the largest health-improving 
effect, followed by the virtual HI for the second maintenance 2M  
and so on. Note that the horizontal axis in the figure represents the 
distance from the baseline (or 0), and not the time progression. In 
Figure 1, the segment [ 0z ; 1z

+ ] represents the virtual health θM z
1 1

−
 of 

the device after the first maintenance action has been performed (i.e. 

the distance from the baseline to the manoeuvre right after the first 
maintenance event). The segment [ 1z

+ ; 2z+ ] represents deterioration 
of the virtual health θM z z

2 2 1
− +−( ) , occurring between the first and 

the second maintenance events and calculated right after the second 
maintenance event. The segment [ 0z ; 2z+ ] equal in length to the com-
bined segments [ 0z ; 1z

+ ] and [ 1z
+ ; 2z+ ] represents the virtual health 

θM z z z2 2 1 1
− + +−( ) +   after the second maintenance.

The virtual HI is calculated for each machine using θPM and θCM 
to denote the effect of, respectively, preventive and corrective mainte-
nance on the former as follows:

𝑗 = 1:     𝑧�1+ = 𝜃�1𝑧1−, 

𝑗 = 2:     𝑧�2+ = 𝜃�2𝑧�2− = 𝜃�2 �𝑧�1+ + (𝑧2− − 𝑧1+)� = 𝜃�2 �𝜃�1𝑧1− + (𝑧2− − 𝑧1+)�, 

𝑗 = 3:     𝑧�3+ = 𝜃�3 �𝑧�2+ + (𝑧3− − 𝑧2+)� = 𝜃�3 �𝜃�2 �𝜃�1𝑧1− + (𝑧2− − 𝑧1+)� + (𝑧3− − 𝑧2+)�, 

⋮ 

𝑗 = 𝑛:     𝑧�𝑛+ = 𝜃�𝑛𝑧�𝑛− = 𝜃�𝑛�𝜃�𝑛−1�… �𝜃�2�𝜃�1𝑧1− +(𝑧2− − 𝑧1+)� + (𝑧3− − 𝑧2+)� + ⋯�

+ (𝑧𝑛− − 𝑧𝑛−1+ )�, 

𝜃�𝑗 = �
𝜃��𝑗 , if maintenance event 𝑗 is a PM;
𝜃��𝑗 , if maintenance event 𝑗 is a CM.                     (11) 

 

where jz −  is the value of HI calculated right before the maintenance 

action, jz +  is the value of HI calculated right after the maintenance 
action, and superscript M  denotes the type of maintenance action.

It can be noted from Eq. 9 that the form of the virtual health in-
dicator estimate is identical to the current state estimate of a Kalman 
filter [21, 26]:

𝑧��+ = �𝑧�− −  𝑧��−�+ � 𝜃�𝑀� + 𝑧��−�+     cf.    𝐸𝑠𝑡𝑡 = (𝑀𝑒𝑎𝑠 − 𝐸𝑠𝑡𝑡−�)𝐾� + 𝐸𝑠𝑡𝑡−�, 

(12)

where tEst  is the current estimate of the state, Meas  is the initial 
measurement, 1tEst −  is the initial estimate of the state, GK  is the 
Kalman gain, and so have:

𝑧��� = 𝐸𝑠𝑡𝑡 ,      𝑧�� = 𝑀𝑒𝑎𝑠,      𝑧����� = 𝐸𝑠𝑡𝑡��,      𝜃�𝑀� = 𝐾� .                          
(13)

Furthermore, maintenance effectiveness estimate 𝜃���   can be 
compared to Kalman filter gain using Eq. 6 and identities from Eq. 
13, so that:

	 𝜃�𝑀� =
𝑧�+
𝑧��

=
𝑧�+

𝑀𝑒𝑎𝑠     cf.    𝐾� =
𝐸𝑟𝐸𝑠��

𝐸𝑟𝐸𝑠�� + 𝐸𝑟𝑀𝑒𝑎𝑠�
,       (14)

and from 𝜃���  =KG (Eq. 13) and Eq. 14 it follows that:

Fig. 1.	 Visualisation of maintenance events and procedure for estimating their 
effects
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z
K

Meas

+

=

	 z K Meas
Meas Er

Er Erj G
Est

Meas Est

t

t t

+ = ⋅ =
⋅

+
	 (15)

where 
tEstEr  is the error in the estimate of the state and 

tMeasEr  is the 
error in the measurement of the state. Thus, the health indicator after 
a failure or maintenance event can be interpreted using Kalman filter 
theory as the initial measurement of the state multiplied by Kalman 
gain. It can also be expressed through the initial measurement of the 
state multiplied by the error in the current estimate and divided by the 
total error of the initial measurement and that of the current estimate.

