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Notation

Typesetting Convention: vectors, matrices and arrays are bold. 

Latin Symbols

C	 Cost (random variable).
E	 Expectation.
F	 Expected number of system failures.
G	 Generator function for the expected values.
M	 Expected number of minimal repairs.
P	 Probability.
R	 Expected number of replacements.

U	 Expected uptime.
UCL	 Upper confidence limit.
Y	 First failure time for a soft-type component.
Z	 First failure time for hard-type component subsystem.
a	 Inspection policy index.
b	 Random number.
c	 Cost (constant).
f	 Number of component failures.
h	 Hard-type component index.
i	 Scheduled inspection index.
j	 Component index.

Table 3.	Steady state availability versus  for Case 2

δ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1
+
1

MMM .8312 .8228 .8152 .8082 .8017 .7958 .7903 .7852 .7805 .7761 .7719

DDD .8829 .8774 .8724 .8678 .8636 .8597 .8562 .8529 .8498 .8470 .8443

DDW .8829 .8756 .8688 .8627 .8571 .8519 .8472 .8427 .8386 .8348 .8313

WWD .8652 .8519 .8398 .8288 .8187 .8095 .8012 .7936 .7866 .7803 .7746

WWW .8652 .8501 .8362 .8235 .8119 .8013 .7916 .7827 .7746 .7672 .7603

2
+
1

MMM .6462 .6360 .6270 .6191 .6120 .6057 .6000 .5948 .5901 .5858 .5818

DDD .7154 .7088 .7031 .6981 .6937 .6898 .6862 .6831 .6802 .6775 .6752

DDW .7154 .7055 .6969 .6894 .6828 .6769 .6716 .6668 .6625 .6585 .6549

WWD .6888 .6709 .6555 .6424 .6310 .6213 .6129 .6056 .5993 .5938 .5891

WWW .6888 .6676 .6494 .6337 .6200 .6082 .5979 .5889 .5810 .5741 .5680

3
+
1

MMM .5123 .5034 .4958 .4891 .4832 .4780 .4734 .4693 .4655 .4621 .4590
DDD .5717 .5669 .5628 .5593 .5563 .5536 .5513 .5492 .5473 .5456 .5440
DDW .5717 .5633 .5563 .5502 .5449 .5402 .5361 .5324 .5291 .5262 .5235
WWD .5479 .5324 .5196 .5090 .5001 .4927 .4864 .4812 .4767 .4730 .4698
WWW .5479 .5290 .5132 .4999 .4888 .4793 .4713 .4644 .4585 .4534 .4490
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Optymalizacja nie-okresowych przeglądów 
i konserwacji systemów wieloelementowych

A k-out-of-n:G system and a system with components subject to soft and hard failures are both inspected non-periodically. For 
the k-out-of-n system, components fail “silently” (i.e. are hidden), and the entire system fails when (n-k+1)st component fails. For 
the system with hard-type and soft-type components, hard failures cause system failure, while soft failures are hidden and do not 
cause immediate failure of the system, but still reduce its reliability. Every system failure allows for an opportunistic inspection 
of hidden soft-type components in addition to the scheduled inspections. The available maintenance types are replacement and 
minimal repair. For hard-type components, the maintenance decision is determined by the optimal age before replacement. For the 
soft-type components with hidden failures, we do not know their age, and so decide on the appropriate type of maintenance using 
the optimal number of minimal repairs before replacement. The hidden nature of soft-type component failures precludes the use of 
a tractable analytic expression, so we use simulation and genetic algorithm (GA) to jointly optimise the non-periodic policies on 
maintenance and inspection and to ensure these incur minimal expected total cost over a finite planning horizon. Due to increas-
ing computational complexity associated with the number of inspections and maintenance policies to be evaluated, the genetic 
algorithm presents a promising method of optimisation for complex multicomponent systems with multiple decision parameters.

Keywords:	 non-periodic inspection, opportunistic inspection, maintenance, hidden soft failure, hard failure, 
genetic algorithm.

Przeglądów systemu typu k z n: G oraz systemu z elementami ulegającymi miękkim i twardym uszkodzeniom dokonuje się nie-
okresowo. W przypadku systemu k z n, składowe ulegają uszkodzeniom „w trybie cichym” (tj. uszkodzenia są ukryte), a cały system 
ulega awarii, gdy ulegnie uszkodzeniu element (n-k + 1). W przypadku systemu z elementami typu twardego i miękkiego, uszkodze-
nia twarde prowadzą do awarii systemu, natomiast uszkodzenia miękkie są ukryte i nie powodują natychmiastowej awarii systemu, 
choć nadal zmniejszają jego niezawodność. Każda awaria systemu stanowi dodatkową, w stosunku do przeglądów planowych, 
okazję do przeprowadzenia przeglądu (tzw. przegląd awaryjny) ukrytych elementów miękkich. Dostępne rodzaje konserwacji to 
wymiana oraz naprawa minimalna. W przypadku komponentów twardych, decyzję, który typ konserwacji zastosować, podej-
muje się biorąc pod uwagę optymalny wiek przed wymianą. W przypadku elementów miękkich z ukrytymi uszkodzeniami, wiek 
optymalny jest nieznany, dlatego decyzje o odpowiednim typie konserwacji podejmuje się z uwzględnieniem optymalnej liczby 
minimalnych napraw przed wymianą. Ukryty charakter uszkodzeń elementów składowych typu miękkiego wyklucza wykorzystanie 
rozwiązywalnego wyrażenia analitycznego, dlatego w pracy użyto symulacji i algorytmu genetycznego (GA), w celu jednocze-
snej optymalizacji nieokresowych strategii prowadzenia konserwacji i przeglądów oraz zapewnienia, że będą one pociągały za 
sobą minimalny oczekiwany koszt całkowity w skończonym horyzoncie planowania. W świetle rosnącej złożoności obliczeniowej 
związanej z dużą liczbą ocenianych przeglądów i strategii utrzymania ruchu, algorytm genetyczny stanowi obiecującą metodę 
optymalizacji złożonych systemów wieloelementowych o wielu parametrach decyzyjnych.

Słowa kluczowe:	 przegląd nie-okresowy, przegląd awaryjny, utrzymanie ruchu, ukryte uszkodzenie miękkie, 
uszkodzenie twarde, algorytm genetyczny.
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k	 Number of identical components required to be in working 
order for a k-out-of-n system.

l	 Total number of inspections within a planning horizon.
m	 Number of minimal repairs before replacement.
n	 Total number of components.
s	 Soft-type component index.
t	 Age of a component.
x	 Inspection policy.
 	 Reliability.

Greek Symbols

Φ	 Random variable for the number of component failures.
Λ	 Cumulative hazard function.
Υ	 Uptime of a component.
α	 Confidence level.
β	 Shape parameter in Weibull distribution.
ζ	 Optimal replacement age for hard-type component.
η	 Scale parameter in Weibull distribution, characteristic life.
θ	 Age of a hard-type component.
λ	 Power-law intensity (hazard) function.
σ	 Time until next inspection.
τ	 Minimal time unit.
φ	 Instance number of component failures.
χ	 Time-to-failure.
ω	 Length of planning horizon (life cycle).

Superscripts

*	 Optimality.
D	 Component downtime.
I	 Inspection.
M	 Minimal repair.
R	 Replacement (see “corrective replacement”).
T	 Total.
HS	 System composed of hard-type and soft-type components.
SD	 System downtime.
a	 Inspection policy identifier.
k,n	 System composed of k-out-of-n components.

Subscripts

1	 Reference to soft-type components.
2	 Reference to hard-type components.
c	 Current.
h	 Hard-type component identifier.
i	 Scheduled inspection identifier.
j	 Component identifier.
l	 Reference to the total number of inspections within a planning 

horizon.
m	 Number of minimal repairs before replacement maintenance 

criterion.
s	 Soft-type component identifier.

1. Introduction and Background

Multicomponent systems generally have higher complexity than 
unicomponent systems, since the former usually have one or more 
intercomponent dependencies, such as functional, structural, failure, 
or economic [8, 28, 34]. Optimal maintenance and economic depend-
ency in multicomponent systems is studied by Dekker et al. [11], Wang 
and Pham [36] and Zille et al. [41]. Periodic replacement policies for 
multicomponent systems with stochastic and economic dependencies 
are investigated by Ozekici [20]. Series systems with mixed standby 
components are compared based on their cost/benefit ratio, time to 
failure and long-term availability by Wang and Kuo [35].

Redundant systems with high levels of availability, reliability 
and robustness are typically configured as k-out-of-n systems, where 
the system is able to perform without interruption until failures of its 
components accumulate to n-k+1. Multi-engine aircraft, multi-display 
airplane cockpits, dual-contour automotive brake lines and multiple 
pumps used for hydraulic control are just several examples of k-out-
of-n systems. A k-out-of-n system with perfect component repairs and 
maintenance equipment subject to imperfect repairs is considered by 
Zhang and Wu [38]. Load-sharing k-out-of-n systems are considered 
by Taghipour [27] and Taghipour and L. Kassaei [32]. They minimise 
the total expected cost and determine the optimal inspection interval 
for a finite planning horizon.

