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1. Introduction

In practical engineering, various uncertainties are unavoidable due 
to the complicated environmental factors, incomplete knowledge and 
inevitable measurement errors [14]. Thus, the mechanism reliability 
analysis requires proper modeling of all sources of uncertainty. The 
reliability analysis based on probability theory and Boolean algebra 
has made many important achievements and has been widely used in 
engineering practice. The probabilistic reliability is considered as the 
most valuable issue in engineering. In probabilistic framework, the 
uncertainties are modeled as random variables or stochastic processes 
by using a large amount of sample statistical information [1,8]. The 
application of probabilistic reliability requires sufficient information 
to construct precise probability density functions of uncertain param-

eters, but the sample information is not always adequate in the early 
stage of numerical analysis and optimization design [2].

In practical engineering, besides the randomness that can be mod-
eled by probabilistic theory with probability distribution functions, 
epistemic uncertainty is another issue, caused by factors such as loss 
of information, limited knowledge, and inevitable man-made mistakes 
[11] which cannot be well explained by randomness and probabilistic 
models. For uncertain problems in practical engineering, a random 
variable is always employed to represent a kind of subject probabil-
ity that is conducted by experts’ judgments (subjective interpretation) 
and the uncertainty of this variable is actually the fuzziness that comes 
from experts’ judgments [29]. In order to overcome this shortcoming, 
Zadeh [36] developed fuzzy set theory in 1965. In 1975, Kaufmann 
[11] first used the fuzzy theory in reliability engineering. Up until 
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Tradycyjne metody analizy niezawodności oparte na teorii prawdopodobieństwa i teorii zbiorów rozmytych znajdują szerokie 
zastosowanie w praktyce inżynierskiej. Jednak metod tych nie można stosować do bezpośredniego pomiaru niepewności nie-
zawodności przy niepewnych zmiennych, tj. subiektywnych zmiennych losowych i rozmytych. Aby zaradzić temu problemowi, 
przedstawiono nową metodę kwantyfikacji niezawodności opartą na teorii szansy, która jednocześnie spełnia aksjomaty dwoisto-
ści losowości oraz subaddytywności związanej z rozmytością w problemach niezawodności. Biorąc pod uwagę fakt, że systemy 
zazwyczaj charakteryzują się wielopoziomową strukturą, a uszkodzenia elementów składowych mają charakter wieloprzyczyno-
wy, w niniejszym artykule zaproponowano model niezawodności eksploatacji systemu wielostanowego oparty na teorii szansy. W 
proponowanej metodzie, zamiast miar prawdopodobieństwa i możliwości, do kwantyfikacji niezawodności, w przypadku gdy dane 
są subiektywne zmienne losowe lub zmienne rozmyte, przyjęto miarę szansy wystąpienia zdarzenia. Do reprezentacji parametrów 
losowych i rozmytych wykorzystano zmienne hybrydowe, które stanowią podstawę dla wyprowadzenia rozwiązań w celu analizy 
niezawodności mechanizmu opartej na teorii szansy z rozkładem szans. Ponieważ parametry wejściowe modelu noszą jednocze-
śnie znamiona rozmytości i losowości, opracowano algorytm oparty na mierze szansy. Wyniki eksperymentalne otrzymane na 
podstawie studium przypadku dowodzą poprawności proponowanej metody.

Słowa kluczowe:	 miara szansy, ocena niezawodności, kwantyfikacja niepewności, niezawodność mechanizmu.
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now, the fuzzy theory has received widespread attention for reliability 
problems with subjective uncertainties [3, 9]. In order to measure a 
fuzzy event, Zadeh [37] proposed the concept of possibility measure, 
and afterward many researchers introduced it into fuzzy reliability 
analysis [4, 32]. Although, the possibility measure has been widely 
used, it does not obey the law of truth conservation and is inconsistent 
with the law of excluded middle and the law of contradiction. The 
main reason is that the possibility measure has no self-duality prop-
erty. However, a self-dual measure is definitely required in both the-
ory and practice. In order to define a self-dual measure, Liu [15, 16] 
presented the concept of credibility measure in 2002, and constructed 
an axiomatic foundation for credibility theory. In addition, Li [17] 
provided a sufficient and necessary condition for credibility measure. 
From then on, the credibility theory became a branch of mathematics 
for studying the behavior of fuzzy phenomena. A survey of credibility 
theory can be found in Liu [18]. 