In addition, from Eq. 10 and Eq. 13 have:

	 θM j
tEst

Meas
= �	 (16)

Analysing the formulae for the calculation of the maintenance ef-
fect factors θPM and θCM, it can be seen that:

	
0 if and only if either :M jθ <

	
,  or V j j jz z z+ + −< <

	 1    j V j V jz z z− + +
−< < .	 (17)

Similarly, rewriting Eq. 17 using Kalman filter notation:

	
0 if and only if either :  M jθ <

	 , rt

t t

Est
t

Meas Est

Meas Er
Est Meas o

Er Er
⋅

< <
+

 	 (18)

	 ( )1 .                                                                     18t tMeas Est Est−< <

Both Eq. 17 and Eq. 18 describe cases in which the system experienc-
es improvement in HI as it ages and which violate the basic character-
istics of repairable systems. Thus, 0 M jθ <  can serve as an indicator 
that the system experiences “early mortality” and its hazard function 
is decreasing with the system’s age.

2.3.	 Virtual age and the effect of maintenance on the sys-
tem’s age (“Weibull model”)

Whenever a system is subject to degradation with time, the latter 
is commonly modelled as affecting the system’s age. In the context 
of the present problem, it is assumed that each machine is subject to 
a nonhomogeneous Poisson process (NHPP) with the time-dependent 
power law intensity function Wλ  of the general form:

	 λ ϕ
β
η

ϕ
η

β

W M
Mt t,( ) = 









−1
,	 (19)

where β is the Weibull shape parameter, η is the Weibull scale 
parameter, t  is the time to failure, φM is the maintenance effect on 

system’s age and 
,     
,     

PM if preventivemaintenanceis performed
M

CM if correctivemaintenanceis performed


= 


Assuming that the effect of maintenance on age is cumulative, it 
is modelled through the concept of virtual age.

2.3.1.	 Virtual age

Using φPM and φCM  to denote the effect of, respectively, 
preventive and corrective maintenance on machine’s age, so 
that 0 ≤ φPM 1PMϕ ≤ , 0 ≤ φCM0 1CMϕ≤ ≤ , where 0 corresponds to the 
as-good-as-new (AGAN) state and 1 to the as-bad-as-old 
(ABAO) state, and designating virtual age for the jth ainte-
nance action as 

jVt , obtain:

j
t t t

t t t

V
PM

PM

V
CM

CM

=
= −( )
= −( )

1 1

1

1 0

1 0

:
, � ;ϕ

ϕ

if current event isa PM

,, � ;if current event isa CM







j

t t t tV
PM

PM V
PM

=

= − +( )

2

2 12 1

:

,ϕ if current event is

a PMand previousevvent wasa PM;

if current event is

a PMand previou

t t tV
PM

PM2 2 1= −( )ϕ ,

ssevent wasa CM;

if current event is

a CMan

t t t tV
CM

CM V
PM

2 12 1= − +( )ϕ ,

dd previousevent wasa PM;

f current event is

a CM

t t t iV
CM

CM2 2 1= −( )ϕ ,

aand previousevent wasa CM;





















j n

t t t tV
PM

PM n n V
PM

n n

=

= − +( )− −

:

,ϕ 1 1
if current event isa

PMand previoousevent wasa PM;

if current event isa
PMand pr
t t tn
PM

PM n n= −( )−ϕ 1 ,
eeviousevent wasa CM;

if current evt t t tV
CM

CM n n V
PM

n n
= − +( )− −
ϕ , ,1 1

eent isa

CMand previousevent wasa PM;

if current t tn
CM

CM n n= −( )−ϕ 1 , tt event isa
CMand previousevent wasa CM;





















It can be noted that the value of 0 for the effect of main-
tenance on the age indicates a complete renewal of the sys-
tem, and the value of 1 is analogous to the minimal repair.

In the present subsection, a Weibull model for an NHPP 
failure process has been discussed for identifying the effect 
of a particular maintenance type on the age of a component 
or a device. The available condition monitoring data are 
incorporated into maintenance decision-making trough the 
Cox proportional hazards model. This is a useful technique 
for estimating reliability and related metrics.

2.4.	 Combined (Cox-Weibull) model

Point machines have subassemblies and components 
that experience age-dependent deterioration (e.g. gearbox) 
and those that do not (e.g. electronic control and diagnostic 
module). Thus, the importance of condition-based vs. age-
based maintenance estimation techniques depends on the 
particular component. Moreover, modern monitoring and 
diagnostic capabilities within the IoT framework provide 
plenty of condition monitoring data in addition to the age-
based data.