Definition 1.1: Generally, failure is an adverse event, which inter-
feres with the normal designed functioning of the affected unit. One 
major class of multicomponent systems includes those composed of 
the two types of components classified by failure: hard-type and soft-
type. 

Definition 1.2: A hard-type component is a component whose 
failure is self-evident and triggers the system failure immediately; 
therefore, the time of failure is known for this component type. Exam-
ples of hard-type components include: wiring in ignition distributor 
in automotive electronic ignition, central processing unit in personal 
computers, fuse and display in infusion pumps, etc. 

Definition 1.3: A soft-type component is a component whose fail-
ure does not trigger the immediate system failure, but the latter’s reli-
ability is usually reduced as a result of increased risk of malfunction, 
damage and/or eliminated redundancy. We refer to failures proper as 

“hard and soft failures” whenever the focus is on the failure process, 
and to components proper as “hard-type and soft-type components”, 
respectively, to distinguish between different types and behaviours of 
components.

Definition 1.4: System reliability means the probability that the 
system will operate without failure under the design operating condi-
tions (such as voltage, temperature, humidity). Component reliability 
refers to the same concept applied to individual components, whether 
hard-type, or soft-type.Examples of soft-type components include: 
liquid-level alarms in infusion pumps and standby-redundant compo-
nents (batteries, surge-protective equipment, parallel processors).

Parts of the system subject to both soft and hard failures are treat-
ed as separate components of different types. It can be also noted that 
components in k-out-of-n systems can be treated as soft-type due to 
the system’s capacity to accumulate component failures.

Periodic inspection policies for complex multicomponent systems 
have been extensively studied by Taghipour and Banjevic [31, 30, 29], 
Flage and Aven [12] and Pandey et al. [21]. Taghipour and Kassaei [32] 
consider periodic inspection optimisation for k-out-of-n systems.

For almost any system, the planning horizon is related to the sys-
tem’s life expectancy, depending on the operational and/or managerial 
objectives. Fixed and finite planning horizon is used in areas such as 
pharmacology, medical devices with expiry date, aircraft maintenance 
(Sriram and Haghani [25]). For example, medications and a vast ma-
jority of medical tools have to be replaced once the end of their life 
cycle has passed. Similarly, aircraft parts usually have to be preven-
tively replaced after a specific number of flight hours.

Systems such as protective devices usually contain components 
whose failures are hidden. A hidden failure is a failure revealed only 
at inspection, but not during the normal operation of the system [19]. 
The detection of a hidden failure in an integrated system composed 
of main functional (protected) and safety (protective) units may oc-
cur either at inspection, or whenever the protective unit is required 
to function, but is unavailable because of a failure. Soft failures are 
similar to hidden failures, but the system is still able to function de-
spite their presence. Single-component systems with hidden failures, 
probability of failure dependent on the number of previous repairs, 
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and maintenance policy based on both the component’s age-at-failure 
and its number of overhauls are investigated by Sheu et al. [24].

Bjarnason et al. [6] consider a joint optimisation model for mini-
mising the total cost of both maintenance and inventory policies for a 
system with hidden failures in a k-out-of-n redundant configuration. 
Babishin and Taghipour [2] propose a joint optimisation procedure 
for minimising the total cost of periodic inspections and additional 
inspections at system failures (opportunistic inspections), as well as 
corrective maintenance in k-out-of-n systems, where component fail-
ures are hidden.

Failure of an entire system or some of its components can be re-
garded as an opportunity to check all of the components for damage 
in addition to the scheduled inspections – hence, whenever such op-
portunity is taken, inspections performed at that time are called “op-
portunistic”. In the literature, opportunistic maintenance has received 
an extensive treatment. For example, Dagpunar [10] considers a pre-
specified control limit for component’s age, exceeding which a failed 
component in a multicomponent system is opportunistically replaced. 
Zhu et al. [40] offer a policy for opportunistic maintenance of offshore 
wind turbines with two component types, where maintenance action 
for soft-type components depends on their ages. Cui and Li [9] model 
damage in a multicomponent system accumulating to a shock event 
under opportunistic inspections and stochastically-dependent compo-
nents. Aven and Dekker [1] consider age-based, as well as block re-
placement models with opportunities for preventive replacement. Gao 
et al. [13] propose a quasi-periodic imperfect preventive maintenance 
policy for a repairable system with stochastic maintenance interval. 
Peng et al. [23] study a sequential periodic preventive maintenance 
policy and develop a hybrid random imperfect maintenance model, 
optimising it using genetic algorithm. Legát et al. [18] consider both 
periodic preventive and predictive maintenance and determine, cor-
respondingly, the optimal interval and the optimal diagnostic param-
eter. Gunn and Diallo [15] use a shortest path depth-first algorithm 
to search a network tree representation of the indirect opportunistic 
grouping of preventive periodic replacements. Yun and Endharta [37] 
use minimal cut set to analyse a k-out-of-n:F system with exponential 
failure times and evident failures.Unlike the cases from the literature, 
in the present case, there is a choice of maintenance action which the 
maintenance personnel may take at every failure of a component.

Genetic algorithms (GA) have been used in the literature for in-
spection optimisation of multicomponent systems. Because of the ab-
sence of analytical solution, Babishin and Taghipour [3] employ joint 
optimisation with exhaustive search, as well as genetic algorithm with 
either integer, or quasi-continuous inspection period. They provide the 
optimal joint inspection and maintenance policies, as well as calculate 
the expected number for system failures depending on the cost ratio 
and hazard function of components in a k-out-of-n system with hidden 
component failures under preventive or corrective replacement, mini-
mal repair, opportunistic and periodic inspections. They also derive a 
criterion for calculating the acceptable number of system failures over 
its planning horizon. Bjarnason and Taghipour [5] formulate a model 
for a k-out-of-n system with a three-dimensional objective function 
and use the GA to find the joint optimal (s, S) inventory and mainte-
nance policies. It should be noted that analysing systems with mixed 
hard and soft failures, where each component may require a special 
treatment, is generally much harder than analysing systems in k-out-
of-n configuration with identical components.

Non-periodic inspection optimisation has also been covered in the 
literature. Zhao et al. [39] consider a system made of one compo-
nent, which is replaced under a Gamma deterioration process over 
infinite planning horizon and develop a proportional hazards model 
for optimising the system’s non-periodic inspection policy. Su [26] 
essentially develops a model for optimising non-periodic inspections 
in a one-component system with a combination of hidden and self-an-
nouncing operating modes, since his inspection “period” is a random 

variable, which renders it non-periodic according to the definitions 
and terminology adopted in the present paper. He uses the supple-
mentary variable technique to optimise for an inspection period which 
maximises profit per unit time.

Multicomponent non-periodic inspections have also been consid-
ered in the literature. Hajipour and Taghipour’s model [16] optimises 
for non-periodic inspection policy in a finite life cycle for multicompo-
nent systems with a choice from two maintenance actions performed 
based on the age-dependent probability. Castanier et al. [7] propose 
a model taking into account the condition of the system for optimal 
inspection and replacement of a two-component system under non-
periodic inspections, where they essentially develop separate policies 
for each component, assuming component independence, admitting 
that extending their approach to larger systems makes the numerical 
solution intractable. In this regard, it is worth mentioning that Vaurio  
notes in [33] that it is not generally possible to obtain an analytical 
solution for the optimal inspection interval even in the simpler case 
of optimising only for system availability. This explains the interest in 
and the value of numerical and simulation methods for the analysis of 
multicomponent systems.

Golmakani and Moakedi [14] develop a model for non-periodic 
inspection optimisation using branch-and-bound and dynamic pro-
gramming techniques, which they use to introduce the A* search al-
gorithm, which attempts to improve on the efficiency of branch-and-
bound technique using branching on the most attractive nodes at each 
step in the procedure. However, the A*search is at a disadvantage for 
generating a large number of nodes at each iteration. Some research-
ers, e.g. Lapa et al. [17], demonstrated the applicability and usefulness 
of genetic algorithms to optimisation of system availability. In the 
present paper, genetic algorithm is used for the purpose of improving 
efficiency of optimisation calculations.

In summary, the present paper provides a general methodology 
and two models for finding the optimal joint non-periodic inspection 
and maintenance policies for complex multicomponent systems with 
finite planning horizon. In the previous models such as, for example, 
by Hajipour and Taghipour [16], Taghipour and Banjevic [31, 30, 29], 
the maintenance action was not optimised, and failed components 
were replaced, or minimally repaired based on age-dependent prob-
ability. Babishin and Taghipour [3]optimise both maintenance and 
inspection policies for a system in k-out-of-n configuration, but only 
under periodic inspections. Babishin and Taghipour [4] use a three-
stage optimisation procedure to obtain optimal inspection policy for 
hard-type components in Stage 1, optimal maintenance in Stage 2 and 
optimal periodic inspection interval for soft-type components in Stage 
3 using the Monte Carlo simulation.