Fuzziness and randomness are the two basic types of uncertain-
ties, and both may appear in a structural system simultaneously. A 
fuzzy probabilistic model was proposed by Holický [10] in 2006, 
which combined the two types of uncertainties in the newly defined 
fuzzy probabilistic measures of structural reliability, the damage func-
tion and the fuzzy probability of failure. In most practical situations, 
some input parameters of system might be represented with probabili-
ty distribution functions, while some with membership functions [20]. 
For completeness, the different knowledge conditions for each un-
certainty parameter derive “hybrid” uncertain variables in structural 
reliability analysis [33]. Therefore, randomness and fuzziness should 
be jointly considered to comprehensively and correctly analyze the 
reliability of systems, resulting in a hybrid model with random and 
fuzzy variables [5].

Numerous approaches have been proposed to solve the afore-
mentioned hybrid reliability problems in systems. Most of these 
approaches separate random and fuzzy parameters based on a double-
sampling framework [20]. In order to avoid the deterioration of ef-
ficiency and accuracy, several works have attempted to combine the 
stochastic expansions with traditional optimization methods [7, 30]. 
They are mainly concentrated on explaining the fuzzy variables by 
adopting the probability theory, and calculating the reliability based 
on a probability measure. However, the probability measure with ad-
ditivity used by these methods fails to satisfy the subadditivity axiom 
of fuzziness, and the possibility measure cannot satisfy the dual-
ity axiom of randomness [11]. Therefore, a reliability quantification 
model based on probability theory and the one based on credibility 
theory frequently yield infeasible solutions with large differences and 
paradoxical results [14]. In other words, neither probability theory 
nor credibility theory can deal with mechanism reliability problems 
under epistemic uncertainty with hybrid subjective random and fuzzy 
variables, because the measures of the two theories cannot satisfy the 
duality and subadditivity simultaneously [11]. Thus, the development 
of a framework of hybrid reliability models that integrates the merits 
of different uncertainties is necessary.

In order to achieve a reasonable solution to these reliability prob-
lems, and solve the limitations of the two measures, the chance theory 
and the chance measure proposed by Liu [21] are introduced in mecha-
nism reliability, including the normality, the duality, the subadditivity, 
and the product axioms. Chance theory is a hybrid of probability the-
ory and credibility theory. This theory relies on the chance measure to 
describe the belief degrees of events affected by epistemic uncertain-
ty. It provides a concrete mathematical description of different types 
of uncertain parameters in the chance space. The “chance measure” 
in the range of [0, 1] is adopted to represent the chance level about 
the occurrence of a particular event. Different from the chance theory 
used in this paper, Liu [28] combines the probability theory and the 
uncertain theory into a chance theory that also includes the normal-
ity, the duality, the subadditivity, and the product axioms. This theory 

relies on the chance measure to describe the belief degrees of events 
affected by human uncertainty and objective randomness. Uncertainty 
theory is a powerful tool for interpreting human uncertainty that was 
founded by Liu [19] and refined by Liu [26]. The study of uncertain 
random reliability analysis was started by Wen-Kang [35] with the 
concept of reliability index. They proposed a formula to calculate the 
reliability of a Boolean system involving both random and uncertain 
variables. However, in engineering practice, it is often necessary to 
evaluate the reliability of the structure in combination with the limit 
state function, and the parameters in the function may contain various 
types of uncertainty information (for instance about randomness and 
fuzziness). The reliability evaluation index based on the Boolean sys-
tem is not suitable for this situation. Comparatively speaking, both of 
these chance theories not only have different theoretical foundation, 
but the types of uncertainty information considered by them are also 
different. In this paper, the mixture of fuzziness and randomness 
is mainly considered. Therefore, the chance theory based on the 
probability measure and the credibility measure is selected. Probabil-
ity measure is used to deal with the parameters with sufficient infor-
mation, while the credibility measure is employed to deal with the 
fuzzy variables.  Moreover, Liu [18, 23] introduced a hybrid variable 
in 2006 as a tool to describe the quantities with fuzziness and random-
ness, and then proposed a general framework of hybrid programming. 
Based on the chance theory and the limit state function of structures, 
this paper explores a new quantification model, and applies it to quan-
tify the performance reliability of structural systems with the hybrid 
uncertainty problem.