In the preceding subsections, two models were dis-
cussed: a Cox PHM model, which quantifies the effect of 
maintenance on the health indicator, and a Weibull model, 
which identified the effect of a particular maintenance type 
on age. Thus, in estimating the hazard function for a point 

(20)
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machine as a whole, the available data can be taken into considera-
tion by combining the age-based hazard in the form of Weibull hazard 
function with the condition-based monitoring hazard in the form of 
Cox proportional hazards model. In the present section, these models 
are combined to obtain a more powerful model.

In order to improve the sensitivity and applicability of the model, 
the Cox-Weibull model was enhanced with the maintenance effec-
tiveness estimates multiplicative to the virtual age and virtual health 
indicator. The model allows to reset the health indicator to the value 
reflecting the maintenance effectiveness and the system’s state by 
multiplying the health indicator after the specific type of maintenance 
by the maintenance effect factor for that particular maintenance type. 
The visualization of the model is given in Figure 2 below.

In Figure 2, squares indicate points at which condition monitor-
ing data, or covariates are recorded just before and after a system 
event (such as failure, or maintenance). Circles represent points at 
which virtual health indicator is calculated. Following the perform-
ance of preventive maintenance (PM) (indicated by an oval callout 
with θ inside), the device’s health is improved and its deterioration is 
reduced. This reduction is reflected in the changes within the condi-
tion monitoring and/or covariate data, which results in a decrease of 
HI as shown by the square markers. With the use of the device and the 
passage of time, it keeps deteriorating to failure. At this point, correc-
tive maintenance (CM) is performed, HI is reduced and the device’s 
health is improved. While HI shows a large improvement as repre-
sented by square markers, it is not clear how much of a contribution 
did the most recent maintenance action have compared to the previ-
ous maintenance history. Such a reduction in HI is likely due to the 
cumulative effect of all the previous maintenance actions. However, 
of interest is the isolated effect of each maintenance type, such as PM 
and CM, since these most likely happened intermittently in the past 
operational history.

With this goal, the previously-presented Weibull and Cox models 
are combined together to improve the sensitivity of the model and to 
quantify the effects of PM and CM maintenance types on the age and 
health of the device or system. The hazard function λ ϕ θt z M M, , ,( )  
for the new combined Cox-Weibull model has the following form:

λ ϕ θ
β
η

ϕ
η

θ γ
β
η η

β β

t z t z t
M M

M
M

V
M

, , , exp exp( ) = 







 { } =











− −1 1

γγ zV j
+{ }

(21)

where all the terms are as previously described.

The cumulative hazard function is then given as follows:

	 Λ t t z z t
V
M

t

M M
M

M

M V
M

j
j( ) = ( ) =













∫

0
λ ϕ θ

θ γ
ϕ

ϕ

η

β

, , , .���������������������������22( )	 (22)

In order to establish the dynamics of the hazard function and to infer 
whether its form is suitable for a particular case at hand, we take the 

derivative of λ ϕ θt z M M, , ,( )  with respect to time as follows:

′( ) = 







 { }












=

−( )−

λ ϕ θ
β
η

ϕ
η

θ γ
β β ϕβ

t z d
dt

t zM M
M

M
M, , , exp

1 1 ββ β

βη
θ γ

− −

{ }
1 2t

zMexp

(23)

It should be noted that both maintenance effect indicators ,M Mϕ θ  
satisfy the Markovian property, since they depend only on the preced-
ing state and not the entire evolution of the states up to the present. 
Thus, they can be treated as time-independent.

Setting the derivative of the hazard function equal to 0, we can 
find the critical points:

	                   ′( ) =λ ϕ θt z M M, , , ,�0=0

         
β β ϕ

η
θ γ

β β

β
−( ) { } =

− −1
0

1 2
M

M
t

zexp .           (24)

Solving Eq. 24, obtain different cases:

β λ
β λ
ϕ

= =
= =
=









1
0 0

0

: .
:

:

const

purelyAGAN maintenance effectM

     (25)

In the case of λ const.λ = , failure distribution is an exponential dis-
tribution, and there is no benefit from performing any maintenance 
activities, since failures result not from deterioration, but rather from 
random events. In the case of λ 0λ = , the entire hazard function is 0, 
and the system is not deteriorating. In the case of φM  0Mϕ = , each main-
tenance is perfect and results in as-good-as-new state, thus being 
equivalent in effect to replacement.