In the present paper, both the maintenance decision and the in-
spection policy are optimised jointly in one stage. Recursive math-
ematical formulations for generating the expected values of minimal 
repairs, replacements and uptime are also provided for the first time 
in the case of a k-out-of-n system.The optimal maintenance policy for 
soft-type components is determined by the number of minimal repairs 
until replacement for these components, similarly to the approach 
proposed by Park [22]. The optimal maintenance policy for compo-
nents with hard failures is based on these components’ ages. Both of 
the proposed models feature corrective maintenance (replacement or 
minimal repair) of components with hard and soft failures, along with 
scheduled non-periodic and opportunistic inspections of components 
with soft failures. The hard failure occurrence in the system composed 
of hard- and soft-type components affects the expected number of 
soft failures, replacements, minimal repairs and expected downtime. 
Therefore, these expected values influence the optimal inspection 
policy. The components of a k-out-of-n system are regarded as being 
identical soft-type components, which facilitates the analysis of such 
systems. Jointly optimising for both inspection and maintenance in 
one stage for both systems allows finding optimal maintenance and 
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inspection policies for entire systems rather than marginally just for 
certain groups of components.  

Generally, the safe and reliable operation of different equipment 
can be facilitated with the help of inspection and maintenance optimi-
sation models. The latter also have strong managerial implications due 
to the importance of justifying these decisions with both qualitative 
and quantitative analysis. Using the proposed inspection and mainte-
nance optimisation models, the decision-maker(s) gain an opportunity 
to find the combination of inspection and maintenance decisions that 
is most likely to result in the greatest cost savings without sacrificing 
availability or reliability. The hard-to-quantify effects, such as those 
of opportunistic inspections, can be accounted for by using the joint 
optimisation models in managerial decision-making process. This is 
likely to result in cost savings, which are especially significant, if the 
costs of inspection are high. Thus, it can be seen that optimisation of 
inspection and maintenance decisions represents a valuable asset for 
decision-makers.

The present article is further organised as following: Section 2 
states the problem description; Section 3 outlines the model formula-
tion for systems in k-out-of-n configurations under non-periodic and 
opportunistic inspections;  Section 4 contains the model formulation 
for the system composed of hard-type and soft-type components under 
non-periodic inspections and opportunistic inspections of soft-type 
components; Section 5 illustrates the models by providing numerical 
examples; lastly, Section 6 summarises the conclusions.

2. Problem Description

Consider the problem of inspecting devices consisting of coupled 
systems, such as surge-protected personal computers (PCs), infusion 
pumps with liquid-level alarms, generators or power distributors with 
reserve power supplies. For such systems, it may not be economically 
feasible to have periodic inspections – for example, in the case when 
the optimal inspection period of the protective system does not coin-
cide with the inspection period of the system they are coupled to. In 
such cases, non-periodic inspections are a good option.

In the present article, two main kinds of multicomponent systems 
are considered, based on the classification by the types of component 
failures. The system belonging to the first kind (System 1) is a k-
out-of-n system with hidden component failures identifiable solely at 
inspections. The system belonging to the second kind (System 2) con-
sists of components belonging to either of the two types: hard type, or 
hidden soft type. Both kinds of systems are considered in more detail 
in subsequent sections.

The present paper focuses on finding the optimal non-periodic 
policies for maintenance and inspection of two kinds of multicompo-
nent systems described above. The relevant assumptions pertinent to 
System 1 are further identified by designation “S.1.#”,those pertinent 
solely to System 2 – by “S.2.#”, and those pertinent to both systems 
– by “S.1/2.#”, where “S.” stands for “system”). We start with stating 
the general assumptions for both kinds of systems:
S.1/2.1: Soft failures are discovered only at inspections. Therefore, 

the ages at failure of soft-type components are unknown.
S.1/2.2: Inspections are considered as being either scheduled non-

periodic, or opportunistic.
S.1/2.3: Systems are always inspected at the end of the fixed planning 

horizon, all necessary maintenance is performed and compo-
nents’ ages recorded at that time in order to create a renewal 
point, after which the optimisation procedure can be repeated 
again. 

S.1/2.4: Scheduled non-periodic (further referred to as simply “non-
periodic”) inspections occur with the minimal unit of time over 
a finite planning horizon ω, possibly at times iτ, i=1,2,…,l, 
l ∈ ℕ, where l=ω/τ-1 if ω is divisible by τ, and l=|ω/τ| oth-
erwise. Scheduled inspections are always performed on the 

operating (unfailed) system at times prescribed by an inspec-
tion policy.

S.1/2.5: System failures offer an occasion to inspect every component 
in a system. Every failed component is then maintained to re-
store its functionality.

S.1/2.6: A maintenance action is classified as either a minimal repair, 
or a corrective replacement (further referred to as simply “re-
placement”). A minimal repair restores the component’s func-
tionality to the state it was in just preceding the component’s 
failure, thus leaving the component’s age unaffected. A cor-
rective replacement decreases the failed component’s age to 0 
(“as-good-as-new” state). Minimal repairs and replacements 
can take place at scheduled, as well as opportunistic inspec-
tions.

S.1/2.7: Both maintenance and inspection are assumed to have negli-
gible duration and are perfect.

When obtaining the total expected cost for a number of minimal 
repairs before replacement mj per component within a given planning 
horizon, we assume the following:
S.1/2.8: Component j is replaced after mj minimal repairs.

Furthermore, for the purposes of calculating the upper bound for 
the expected number of component failures within the planning hori-
zon at α confidence level for each soft-type component, we assume 
that:
S.1/2.9: There is no delay in detecting failures upon inspection.
S.1/2.10: Component failures are rectified by minimal repair. (No 

replacements are considered here, since we are interested in 
finding the optimal number of times a failed component may 
be minimally repaired before it is replaced for the first time). 

The number of minimal repairs before replacement depends on 
the expected number of component failures, since there is a statisti-
cal uncertainty associated with the latter. In obtaining the expected 
number of component failures E[Φ(ω)], we observe the following 
about the component failure process:
S.1/2.11: Φ(t)∈{ℕ∪{0}}, (i.e. the number of failures is a non-nega-

tive integer).
S.1/2.12: If t1<t2, then Φ(t1)≤Φ(t2).
S.1/2.13: For t1<t2, Φ(t2)−Φ(t1) equals the number of failures which 

occurred in the interval (t1,t2). Without the loss of generality, 
if t1=0, t2=ω, then Φ(t2)−Φ(t1 )= φ.

Based on S.1/2.11-S.1/2.13, it can be concluded that the compo-
nent failure process is a counting process. Furthermore:
S.1/2.14: Φ(0)=0, (i.e. no components have failed prior to the begin-

ning of the system’s life cycle).
S.1/2.15: Component failures follow independent increments, i.e. the 

numbers of component failures in disjoint time intervals are 
mutually independent of each other.

For System 1, the following assumptions are also made:
S.1.1: The number of components for System 1 is denoted as n.
S.1.2: All redundant components in k-out-of-n configuration are iden-

tical.
S.1.3: Components’ failures are assumed to occur according  

to a power law intensity function (hazard function) 

 λ
β

η η

β

j
j

j

j

j
t

t j

( ) =

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
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 following non-homogeneous Poisson 

process (NHPP), where βj is the shape parameter and ηj is the 
scale parameter of the Weibull distribution describing times 
between failures of component j, tj is the age of component j, 
j=1,2,…,n for System 1.

S.1.4: Opportunistic inspections are incurred whenever n-k+1 com-
ponents fail.
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S.1.5: The (n-k+1)th failure presents an opportunity for inspecting the 
system and rectifying the failed components, which influenc-
es the number of replacements, minimal repairs and downtime 
for the hidden components (see Fig.1).

 

Fig.1: Sample hidden failures, scheduled and opportunistic inspections within 
one life cycle for System 1.

Consider the problem of optimising inspection and maintenance 
of several identical antennae providing network access on a remote 
base station (e.g. used in geophysical surveys), which because of 
crew staffing shortages, weather, or accessibility issues requires non-
periodic inspection and maintenance. Each antenna is considered as a 
component, and the collection of antennae providing network access 
are considered as a system. When an antenna’s battery runs down, it 
ceases receiving and retransmitting the signal, which decreases the 
overall signal coverage and signal strength. Because the signal has to 
be accessible from a helicopter, which can be flying anywhere within 
the coverage area, failure of one or more of the antennae constitutes 
a decrease in the performance of the entire system. The base station 
system is modelled as a k-out-of-n system, referred to as System 1. 
Fig. 1 provides an example of a k-out-of-n system, checked at sched-
uled non-periodic inspections (denoted by xi) and opportunistically 
whenever n-k+1 components fail. The numbers 1,…,n-k above the 
black circles are denoting the ordinal number of component failures 
in the system over the time between inspections (and, hence, between 
failure rectifications). This is used to demonstrate an example of pos-
sible occurrence and accumulation of failures within a certain period 
of time.