The remainder of this paper is organized as follows. In Section 
2.1, some useful concepts in the credibility theory and the chance 
theory such as credibility measure, hybrid variable, and chance dis-
tribution are described; In Section 2.2, formulas based on the chance 
measure and the chance distributions are derived to quantify the 
uncertainty reliability and the uncertainty of failure with the perfor-
mance state function of systems; According to the formulations based 
on the chance theory and the performance reliability theory, a chance 
theory based performance reliability model is defined in Section 3; An 
algorithm based on chance measure is designed in Section 4 followed 
by an engineering case presented in Section 5; Finally, conclusions 
are presented in Section 6.

2. Chance theory based quantification for mechanism 
reliability

2.1. Preliminaries of chance theory

Let Θ  be a nonempty set with P  as the power set of Θ . For any

( )A P∈ Θ , Liu [24] presented a credibility measure { }Cr A to express 
the chance that fuzzy event A  occurs. 
Definition 1 (Credibility measure [18]) The set function Cr is called 
a credibility measure if it satisfies the normality, monotonicity, self-
duality, and maximality axioms.
Theorem 1 (Liu [24]) A fuzzy variable is a (measurable) function 
from a credibility space ( , , )P CrΘ  to the set of real numbers.
Theorem 2 (Liu [24]) Let ξ be a fuzzy variable defined on the cred-
ibility space ( , , )P CrΘ . Then its membership function is derived from 
the credibility measure by:

	 µ ξ( ) ( )x Cr x= ={ } ∧2 1  	 (1)

Theorem 3 (Credibility Inversion Theorem [24]) Let ξ be a fuzzy 
variable with membership function μ. Then for any set B of real num-
bers, we have:
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	 Cr B x x
x B x Bc

ξ µ µ∈{ } = + −
∈ ∈

1
2

1(sup ( ) sup ( ))  	 (2)

Theorem 4 (Product Credibility Axiom [18]) Let kΘ  be nonempty 

sets on which kCr ( 1,2,...,k n= ) satisfy the four axioms, respectively, 

and 1 2 nΘ = Θ ×Θ ×⋅ ⋅ ⋅×Θ . Then, for each θ θ θ1 2, ,..., n( )∈Θ

	 Cr Cr Cr Crn n nθ θ θ θ θ θ1 2 1 1 2 2, ,...,( ){ } = { }∧ { }∧ ⋅ ⋅ ⋅ ∧ { }        (3)

Theorem 5 (Credibility Subadditivity Theorem [16]) The credibility 
measure is subadditive. That is, for any events ,A B

	 { } { } { }Cr A B Cr A Cr B≤ +  	  (4)

Chance measure was introduced by Liu [21] in 2009 as a tool to de-
scribe the quantities with fuzziness and randomness.

Definition 2 (Chance space [16]) Suppose that ( , , )P CrΘ  is a cred-
ibility space and ( , , )A PrΩ  is a probability space. Then, the product 
( , , ) ( , , )P Cr A PrΘ × Ω  is called a chance space. 

Theorem 6 Let ( , , ) ( , , )P Cr A PrΘ × Ω  be a chance space. A subset
Λ ⊂ Θ×Ω  is called an event if ( ) AθΛ ∈  for eachθ ∈Θ , where
Λ Ω Λ( ) ( , )θ ω θ ω= ∈ ∈{ } .

Definition 3 (Chance measure [21]) Let ( , , ) ( , , )P Cr A PrΘ × Ω  be a 
chance space. Then a chance measure of event Λ is defined as:

Ch
Cr if Cr

Λ

Λ Λ
Θ Θ{ } =

{ }∧ { } { }∧ { } <
∈ ∈

sup( Pr ( ) ), sup( Pr ( ) ) .
θ θ

θ θ θ θ 0 5

1−− { }∧ { } { }∧ { } ≥






 ∈ ∈
sup( Pr ( ) ), sup( Pr ( ) ) .
θ θ

θ θ θ θ
Θ Θ

Λ ΛCr if Crc 0 5
 	

(5)

Axioms 1 (Normality axiom). For the universal set Θ×Ω , 

{ } 1Ch Θ×Ω = .