Using the hazard and cumulative hazard functions as given in Eq. 
21 and Eq. 22, reliability and likelihood functions are constructed in 
order to estimate the optimal parameters of interest.

3. Reliability and likelihood functions

The goal of the present methodology is to estimate simultaneously 
the parameters β and η of the power law intensity function, as well as 
the maintenance effectiveness estimates φPM, φCM, θPM, θCM, and the 
coefficients of the covariates γi. All of these can be aggregated into a 
vector p :

	 ( , , PMp β η ϕ=
 ( β, η, φPM, φCM , θPM

 , θCM, γ).	 (26)

First, the reliability function is calculated by taking into account 
the suspension histories due to preventive maintenance, as well as fail-
ures and pseudo failures (i.e. when the health indicator crosses some 
threshold). Then, the likelihood function of the model is calculated.

3.1.	 Reliability

Different cases require different reliability function calculations, 
as shown below. All of the expressions are given for each device i.

Case 1: event j is a failure, immediately followed by CM:
Previous event (j-1) is a failure, followed by CM:•	

	 f t t t zV
CM

V
CM

V
CM

V jj j j
−( ) =− − −

+
1 1 1, 	 (27)

	 = ( ) − ( ) − ( )( ){ }−
λ t t tV

CM
V
CM

V
CM

j j j
exp �Λ Λ

1
.

Fig. 2. Visualisation of two sample maintenance events with virtual health indicator
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Previous event •	 ( )1j −  is a PM:
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Case 2: event j  is a PM:

Previous event •	 ( )1j −  is a failure, followed by CM:
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Previous event •	 ( )1j −  is a PM:
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3.2.	 Likelihood function

The likelihood function ( )p  is calculated from reliability as 
follows:

	

p
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1, if event j is a failure / CM.
0, if event j is a PM.               j


Ψ = 


	 (31)

The parameter vector p  is then estimated by the least squares es-
timation (LSE) method using Levenberg-Marquardt algorithm (Lev-
enberg, 1944; Marquardt, 1963) implemented in MATLAB.

4. Case study

Based on the maintenance logs and procedures, 3 maintenance ac-
tions were identified: thickness adjustment, tightening of a screw and 
lubrication. At each manoeuvre of a point machine, health indicator is 
calculated according to Equation 1. 

Maintenance effectiveness and other parameters are found for 19 
point machines from Italy. The naming convention adopted for the 

present article is as follows: model (“X” or “Y”), material type used 
for sliding chairs (“I” or “J”), turnout number and machine sequence 
letter (1st machine activated in a manoeuvre at a particular turnout is 
designated as “A”, while 2nd machine – as “B”).

Observations spanning June 2015–June 2017 were used, with 
baseline calculated according to the clients’ rules to obtain HI values. 
The data were divided into 3 parts: ‘Normal’ and ‘Reverse’, which 
refer to the operating direction, and ‘Both’ (the latter combining the 
former two). Separate parameter estimates were calculated for each. 
The results, separated by direction, are presented further below.

Maintenance effectiveness estimates with their corresponding 
95 % lower and upper confidence limits for the normal direction ma-
noeuvres are presented for 19 point machines in Figure 3. Mainte-
nance effectiveness estimates with their corresponding 95  % lower 
and upper confidence limits for the reverse direction manoeuvres are 
presented for 19 point machines in Figure 4. Maintenance effective-
ness estimates with their corresponding 95 % lower and upper confi-
dence limits for the combined normal and reverse direction manoeu-
vres are presented for 19 point machines in Figure 5.

As can be seen from Figures 3-5, the largest variation occurs for 
the CM effect estimate on virtual age, regardless of the direction of 
manoeuvres. The variation in the maintenance effect estimates is sum-
marized in Table1.

The maximal age-reducing effect in both directions was most ef-
fective maintenance action in both directions is PM effect on virtual 
age, with the spread of only 13 %, closely followed by the PM ef-
fect on virtual health (15 %). For both normal and reverse directions, 
the smallest spread in estimates is encountered for the PM effect on 
virtual health (13 % and 8 %, respectively). With [ ]0.01;0.03CMϕ ∈
, corrective maintenance appears to have a nearly-AGAN effect on 
the virtual age for point machine XI10A in all directions of operation. 
With [ ]0.90;0.91PMθ ∈  , preventive maintenance appears to have a 
nearly-ABAO effect on the virtual HI for point machine XI2A.

For both preventive and corrective maintenance, the majority of 
the point machines experience imperfect maintenance effects between 
ABAO and AGAN. Corrective maintenance has an effect closer to 
that of AGAN on the HI for all point machines in all directions.  Cor-
rective maintenance has an effect closer to that of AGAN on the vir-
tual age in 8 out of 19 point machines in both directions, 15 out of 19 
point machines in normal direction and 15 out of 19 point machines 
in reverse direction.