Similarly to the above-stated assumptions for System 1, the fol-
lowing assumptions are made for System 2:
S.2.1: The number of soft-type components in System 2 is denoted as 

n1, and the number of hard-type components is represented 
as n2.

S.2.2: Similar to S.1.3, but with j=1,2,…,n1+n2 for System 2, where 
s=1,2,…,n1 is the number of soft-type components and 
h=1,2,…,n2 is the number of hard-type components in the 
system.

S.2.3: Opportunistic inspections are incurred whenever a hard failure 
occurs.

S.2.4: Hard failures create more opportunities for inspecting soft-
type components and, consequently, influence the replacement and 
minimal repair numbers, as well as the downtime of components with 
soft failures (see Fig. 2). 

Fig.2: Sample hard and hidden soft failures, scheduled and opportunistic in-
spections within one life cycle for System 2.

Another problem involves optimising non-periodic inspection and 
maintenance policies for a MacPherson-type strut assembly found in 
automotive vehicles. Here, a shock absorber, a coil spring and a strut-
to-mount nut are modelled as hard-type components, and lower and 
upper spring insulators, dust shield, jounce bumper and spring seat 

pad are modelled as soft-type components. The entire assembly con-
stitutes a system and is referred to as System 2. Similarly to Fig.  1, 
Fig. 2 shows an example of hard and soft failures along with the 
scheduled and opportunistic inspections for System 2.

Once the end of the planning horizon (i.e. time ω) is reached, 
a new non-periodic optimal policy for maintenance and inspection 
can be established by repeating the outlined procedure. In the case 
of System 2, current ages of hard-type components can be taken into 
account when planning for the system life cycle.

The total cost of system maintenance and inspection is a metric 
used almost universally in different areas of industry for a large varie-
ty of systems. It is a convenient measure of the optimality of a system, 
since the latter’s reliability and availability are connected through a 
range of costs, such as inspection and maintenance costs, component 
and system downtime penalties. For this reason, for both System 1 
and System 2, the objective function is formulated based on the total 
cost of joint maintenance and inspection policy.

A closed deterministic formulation requires knowledge of all sys-
tem parameters with certainty. However, this condition is not satis-
fied, because the failure ages of hidden soft-type components are una-
vailable. Instead, an expression is formulated to recursively find the 
expected system parameters (please refer to Appendix for details).

However, the recursive formula cannot be solved analytically 
because of some terms having multidimensional integrals requiring 
discretisation, which makes the computations cumbersome. Because 
of this, the present analysis is based on the results obtained from Mon-
te Carlo simulations, as well as on the use of the genetic algorithm 
(GA).

To summarise, our objective is to find the non-periodic optimal 
maintenance policy *m  for System 1 and *

sm  for System 2, and op-
timal inspection policy *x . The optimal joint policies are achieved 
through minimising for the whole system the total expected cost with-
in the system’s life cycle ω.

3. Model 1: joint optimisation of non-periodic inspec-
tion and corrective maintenance of k-out-of-n system 
with opportunistic inspections

In this section, we propose a model for a k-out-of-n system which 
may be non-periodically inspected at potential times iτ, where τ is 
the minimal time unit. At the same time, maintenance optimisation 
is done for the discrete-valued number of component’s minimal re-
pairs until replacement. Overall, joint quasi-continuous and discrete 
optimisation is performed to obtain the joint optimal inspection and 
maintenance policies.

Maintenance optimisation is concerned with finding the best 
maintenance action in a particular system setting. In this paper, at each 
inspection point, the decision has to be made whether to minimally 
repair, or replace the failed component(s). Inspection optimisation 
then provides the best points in time at which these maintenance ac-
tions have to be taken in order to incur the lowest cost. Since failures 
are stochastic in nature, the total expected cost is used for optimality 
computations.

The scheduled non-periodic inspection policy ( )1 2, , ,a
lx x x= …x  

, 

where a  refers to the inspection policy index, can be encoded as a 
binary sequence of ‘1’s and ‘0’s, where each ‘1’ corresponds to a 
scheduled inspection and ‘0’ corresponds to the lack thereof. Taking 
the number of digits of ax  to be l , each digit then corresponds to 
time iτ. This binary representation lends itself naturally to the encoded 
“genome” strings used in the genetic algorithms, which makes it par-
ticularly convenient and effective for the purposes of inspection opti-
misation using the latter. The total number of possible distinct sched-
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uled inspection policies is then 12l− , since there is always 1 inspection 

scheduled to occur at time ω. Hence, enumerating ax , 
11,2, ,2la −= …  .

The components’ failures are hidden, making their ages at fail-
ure unknown. For this reason, maintenance decisions cannot be age-
based. Instead, the number of minimal repairs is counted for each 
component, and the decision of whether to minimally repair, or re-
place a failed component is based on the number of minimal repairs 
until replacement. Since all components are assumed to be identical in 
k-out-of-n configuration, only one optimal number of minimal repairs 
before replacement has to be found for a given system.

Based on observations S.1/2.11-S.1/2.13, it can be concluded that 
the component failure process is a counting process. Moreover, obser-
vations S.1/2.14-S.1/2.15 pertain to a Poisson process, and assump-
tions S.1.3 and S.2.2 further specify the sequence of random variables 
Φ t t( ){ } ≥0

 describing the failure process as NHPP. Making use of as-

sumptions S.1/2.9 and S.1/2.10,the expected number of failures 
E Φ ω( )   to time ω ≥ 0  is obtained as following:

	 E t dt t dtΦ ω ω λ
β
η η

ω
η

ω ω β β

( )  = ( ) = ( ) =








 =









∫ ∫

−

Λ
0 0

1
,     (1.1)

where Λ ω( )  is a cumulative hazard function.

The actual number of failures is expected to fall within a 100 ( )100*α α % 

confidence interval, with the upper confidence limit UCL given from 
Poisson distribution as:

	
UCL P= ∈ ( ) ≤( ) ≥ −

−







min :ϕ ω ϕ
α0 1 1

2
Φ

	 = ∈ ( ) =( ) ≥ −
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








=
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αϕ
0

0
1 1

2f
P fΦ 	 (2.1)

where UCL  is the upper confidence limit for a component  
and is dependent on ω, and the probability of observing  
φ failures over planning  horizon ω is given by 

P
E

EΦ
Φ

Φω ϕ
ω

ϕ
ω

ϕ

( ) =( ) =
( ) ( )

− ( ) ( )!
exp  for each soft-type 

component.

The total expected cost , ,
.a

T k n
m

E C 
  x

 is formulated as following:

	
E C lc F f m ca m

T k n I
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x
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.

, , , , ,



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1
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m j j s cax , ,
, , ,ω

	 + − ( )( )c U t f mD
m j j s caω ω

x , ,
, , , , 	 (3)

where l is a number of scheduled inspections, Ic  is a cost of a sched-

uled inspection, ( )1 2, , , nt t t= …t  is a vector with initial ages of com-

ponents, F k nω, , ,t( )  is the expected number of failures for the sys-

tem, SDc  is a downtime penalty for the system, Dc  is a downtime 

cost per component per unit time, Rc  is a per-component cost of cor-
rective replacement, Mc  is a per-component cost of minimal repair, 

jt  is an initial age of component j , m  is a number of minimal re-

pairs until replacement, U t f ma m j j s cx , ,
, , ,ω( ) , R t f ma m j j s cx , ,

, , ,ω( )  

and M t f ma m j j s cx , ,
, , ,ω( )  are, respectively, the expected uptime and 

the expected numbers of replacements and minimal repairs for each 
component. In the proposed formulation, expected values are gener-
ally obtained recursively using the generator function 
G t f mx m s s s ci s, , , , ,ω( )  with the variables indicated inside the brackets 

as parameters (see Appendix for details).
The results of the periodic optimisation from both exhaustive 

search and genetic algorithm search procedures were cross-verified 
and were found to be identical. Using the same logic and modifying 
the code to accommodate non-periodic frequency of inspections, we 
extrapolate the results to the non-periodic domain.

The optimal joint maintenance and inspection policies are deter-
mined by the optimal inspection policy *x  and the optimal number of 

minimal repairs until replacement *m , respectively. Using calcula-

tions for the combinations of possible inspection and maintenance 
policies ( ,a mx ), the optimal joint inspection policy ( *,m*x ) can be 

obtained from searching for the smallest total expected cost as follow-
ing:

	
x*

x x
, min ,*

, .
, ,m E C

a a
m m

T k n( ) = 



{ }

	 s.	t. : 0 ,m UCL≤ ≤

	
x

if inspection occurs at time i
if no inspection occurs at timi =

1
0

,
,

τ
ee iτ





,

	 ( )1,2, , .                                                                               4i l= … 	 (4)

The expected values required for the calculation of , ,
.a

T k n
m

E C 
  x

 

are, however, unavailable for systems where some or all of compo-
nents fail in hidden mode, because failure ages of these components 
are unavailable and cannot be formulated explicitly. This obstacle is 
overcome by using the simulation procedures described in Section 5.