Axioms 2 (Duality axiom).For each event Λ, { } { } 1cCh ChΛ + Λ = , 

where cΛ is the complement set of Λ.

Axioms 3 (Subadditivity axiom).The chance measure is subadditive. 

That is, for any events 1Λ  and 2Λ

	 Ch Ch ChΛ Λ Λ Λ1 2 1 2{ } ≤ { } + { } 	 (6)

Definition 4 (Chance distribution [21]) The chance distribution
: [0,1]Φ ℜ→  of a hybrid variable ξ  is defined by:

	 Φ Θ Ω( ) ( , ) ( , )x Ch x= ∈ × ≤{ }θ ω ξ θ ω  	 (7)

As two special hybrid variables, the chance distribution of a ran-
dom variable ξ is just its probability distribution:

	 Φ( ) Prx Ch x x= ≤{ } = ≤{ }ξ ξ  	  (8)

and the chance distribution of a fuzzy variable ξ is just its uncertainty 
distribution:

	 Φ( )x Ch x Cr x= ≤{ } = ≤{ }ξ ξ  	  (9)

In many cases, fuzziness and randomness simultaneously appear 
in a system. In order to describe these phenomena, Liu [18] introduced 
a hybrid variable as a measurable function from a chance space to the 
set of real numbers.

Definition 5 (Hybrid variable [18]) Let ξ be a measurable mapping 
function from a chance space ( , , ) ( , , )P Cr A PrΘ × Ω to the set of real 

numbers. Then, ξ θ ω,( )  
is called a hybrid variable. If ξ ξ ξ1 2, ,..., n  are 

hybrid variables, and : nf ℜ →ℜ  is a measurable function, then

ξ ξ ξ ξ= ( )f n1 2, ,...,  is a hybrid variable defined as:

	 ξ θ ω ξ θ ω ξ θ ω ξ θ ω θ ω, ( , , , ,..., , ), ( , )( ) = ( ) ( ) ( ) ∀ ∈ ×f n1 2 Θ Ω   (10)

A hybrid variable ξ θ ω,( )  degenerates to a random variable when 

it does not vary with θ and to a fuzzy variable when it does not vary 
with ω. Fuzzy random variable [34] and random fuzzy [25] variable 
are instances of hybrid variable.

Example Let ξ1, ξ2,…, ξm and η1, η2,…,ηn be random and fuzzy vari-
ables, respectively. If f is a measurable function, then:

	 τ ξ ξ ξ η η η= f m n( , ,..., , , ,... )1 2 1 2 	 (11)

is a hybrid variable determined by:

	 τ θ ω ξ ω ξ ω ξ ω η θ η θ η θ( , ) ( ( ), ( ),..., ( ), ( ), ( ),... ( ))= f m n1 2 1 2      (12)

for all ( , ) ( , , ) ( , , )θ ω ∈ ×Θ ΩP Cr A Pr .

2.2.	 Chance theory based reliability

As generally known, reliability can typically be measured by the 
probability of structure functions that satisfy certain requirements. The 
structure functions can be expressed by the state function, which is 

determined by the failure criteria. Assume that 1 2( , ,..., )nx x x=x  are 
the n -dimensional input variables denoting the various factors that 

affect the structure functioning. Then, 1 2( , ,..., )nG g x x x= is the state 
function of systems, and 0G = is the limit state function of variable 
space, which is also called the critical surface. The basic variable space 
can be divided into two parts, failure region and safe region, by the crit-

ical surface. Particularly, when the input variables 1 2( , ,..., )nx x x=x  

consist of the random variables 1 2( , ,..., )
rR R Rnx x x=Rx  and the fuzzy 

variables 1 2( , ,..., )
fF F Fnx x x=Fx     simultaneously, the state function 

of the structural system is a hybrid variable ( , )G g= R Fx x . With the 
state function of structural systems under epistemic uncertainty, this 
paper proposes a reliability definition based on the chance theory.

Definition 6 (Chance theory based reliability) Given a chance space

( , , ) ( , , )P Cr A PrΘ × Ω , let the state function ( , )G g= R Fx x , where
0G >  and 0G ≤  indicate safe state and failure state, respectively. 