4.1.	 Estimating the remaining useful life (RUL)

The RUL can be calculated as a pdf:
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where t  is time, T  is the lifetime, ct  is the value of RUL random 
variable T t T t T t tc c V

M
j

= −{ }−
: ,

1
. The results are shown in Fig-

ure 6.
As can be seen from the figure, the predicted RUL is not too far 

from the actual failure data. The RUL can be predicted without an 
exact failure threshold based on failure data and condition monitoring 
(CM) information. The estimated values form a smoother curve than 
the actual values. This suggests that the estimating procedure is able 
to smooth the predictions. However, sufficient failure and CM data 
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Fig. 3. Maintenance effect on virtual hi and virtual age for point machines in ‘normal’ direction

Fig. 4. Maintenance effect on virtual hi and virtual age for point machines in ‘reverse’ direction
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are required, unlike for filtering-based models, where parameters in 
initial life distribution can be estimated separately.

5. Conclusions

In this paper, a model is proposed for quantifying the effects of 
different types of maintenance on a device subject to condition moni-
toring. It is assumed that failures follow a nonhomogeneous Poisson 
process (NHPP) and covariates follow the Cox proportional hazards 
model. In particular, the multiplicative effect of maintenance on the 
age of a device is estimated using the Weibull hazard function, while 
the multiplicative effect on the health of a device and covariates asso-

ciated with condition-based monitoring (CBM) 
is estimated using the Cox hazard function.

The proposed algorithm for estimating the 
impact and effectiveness of maintenance uses 
the concept of virtual age and introduces the 
concept of virtual health. It is shown that vir-
tual health and the effect of maintenance on the 
health indicator of a device can be described us-
ing the concepts of Kalman filter.

An example of practical application of the 
algorithm is provided to a real case of railway 
point machines. In this example, preventive or 
corrective types of maintenance are modelled as 
different maintenance effect parameters. Using 
condition monitoring data, the health indicator 
is calculated as a scaled Mahalanobis distance. 
The reliability and the likelihood functions are 
derived and the least squares estimates (LSE) 
of the covariate coefficient, Weibull shape and 
scale parameters, as well as the preventive and 

corrective maintenance effect estimates on time and health indicator 
are found using the Levenberg-Marquardt algorithm.

The effect of corrective maintenance was closer to that of “as-
good-as-new” (AGAN) state across all point machines, with point 
machine XI10A demonstrating the most dramatic AGAN virtual 
health improvement. The effect of preventive maintenance on the 
health indicator was the closest to “as-bad-as-old” (ABAO) across 
all point machines, with point machine XI2A demonstrating the least 
improvement in virtual health.

Remaining useful life (RUL) calculations were performed and 
predicted RUL estimates were obtained. The predicted RUL estimates 

Fig. 5. Maintenance effect on virtual hi and virtual age for point machines in ‘both’ (i.E. Normal and reverse combined) directions

Fig. 6. Actual failures and predicted remaining useful life (rul) estimates
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were generally smoother than the actual data, thus displaying filtering 
qualities. 

As a future work, application of fuzzy logic to estimate the health 
indicator, based on the covariate values appears to be promising. Yet 
another avenue is to perform clustering analysis using Gaussian mix-
ture model (GMM) and identify the clusters corresponding to normal, 
failed and/or borderline devices. 
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Table 1.	 Estimated Maintenance Effects and Upper and Lower 95 % Confidence Limits [LCL; UCL] on the for ‘Both’, ‘Normal’ and ‘Reverse’ 
Directions

Direction PM Effect on Virt. HI, θPM CI on PM Effect on Virt. HI, θPM CM Effect on Virt. HI, θCM CI on CM Effect on Virt. HI, θCM

Both 0.83 [0.75; 0.90] 0.57 [0.39; 0.75]

Normal 0.86 [0.79; 0.92] 0.55 [0.41; 0.69]

Reverse 0.85 [0.81; 0.89] 0.59 [0.48; 0.69]

Direction PM Effect on Virt.Age, φPM CI on PM Effect on Virt.Age, φPM CM Effect on Virt.Age, φCM CI on CM Effect on Virt.Age, φCM

Both 0.46 [0.39; 0.52] 0.4 [0.01; 0.79]

Normal 0.65 [0.42; 0.88] 0.31 [0.02; 0.59]

Reverse 0.54 [0.34; 0.73] 0.29 [0.01; 0.56]
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