4. Model 2: non-periodic inspection and corrective 
maintenance of hard-type and soft-type components 
with opportunistic inspection of soft-type compo-
nents

This section describes the methodology for finding the optimal 
maintenance actions after failures and the optimal inspection policy 
for System 2, taking into account the fact that soft failures are hidden 
and the soft-type components’ ages at the time of failure are unknown. 
The model resulting from this methodology is called “Model 2” fur-
ther in the text.

Due to the different failure characteristics, hard-type components 
are analysed separately from the soft-type components. Hard failure 
times are known, since the system stops operating immediately when-
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ever a hard failure occurs. The goal is to determine the optimal ages 
at which the hard-type components should be replaced, providing the 
lowest cost of inspection and maintenance for the entire system. In 
order to achieve this, the domain of possible replacement ages from 
which to choose the optimal ones has to be defined for each hard-
type component. The replacement ages are represented by vector  
ζζζ = …( )ζ ζ ζ1 2 2

, , , n , consisting of replacement ages for each hard-type 
component h=1,2,…,n2 .

From the system life cycle’s perspective, it is impractical to make 
the hard-type component’s replacement age longer than the life span 
of the entire system, as represented by its planning horizon. It is as-
sumed that an overhaul or similar renewal event is to take place at the 
end of the system’s life cycle, at which point those hard-type compon-
ents which have not been maintained over the system’s operation will 
be replaced. Thus, the replacement ages for hard-type components 
can be assumed to be bounded by 0 from the bottom and a multiple 
of the system’s life cycle length at the top, for example: 0<ζh≤1.5ω, 
h=1,2,…,n2 .The choice of the multiple of ω is arbitrary and depends 
on the practical considerations rather than the theoretical ones. The 
motivation for choosing 1.5 as a multiple for the upper bounds is to 
allow optimal replacement ages vary in the range greater than the sys-
tem’s life cycle length for greater generality, but at the same time not 
to waste computational resources checking for unrealistically long re-
placement ages that are impractical for planning purposes.

The optimal replacement ages for all hard-type components are 
represented by vector ζ*=(ζ1

*,ζ2
*,…,ζn

*)  consisting of the optimal re-
placement ages for each hard-type component h=1,2,…,n2.

Unlike those for hard failures, the soft failure times are unknown, 
which makes it impossible to base the optimisation procedure on the 
ages of soft-type components. Instead, maintenance decision can be 
based on the number of minimal repairs until replacement. Similarly 
to System 1 and using the same assumptions, the expected number of 
failures E[Φs (ω)] for System 2 was obtained as following:

	 E t dts
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The actual number of component failures, however, may vary, 
owing to the stochastic nature of component failures. Hard failures 
are assumed to be rectified immediately upon failure. Soft failures 
are rectified at the earlier of either a scheduled inspection, or hard 
failure (i.e. at opportunistic inspection). We may then get the general 
estimate on the upper bound of the number of minimal repairs until re-
placement from using Poisson distribution for E[Φs (ω)] to construct a 
confidence interval at α level as following:

	 UCL P fs s
f

s s
s

s
= ∈ ( ) =( ) ≥ −
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



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0
1 1
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where UCLs is the upper confidence limit for soft-type component s 
and the rest of terms are as previously defined.

We assume that the number of minimal repairs before replace-
ment ms for soft-type component s, s=1,…,n1 does not exceed the 
upper confidence limit UCLs on the mean of component failures and 
may take on any value between 0 and UCLs, inclusively. Thus, differ-
ent cases are covered, ranging from replacing component at every 
failure to replacing it at (UCLs+1)st failure, with mc keeping track of 
the current number of minimal repairs. Furthermore, ms thus selected 
serves as the criterion for making a maintenance decision. Component 
s is minimally repaired at each inspection so long as no more than ms  
failures occur. It is then replaced on (ms+1)st failure. The optimal 

number of minimal repairs until replacement *
sm  results in the lowest 

total expected cost E C a
s hm

T HS
x , ,

,
ζ







 for the entire system.

It should be noted, that unlike in preventive replacement mod-
els for mixed systems composed of hard- and soft-type components 
encountered in Babishin and Taghipour [4], corrective replacement 
models may exclude the costs of hard-type components from the op-
timisation. This is because the hard-type components are replaced at 
the optimal replacement ages if they fail, and not at the scheduled in-
spection times when they are still operational. This makes the optimal 
non-periodic inspection independent of the costs of hard failures.

In order to obtain the lowest expected cost, all combinations of 
non-periodic inspection schedules, the numbers of minimal repairs 
before replacement, and various ages as threshold for replacement 
have to be considered for all components. The expected costs thus 
calculated can then be searched for the lowest value. However, the 
size of the search space is very large in this case. For this reason, this 
problem, albeit in the context of periodic inspections, has been previ-
ously broken down into several stages for maintenance and inspection 
optimisation for all hard-type components in Stage 1, marginal opti-
misation of the maintenance decision for each soft-type component in 
Stage 2 and optimisation of the inspection period for the entire system 
in Stage 3, using Monte Carlo simulation for marginal multi-stage 
optimisation [4].

In the present paper, global system-level optimisation is per-
formed, which requires simultaneous optimisation of all decision 
variables. This results in a dramatic increase of the search space. The 
latter is greatly reduced by means of the genetic algorithm. This al-
lows optimising for both inspection and maintenance jointly in one 

stage. The total expected cost E C a
s hm

T HS
x , ,

,
ζ







 is calculated as follow-

ing:
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where superscript HS indicates the cost for System 2 consisting of 
components with both soft and hard failures, θ =(θ1,θ2,…,θ

h,…,θn2 ) is 
a vector containing the initial ages of hard-type component  
h, h=1,2,…,n2, ζζ = …( )ζ ζ ζ1 2 2

, , , n  is a vector with replacement ages 

of hard-type components,  ts is the initial age of component s, M
sc   is 

a minimal repair cost of component s, R
sc  is a replacement cost for 

each soft-type component, D
sc  is a cost of downtime for component 

s, mc is the current number of minimal repairs, and terms  

U t f ma
sm s s s cx , ,

, , , ,,ω θθ ζζ( ) , R t f ma
sm s s s cx , ,

, , , , ,ω θθ ζζ( )  and 

M t f ma
sm s s s cx , ,

, , , , ,ω θθ ζζ( )  represent, respectively, the expected up-

time and the expected numbers of replacements and minimal repairs 
for each soft-type component s, s=1,2,…,n1.

Using the calculations for the combinations of possible inspection 

and maintenance policies xa
s hm, ,ζ( ), the optimal joint inspection 

and maintenance policy x ** *, ,ms ζζ( )  can be obtained from searching 

for the smallest total expected cost as following:
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The following section outlines the general simulation procedure 
used for optimisation.

5. Simulation Model

Simulation procedure is similar for both systems, but differs in 
some details as a result of the difference in the types of system’s com-
ponents.

5.1.	 Simulation Model for k-out-of-n System (System 1)

The simulation for the k-out-of-n system takes as inputs the values 
of a

ix , m , k , n , ω, τ, jt , β, η, Mc , CRc , PRc , Dc , Ic  and SDc  . 

Let the random variable jΥ  (uptime of component j ) have a Weibull 

distribution with parameters  β and η. This component has an age jt  

and probability that the time-to-failure is equal to jχ , which is given 
by formula:

	 P t t
t

tj j j j j
j j
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Υ Υ= + ≥( ) =
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where  t j , ,β η( )  is a reliability function. To generate the time-to-

failure for component j , 1,2, ,j n= … , we first generate a random 

number b , which has a uniform distribution on interval [ ]0;1	 , and 

next calculate a quantile of order b  for conditional distribution in 

Equation (7).The time-to-failure jχ  is generated as following:
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Generated times-to-failure are then compared with the time iτ of 

the earliest scheduled inspection flagged as ‘1’ in x . While j iχ τ< iτ, 

the number of failures of component j  is increased by 1. Once total 

component failures in the system accumulate to 1n k− +  failures, 
failure of entire system occurs, giving rise to opportunistic inspection, 
during which all failures are discovered. A failed component is mini-

mally repaired if it has failed for m  times or fewer; alternatively, it is 
replaced, and the failure count for it is reduced to zero.

While j iχ τ< iτ, but there are fewer than 1n k− +  failed compo-

nents, the latter are fixed at the following scheduled inspection. Again, 
a failed component is minimally repaired if it has failed for m  times 
or fewer; alternatively, it is replaced, and the failure count for it is re-
duced to zero.

While j iχ τ> iτ, the simulation clock is moved forward to the in-

spection time, since there is no failed component to be discovered at 
inspection.