Then the chance measure of occurrence of a failure event is defined 
as:
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	 ( ) 1 ( )i iR t F t= −  	 (18)

The overall mechanism reliability considering all w failure modes 
can be evaluated as:

	 1 2( ) 1 ( ) 1 Pr( ( , ,..., ) 0, 0,1,..., 1)i nR t F t g x x x i w= − = − ≤ = −    (19)

According to the above content, chance theory is combined with 
performance reliability theory and a definition of performance reli-
ability is proposed as follows:

Definition 7 The chance based performance reliability is defined as 
the chance for the system (component) to function properly over a 
period of time t . In order to express this relationship mathematically, 
the variable T  is defined to be the time to failure of the system (com-
ponent), 0T ≥ .Then the performance reliability can be expressed as:

	 { }( ) 1 ( )R t t Ch T t= −Φ = ≥  	  (20)

where ( ) 0R t ≥ and (0) 1R = .

From definition 7 and Eq.(13), the chance theory based perfor-
mance reliability function can be represented as:

	

{ } { }
{ }
{ }

1 2

1 2

( , ,..., ) ,

( , ,..., ) 0,
i n

i n

reliability

R Y Ch Y

Ch f x x x w i q

Ch g x x x w i q
Ch

= ∈Ω

= ∈Ω ≤ ≤

= > ≤ ≤

=

	 (21)

where { },...,w qS SΩ =
 
is the state space that the system can work.

When the performance variables 1 2( , ,..., )nx x x=x  consist of 
the random variables 1 2( , ,..., )

rR R Rnx x x=Rx  and the fuzzy vari-
ables 1 2( , ,..., )

fF F Fnx x x=Fx     simultaneously, the randomness and 
fuzziness should be jointly considered. Therefore, a multi-state per-
formance reliability model with random and fuzzy variables is pro-
posed in the next section to comprehensively and correctly analyze 
the reliability of system.

3.2.	 Multi-state performance reliability model considering 
random and fuzzy variables

A system with two-state spaces is considered as an example, and the 
multi-state performance reliability model is established as shown in 
Fig.1.

According to the performance reliability model proposed in litera-
ture [6], a multi-state performance reliability model based on hybrid 
variables is proposed. In this section, the chance theory is applied to 
establish a new model for the performance reliability of the struc-
tural system in the presence of both random and fuzzy information. 
From the mathematical view, the conceptual system model is shown 
in Fig.2. 

The symbols and the parameters are defined as: t  is the operation 

time of the system; 1( ( ),..., ( ))nY t Y t=Y is the vector of performance 

parameters of the system; ( )ij n q
y t

×
 =  y , 1,2,...,i n= , 0,1,2,...,j q=

denotes the criteria of the system;{ }( )Y t ∈Ω  is the set of events that 

product’s state is normal; and { }( )R Y t ∈Ω  is the performance reli-
ability of the system.

	 { }( , ) 0failureCh Ch g= ≤R Fx x 	 (13)

From the duality axiom of the chance theory, the chance theory 

based reliability of a structural system where ( , ) 0G g= >R Fx x  can 
be formulated as:

	 1reliability failureCh Ch= −  	 (14)

Following the probability definition of reliability, reliabilityCh  
denotes the chance theory based reliability to quantify the uncertainty 
of a safe event in a system with the numerical value of [0, 1], and 

failureCh  describes the chance of occurring a failure event. Due to the 
similarity with the probability definition of failure and reliability, the 
numerical value of Ch  is used instead of frequency to represent the 
chance with which it is believed that the event will occur. The higher 

reliabilityCh  is the more chance the reliability event will happen.
If the chance distribution Φ  is given, the failure uncertainty with 

Eq.(13) can be obtained by:

	 { }0 (0)failureCh Ch G= ≤ = Φ  	 (15)

Meanwhile, the chance theory based reliability Eq. (14) 
transform into:

	 { } { }0 1 0 1 (0)reliabilityCh Ch G Ch G= > = − ≤ = −Φ  	  (16)