The simulation clock is updated at the times of events, such as 
component failures, system failures, and scheduled and opportunistic 
inspections. The downtime of component j , the number of system 
failures, the number of minimal repairs and replacements are all up-
dated at each event’s time as well. At the same time, the ages of the 
surviving components, the time until the next failure, and the time 
until the scheduled inspection are also updated. The simulation stops 
when the system’s life cycle is completed. Running the simulation for 
a large number of times provides the expected values of the random 

variables F , 
, ,a m j

M
x

, 
, ,a m j

R
x

 and 
, ,a m j

U
x

.

A given policy ( ,a mx ) prescribes the choice of the maintenance 

action at each simulation run. Varying the values of ( ),a mx  in the 

ranges ( ) ( ) ( )0,0, ,0 , 1,0, ,0 , , 1,1, ,1a = … … … …x , 0 m UCL≤ ≤ , the 

total expected cost , /
.

T k n
mE C 

 x  for policy ( ),a mx  is computed and 

saved. Thus, the total number of distinct policies in the decision space 

for Model 1 is / 12 *UCLω τ − .
Lastly, the joint optimal inspection and maintenance policy 

( )* *,mx  is found from searching for the minimum * *
, ,
.

T k n
m

E C 
  x

.

5.2.	 Simulation model for a system with hard-type and soft-
type components (System 2)

The general simulation procedure for System 2 is similar to that 

described for System 1. The following input variables are used: a
ix , 

cm , sm , ω, τ, st , θh, βs, βh, ηs, ηh, ζh, M
sc , D

hc , R
sc , D

hc , D
sc  and Ic

. The same procedure as discussed in the previous section is used to 
generate the times for events and update the simulation clock.

If s h iχ χ τ< < iτ for the generated soft failure time sχ , the closest 

hard failure time hχ  and the closest non-periodic inspection time iτ , 

then an opportunistic inspection is occurring at the closest hard-type 
component’s failure time. The soft-type component’s failure is de-
tected at this moment, and if the total number of previous failures is 

less than sm , the component is minimally repaired; otherwise, it is 

replaced, and its failure count is reset to zero.

When h s iχ χ τ≤ < iτ, soft failure is fixed at the soonest scheduled 

inspection.
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tion S.1/2.3), which was 11 for the planning horizon of 1 year with a 
monthly inspection frequency. Binary alphabet was used for coding, 
with ‘1’ denoting inspection and ‘0’ denoting no inspection, as men-
tioned previously. Crossover was performed by taking the weighted 
average of the parents parent1 and parent2 according to the formula:

	 child = parent1 + rand * (parent2 - parent1),	 (9)

where rand is a random number. The children thus produced are then 
within the hypercube defined by the parents at the opposite vertices.  
The crossover fraction, which is the fraction of the next generation 
(apart from the elite individuals) produced by crossover, was taken at 
the default value of 0.8. Adaptive feasible mutation was used, which 
randomly generated directions that were adaptive toward the last gen-
eration. A step length of 1 was chosen along each direction, so that 
linear constraints and bounds were satisfied. Taking into consideration 
the running time of the simulation and the error in the calculated mean 
values, the simulation procedure was repeated for 5000 runs for each 
of the possible inspection policies with the planning horizon of 12 
months and τ = 1 month. The values of the calculated total expected 
costs were saved and then averaged for each inspection policy. Opti-
misation was then performed using genetic algorithm, and the output 
of the GA for Case 1 is given in Fig. 3.

For the GA search procedure, the highest fitness value is equiva-
lent to the lowest total expected cost. The genetic algorithm search 
used a limit of 100 generations, a stall generation limit of 50, an elite 
count of 1 and the tolerance limit of 10−5. We repeated the GA for 30 
trials with different seeds and chose the best solution with the lowest 
total expected cost.

As can be seen from Fig. 3, the best solution was found after 11 
generations. The top of Fig. 3 plots the best and the mean values of 
the penalty function for each generation. Because the formulation is 
integer problem with constraints, the penalty function includes a term 
for infeasibility. If the generation results in a feasible solution, the 
penalty function is identical to the fitness function, which is the total 
expected cost for each generation. Otherwise, the penalty function is 
the maximum fitness function among the feasible generations plus the 
sum of the constraint violations of the infeasible points. This ensures 
that an infeasible solution is not selected in the optimisation process.

The fitness function approaches optimality in the sense of the total 
expected cost with the generations’ number increasing, and converges 
after about 40 generations. The global optimality has been verified for 
the periodic optimisation of the k-out-of-n system by comparing the 
results from both exhaustive search and genetic algorithm search pro-
cedure, which have been found to be identical. Moreover, we found 
the costs to be very close, so that any locally optimal cost is not far 
from the globally optimal result obtained from the simulation.

The middle of Fig. 3 shows the average nearest neighbour dis-
tances for each generation. Generally, lower distance implies a more 
localised search after 40 generations.

The bottom of Fig. 3 displays the best, worst and mean fitness 
function scores. One can notice that starting at generation 39, the dis-

If h iχ τ< iτ, the age of the failed hard-type 

component is compared with its corresponding 
replacement age hζ , and the hard-type compo-

nent is replaced if θh hθ ζ> , or it is minimally 

repaired otherwise. The component’s age is set 
to zero at replacement.

Changing the values of a given  
joint inspection and maintenance  
policy  ( , ,a

s hm ζx ) in the ranges 

( ) ( ) ( )0,0, ,0 , 1,0, ,0 , , 1,1, ,1a = … … … …x  ,	

0 s sm UCL≤ ≤ , 11,2, ,s n= … , 0 1.5hζ ω≤ ≤ ω, 21,2, ,h n= … , the total 

expected cost for each policy is computed and saved. Thus, the total 
number of distinct policies in the decision space for Model 2 is 
2 1 51

1
1 2ω τ ω τ/ * * . /− ( )UCLn

n n .

Finally, the optimal solution is the one with the minimum cost 

* * *
,
, ,s h

T HS
m

E C
ζ

 
  x

 over all input variables, i.e. inspection policies, pos-

sible values of the number of minimal repairs before replacement for 
soft-type components and possible values for the optimal replacement 
ages for hard-type components. The resulting triple x ** *, ,ms ζζ( )   rep-

resents the optimal joint inspection and maintenance policy.
In using simulation as described above, however, there is a sig-

nificant drawback related to the search method used for optimisation. 
The search method for the optimal joint policy is highly sensitive to 
the size of the problem’s search space, which, in turn, is related to the 
choice of τ, sUCL , etc. Therefore, as the number of components and/
or the life cycle length are increased, a dramatic increase is also ob-
served in both the search space and the simulation time. The complex-
ity of the problem also increases with a decrease of τ, as in this case 
the number of non-periodic inspections increases, and the possible 
number of inspection policies quickly explodes. Thus, based on all of 
these, a reduction of computational complexity and an increase in 
computational efficiency are required.

Reducing the search space and problem complexity can be 
achieved by decreasing the number of instances of calculating the to-
tal expected cost. The genetic algorithm provides a powerful heuristic 
search means to do this. The proposed approach is further discussed 
below.

6. Numerical Examples

The present section provides examples for each of the models 
developed in the preceding sections.

6.1.	 Model 1: k-out-of-n system with opportunistic inspec-
tions

We first consider a 3-out-of-5 redundant system with all compon-
ents in the “as-good-as-new” state and parameters given in Table 1.

All models were implemented in MATLAB, and “ga” function 
was called for the genetic algorithm calculations. We took 200 as the 
number of individuals in a population of candidate solutions and 1 as 
the number of individuals guaranteed to survive to the next genera-
tion (“elite count” parameter). We used gene-based coding scheme, 
where each element in the coded “genome” string could change in-
dependently. Each coded string represented an inspection policy, 
where the string’s length corresponded to the number of possible in-
spections within the planning horizon less one (since an inspection is 
always done at the end of the planning horizon according to assump-

Table 1.	 Parameters and Costs of the Power Law Intensity Function.

Case β η
(months)

Minimal 
repair 

cost, cM

Replacement 
cost, cR

Component 
downtime 

cost, cD

System 
downtime 

cost, cSD

Fixed in-
spection 
cost, ci

1 1.5 3.5 $75 $200 $60 $550 $50

2 1.5 3.5 $75 $200 $80 $550 $50

3 1.5 3.5 $75 $200 $60 $350 $50

4 1.5 3.5 $75 $200 $60 $550 $100

5 1.5 5 $75 $200 $60 $550 $50
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tance between the best and the worst scores (i.e. total expected costs) 
decreases, while the mean score approaches the best score.

Baseline Case 1 was compared with the other cases for sensitiv-
ity analysis. The results of the genetic algorithm’s search procedure 
for the cases are given in Table 2. Note that the last column in the 
table represents the number of distinct inspection policies out of 2048 
inspection policies. The fact that optimal policies were found well 
before reaching the total number of policies suggests fast convergence 
of the genetic algorithm in the neighbourhood of the optimal cost.
Such quick convergence toward the optimal solution is likely result-
ing from the smoothness of search space in vicinity of the optimal 
solution.

Table 2 shows that the optimal inspection policy suggests that 
for the baseline Case 1 system, 9 inspections should be performed 
at month 1, 3, 4, 6, 7, 8, 9, 11 and 12 within the 12-months planning 
horizon, and the optimal maintenance policy suggests that failed com-
ponents should be replaced upon failure after having been minimally 
repaired for 5 times.

For the system with the component downtime cost of $80 (Case 2), 
9 inspections should be done at month 2, 3, 5, 6, 7, 9, 10, 11 and 12, 
and the optimal maintenance policy prescribes component replace-
ment on 7th failure within the 12-months planning horizon. Unsurpris-
ingly, the total expected cost for Case 2 is greater than that for Case 
1, since the cost of component downtime is greater for Case 2 than 
for Case 1.

For Case 3, the lower downtime cost for the system results in 

lower * *
, ,
.

T k n
m

E C 
  x

, fewer inspections and greater *m  compared with 

Case 1. Lower system downtime penalty translates into 
more of allowable system downtime, which necessitates 
fewer inspections (7 for Case 3 vs. 9 for Case 1) and a much 

greater m. The fact that *m = UCL implies that it is econom-
ically infeasible to replace failed components when the sys-
tem downtime penalty is significantly decreased. However, 
the total effect of the decrease of the system downtime pen-
alty by $200 is reduced by the increased downtime as a re-
sult of the fewer inspections and greater component deteri-
oration due to fewer replacements, all of which are reflected 
in the total expected cost’s decrease of only $168.01.

The optimal joint inspection and maintenance policies 
for Case 4 are close to those of Case 3, but the total expected 
cost is greater than that for either Case 3 or Case 1. Un-
surprisingly, increasing the cost of system inspection results 

in the increase in * *
, ,
.

T k n
m

E C 
  x

. Removing the effect of the 

total cost of inspection, it can be seen that the remaining 
expected cost for Case 4 is lower than that for Case 1 by 
$70.47. This is likely the result of the 2-fold increase in the 
optimal number of minimal repairs before replacement, 
which results in fewer component replacements prescribed 
by Case 4 compared with those for Case 1.

Finally, for Case 5, the total expected cost is the low-
est among all the tested cases. This can be explained by higher scale 
(spread) parameter of the time-to-failure distribution, which implies 
fewer failures within the same time interval for Case 5 compared to 
the other cases. Using Equation (11) from Babishin and Taghipour [3], 
the calculated expected number of system failures is approximately 
5.7 for Cases 1-4 and only about 2.6 for Case 5 – a decrease by over 
121 % for Case 5 compared to the other cases.  This also results in 
the fewest optimal number of inspections (6) among all the cases and, 
also, a slightly higher optimal number of minimal repairs until re-
placement (7) and, correspondingly, fewer component replacements 
compared to that for Case 1.

6.2.	 Model 2: system with hard-type and soft-type compo-
nents and opportunistic inspections

We consider a system composed of m1=5 components prone to 
hidden soft failure and m2=3 components prone to hard failure, all 
of which are initially “as-good-as-new”. Two cases are considered: 
Case  1 (Baseline) and Case 2 (1.5-time greater monthly downtime 
penalty cost compared to Baseline).The input parameters for the fail-
ure distributions, the costs of minimal repair, replacement and down-
time are given for both cases in Table 3.

The fixed cost of scheduled inspections cI=$25. Both cases are 
simulated for 1000 runs with the planning horizon of 12 months and 
τ = 1 month. Lower number of simulation runs had to be used because 
of the much greater time required to run the simulation and the genetic 
algorithm for the hard-and-soft-type system compared to a k-out-of-n 
system, which is a result of the former’s greater complexity.

The output of the GA for Case 1 is given in 
Fig. 4. The genetic algorithm search used a limit 
of 100 generations, a stall generation limit of 
50, an elite count of 1 and the tolerance limit of 
10−5.

As can be seen from the top graph in Fig. 
4, the best solution (“best penalty value”) was 
found after 71 generations.The global optimality 
has been verified by comparing the results from 
both exhaustive search and genetic algorithm 
search procedure, which have been found to be 
identical.

Fig. 3.	 Genetic algorithm’s output and results for Case 1 of a 3-out-of-5 system

Table 2.	 Optimal policies from the genetic algorithm

Case # 

Distinction 
from 

baseline

Total expect-
ed cost, 

* *
, ,
.

T k n
m

E C 
  x

Optimal inspection 

policy, *x

Optimal 
maintenance 

policy, *m

Number of 
inspection 

policies 
analysed, a

1 — $2943.64 (1 0 1 1 0 1 1 1 1 0 1 1) 5 1755

2 cD = $80 $3098.46 (0 1 1 0 1 1 1 0 1 1 1 1) 6 1654

3 cSD = $350 $2775.63 (1 0 1 0 1 1 0 1 1 0 0 1) 11 1709

4 ci = $100 $3123.17 (1 0 1 1 0 1 0 1 0 1 0 1) 10 1638

5 η = 5 $1946.68 (0 1 0 0 1 1 0 0 1 1 0 1) 7 1104
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The graph in the middle of Fig. 4 
shows the nearest neighbour distances 
for each population member. Overall, 
lower distance implies the search space 
narrowing down starting at around the 
80th generation on.

The graph at the bottom in Fig. 4 
contains the best, worst and mean fit-
ness function scores. One can see the 
mean scores of the fitness function are 
minimal at generations 92-94, owing 
to the lowest worst scores, while the 
best scores remain unchanged starting 
at generation 71.

The soft-type and the hard-type 
component parameters from Table 3 
are used to optimise for the joint in-

spection and maintenance policies using genetic algorithm. 
The GA procedure was repeated for 5 trials, and the best re-
sults are shown. The results are obtained for both Case 1 and 
Case 2. The optimal maintenance policies, i.e. the optimal 
numbers of minimal repair until replacement and the optimal 
replacement ages, are provided for both cases in Table 4.

As can be seen from Table 4, the optimal replacement 
ages for some of the hard-type components (namely, for hard-
type component 1 for Case 1 and hard-type components 1 and 
3 for Case 2) exceed the planning horizon. This simply means 
that these components would be replaced only at the end of 
the planning horizon and would be minimally repaired if they 
fail at any time until then. Also, changes in the optimal main-
tenance policies for components with soft and hard failures 
suggest that they are affected by changes in the component 
downtime penalty.

The resultant optimal inspection policy was also found 
for both cases to be as shown in Table 5. As the last col-
umn of Table 5 suggests, 9935 out of 10240 inspection 
policies were checked in order to find the optimal one. The 
timing results suggest that, generally, in the case of non-

periodic inspections, validat-
ing GA procedure by checking 
all possibilities is not practical. 
The advantage of using GA is 
further supported by Hajipour 
and Taghipour, who previously 
found that a genetic algorithm 
required only about 7 % of the 
time needed for exhaustive 
search [16].

The optimal inspection 
policy for Case 1 implies that 
the system is inspected 4 times 
in months 5, 8, 10 and 12. The 
optimal inspection policy for 
Case 2 is drastically different 
with 10 inspections occurring 
on a monthly basis in months 
3–12. Thus, as a result of a 
1.5-time increase in the per-

component monthly downtime penalty cost, the opti-
mal inspection policy alone for Case 2 costs $150 more  
($25 ∙ (10−4) inspections) than that for Case 1. This leaves 
another $960.90 as the increase in the cost of the optimal 
maintenance policy out of the total increase of $1110.90 
($3848.41-$2737.51) in the total expected cost for Case 
2 compared to Case 1. Converting dollars into percent-

Table 3.	 Power law intensity parameters and costs for different components of Case 1 (Baseline) and Case 2.

Compo-
nent type βj

ηj 
(months)

Minimal re-
pair cost, M

jc
Replacement 

cost, R
jc

Case 1 downtime 
penalty cost/

month, D
jc

Case 2 downtime 
penalty cost/

month, D
jc

Soft

1 1.3 3.5 $70 $200 $80 $120

2 2.8 4.6 $45 $150 $55  $82.5

3 2.1 2.7 $100 $300 $85    $127.5

4 3.2 7.0 $75 $240 $90 $135

5 1.7 3.6 $125 $325   $100 $150

Hard

1 1.5 8.7 – – – –

2 1.2 6.0 – – – –

3 1.7 7.5 – – – –

Table 4.	 Optimal maintenance policies for Case 1 and Case 2

Case # Distinction 
from baseline

Soft-type 
component, s

Optimal number of minimal 
repairs before replacement, *

sm
Hard-type 

component, h
Optimal replacement 

age, ζh (months)

1 ––

1 7 1 14.46

2 1 2 8.25

3 6 3 11.83

4 8 – –

5 13 – –

2
cD(Case 2) =  
1.5 cD (Case 

1)

1 9 1 16.61

2 1 2 6.77

3 3 3 13.98

4 0 – –

5 10 – –

Table 5.	 Optimal policies from the genetic algorithm

Case #
Total expected cost, 

E C a
s hm

T HS
x , ,

,
ζ







Optimal inspection policy, 
x*

Number of inspection 
policies analysed, a

1 $2737.51 (0 0 0 0 1 0 0 1 0 1 0 1) 9935

2 $3848.41 (0 0 1 1 1 1 1 1 1 1 1 1) 9935

Fig. 4.	 Genetic algorithm’s output and results for Case 1 of a system composed of soft- and 
hard-type components.
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ages, the total expected cost is over 40 % greater for Case 2 compared 
for Case 1. A large reduction in *

sm  for 3 of 5 soft-type components 
is meant to decrease these components’ downtime by reducing their 
ages to 0 with each replacement more frequently for Case 2 than for 
Case 1. Averaged across all soft-type components, *

sm  =4.6 for Case 
2 and *

sm =7 for Case 1 – a decrease of over 52 % as a result of the 
downtime costs increasing by 50 %. At the same time, the optimal 
replacement ages of the hard-type components increased, on average, 
by only slightly over 8 % (which is less than τ) for Case 2 compared 
to Case 1. These results are summarised inTable 6.

As can be concluded from Table 6, the average optimal number of 
minimal repairs before replacement is most sensitive to change in the 
downtime penalty, followed by the total expected cost and the optimal 
maintenance policy cost, with an increase in downtime penalty caus-

ing a decrease in *
sm  and increase in each of E C a

s hm
T HS
x , ,

,
ζ







and the 

optimal maintenance policy cost. On the contrary, the optimal inspec-
tion policy cost is the least sensitive, followed by the average optimal 
replacement ages, where an increase in downtime penalty increases 
each of the optimal inspection policy cost and the average optimal 
replacement ages.

7. Conclusions

In the present article, optimisation of non-periodic maintenance 
and inspection was considered for complex multicomponent systems 
with either k-out-of-n redundant configuration, or with components 
prone to hard and soft failures. Aside from scheduled inspections, 
components can be checked opportunistically at system failures. Mak-
ing the unit of time sufficiently small allows to treat the planning hor-
izon as quasi-continuous for possible non-periodic inspections, which 
gives a much greater flexibility and variety in the choice of available 
inspection policies at the expense of computational complexity, when 
compared to the periodic inspections. Since soft failures are hidden, 
component’s age cannot be used as the criterion for maintenance opti-
misation. Instead, maintenance policies are defined by the number of 
minimal repairs before replacement for each component prone to hid-
den soft failure. The optimal policies are then found by jointly opti-
mising the inspection and maintenance policies for the lowest total 
expected cost. Using simulation and a genetic algorithm to implement 
the joint optimisation was found to be an efficient and convenient 
method to find the optimal policies for large and complex systems. 
This appears to be a promising method for optimisation with regards 
to complex systems with multiple decision parameters.
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Appendix

This section presents the recursive functions for calculating the expected values in the simulation. The general principle of constructing a 
generator function is to calculate the expectation of an event of interest, such as a failure, minimal repair, replacement, or uptime. Since compo-
nents are not independent of each other, and their survival is related to survival of other components, it is necessary to condition their probabilities 
on reliabilities and failures of other components. For example, replacement of a soft-type component is conditional on its ( 1sUCL + )st failure and 

inspection, which itself is conditional on the failure of any hard-type component and inspection policy. In order to make the generator function 
general and applicable to different categories of components and events, placeholder functions are used extensively. Depending on the place-
holder function ψ y z Is, ,( )  , either M t f ma

sm s s s cx , ,
, , , , ,ω θθ ζζ( ) , R t f ma

sm s s s cx , ,
, , , , ,ω θθ ζζ( ) , or U t f ma

sm s s s cx , ,
, , , ,,ω θθ ζζ( )  functions are ob-

tained. For ψ y z Is, ,( ) , sI is 0, 1, or 2, if component s  is, respectively, minimally repaired, replaced, or has not failed in an interval. The first 

failure times of soft-type component s  and the hard subsystem are, respectively, random variables Y  and Z , and their density and reliability 

functions are ( | )Y
sf y t , f y y tZ Y

s| |θθ( ) ( ),  and Z z|θθ( ) . We then formulate the generator function for the expected uptime and the expected 

numbers of replacements and minimal repairs for each component over inspection interval 0, iτ[ ] by conditioning on the random variables Y y=  

and Z z= . Taking ( ),k nq z  to be the probability that the failure of the system at time Z z=  is due to the failure of component s :

	
q z f z t z t t dk n Z

s s s

z
H

s
, | | .�( ) ( ) = ( ) − ( )









∫| expλ λ

0
χ χ

We start by assuming only one scheduled inspection at the end of the planning horizon and work backward to initial time 0. For the system 
with soft-type and hard-type components, the expected number of minimal repairs for a soft-type component can be calculated as following:

Table 6.	 Absolute and relative changes in the expected costs for Case 2 compared to Case 1.

Change (Case 
2 – Case 1)

Average system 
downtime pen-

alty cost

Average optimal 
replacement 

ages

Average optimal number 
of minimal repairs before 

replacement

Optimal inspec-
tion policy cost

Optimal mainte-
nance policy cost

Total expected cost, 

E C a
s hm

T HS
x , ,

,
ζ





  

Absolute + $205 + 0.94 - 2.40 + $150 + $960.90 + $1110.90

Relative + 50 % + 8.13 % - 52.17 % + 5.48 % + 35.10 % + 40.58 %
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where:

	 r m m
if m m
otherwises

Y
c s

c s,
,
,

( ) = ≤



1
0

,	

	 r f k
if f n k
otherwise

k n
s

s, ,
,
,

( ) = < −



1
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	 1 ,   1Y Y Z Z
s s h hr r r r= − = − .

The placeholder function ψ y z Is, ,( )  varies depending on the random variable of interest.

For the expected number of minimal repairs:

	
ψ y z I

if I
otherwises

s, ,
,
,

( ) = =



1 0
0

.

For the expected number of replacements:

	 ψ y z I
if I
otherwises

s, ,
,
,

( ) = =



1 1
0

.

For the expected uptime:

ψ y z Is, ,( )( ) ,        
, ,

,  s
y if y z

y z I
z otherwise

ψ
<

= 


 .

These placeholder functions modify the generator function G t f mx m s s s cs1, , , , , , ,ω θθ ζζ( ) , which is used for the first inspection (initial state), and 

then, through recursion, in G t f mx m s s s ci s, , , , , , ,ω θθ ζζ( )  (see below and Equation (A.2)). Thus, the values of uptime and number of minimal repairs 

before replacement are obtained from Monte Carlo simulation. For a particular component in one run, its expected uptime is obtained from simu-
lating this component in conjunction with the other components for the length of the entire planning horizon, recording its downtime, and then 
subtracting its downtime from the planning horizon to obtain its uptime. This can be repeated and averaged to obtain the component’s expected 
uptime.

For the number of minimal repairs before replacement, the upper confidence limit on the expected number of component failures is obtained 
from Equations 1.1-2.1, or 1.2-2.2 for each soft-type component. Simulations are then run for all values of m  or sm , starting from 0 and up to 

and including UCL  or sUCL .
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θ  z⊕è  denotes addition of a scalar z  to each of the coordinates of vector θ, i.e. θθ ⊕ = + + … +( )z z z znθ θ θ1 2 2
, , , , and θθ ⊕( )( )z h0  means the 

h th coordinate of vector θ  z⊕è  is replaced by zero, i.e. θθ ⊕( ) = + … + + … +( )( )
− +z z z z zh

h h n
0

1 1 10
2

θ θ θ θ, , , , , , .

Equation (A.1) is extended to obtain the expected value of a random variable of interest for inspection policy ix  when inspections are per-

formed at iτ:
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Equation (A.2) is provided for a given inspection policy index a  and has to be applied for all inspection policies. To get an idea about how 

the generator function is constructed, consider the first line in Equation (A.2). The placeholder function ψ y z, ,0( )  and the recursive term 

G z t y z f mx z m s s s ci s− − + ⊕ + +( ), , , , , , ,ω θθ ζζ1 1*  contribute to the expected number of minimal repairs, if ( ), 1Y
s c sr m m = , i.e. if the number of 

minimal repairs before replacement is lower than the optimal value. The other terms are responsible for the expected number of repairs, or the 
expected uptime.

The hazard rate of a hard subsystem consisting of all hard-type components in series configuration is given as λ λ θH

h

n

h hz z|θθ( ) = +( )
=
∑

1

2
.

For the system with hard-type and soft-type components, Equations (A.1-A.2) can still be used, if function ( ), ,k n
sr f k  is redefined as 

r zh
Z

h, *ζ( ) :
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and ( ),k nq z  is redefined as ( )hq z  , which is the probability that the failure of the hard subsystem at time Z z=  is due to the failure of hard-type 

component h :
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