3. Mechanism reliability analysis method under random 
and fuzzy uncertainties

3.1.	P erformance reliability assessment of multi-state 
system

In the real world, usually systems and their components perform 
their tasks at several levels of performance or exhibit multiple per-
formance levels or states, and most systems  gradually degrade and 
have a wide range of working efficiencies [13]. Thus, the state of 
the system may range from perfect functioning to complete failure 
in engineering practice. The fundamental of multi-state systems was 
introduced by Murchland [31] in the middle of 1970s. For a multi-
state system, 0 2( , ,..., )qS S S=S  is the vector of function states of the 
system, it is assumed that there are w failure modes, the failure state 
space is { }0 1,..., wS S −Ω = , and { },...,w qS SΩ = is the state space that 
the system can work. The critical surface is given by the function 

1 2( , ,..., ) 0i ng x x x =  for failure mode ( 0,1,..., 1)iS i w= − . It should be 
noted that for each function ig , it is necessary that all ( 1,2,..., )jx j n=  
are included in the function. Suppose that 1 2( , ,..., )t nY f x x x= repre-
sents a joint probability density function of performance variables 
at time t , then the probability that the structure will fail in mode

iS ( 0,1,..., 1)i w= −  up to time t  is given by (for a larger-is-better 
case):

	 1 2 1 2( ) Pr( ( , ,..., ) ) Pr( ( , ,..., ) 0)i t n i i nF t f x x x S g x x x= ∈ = ≤     (17)

where iS  is the space determined by 1 2( , ,..., ) 0i ng x x x ≤ ,

0,1,..., 1i w= − . The reliability considering only failure mode iS is 
given by:
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In Fig.2, ( , , )f tR Fx x  is the state function of the system. From 

the definition 5 it can be seen that ( , , )f tR Fx x is a hybrid variable. 
The chance measure ( , , )Ch tY y  is a transforming operator that can 

transform inputs Y  and y into { }( )R Y t ∈Ω . Thus, the mathematical 
model of the system is:

	
{ }

( ) ( ( ), ( ))
( ( ), ( )) ( )

R FY t f x t x t
Ch Y t y t R Y t

=
 = ∈Ω



 	 (22)

4. Simulation method of mechanism reliability model con-
sidering random and fuzzy variables

4.1. Statistical analysis model

In order to solve the general fuzzy programming models, Liu [23] 
proposed a fuzzy simulation algorithm based on credibility distribution 
and applied it to the solutions of uncertain functions and their expected 
functions. Later on, Chen [2] proposed a fuzzy based performance 
reliability algorithm, and designed a Monte Carlo method to estimate 
the fuzzy based model. According to these two methods, the following 
procedure may be used to handle the general simulation models 

considering random and fuzzy variables. kθ  is randomly generated 

from the credibility space ( , , )P CrΘ , and kω  the probability space 

( , , )A PrΩ , followed by writing { }(2 ) 1k kCrν θ= ∧  and producing 

( )Fk kx ξ θ= , and Rk kx ω= , 1,2,...,k N=  respectively. Equivalently, 

Fkx  and Rkx  are randomly generated and 

( )k Fkxν µ=   is written for 1,2,...,k N= , where 

µ  is the membership function of Fx . 
Let the system simulate for N -times under 

the influence of random and fuzzy causes. The 
sampled values of characteristics parameters

Rx  and Fx  are 1R rx , 2R rx ,…,
rRn rx  and 1F rx

, 2F rx ,…, fFn rx  in the r - th  simulation, re-
spectively. From Eq.(23), the sampled values of 
performance parameters are:

	
1 1( , )

......
( , )

r

nr n

Y f

Y f

=


 =

Rr Fr

Rr Fr

x x

x x





              (23)

According to the model proposed in Sec-

tion 3.2, the incident 0 1[ , ,..., ]qS S S=S
is determined by the performance param-

eter 1( ( ),..., ( ))r nrY t Y t=Y  and criterion 
( )ij n q

y t
×

 =  y , 1,2,...,i n= , 0,1,2,...,j q= . 
The relationship is denoted by matrix:

	 × =Y y S                          (24)

Eq.(24) is a logic expression that can be ex-

plained as follow: the incident 0S  occurs when 

the element of vector 1 2( , ,..., )r r nrY Y Y  meets the 

element of vector 10 20 0( , ,..., )ny y y . 1 2, ,..., qS S S
 
can be explained 

in a similar way. Alternatively, if one of the vectors 1 2( , ,..., )r r nrY Y Y  

meets criterion jy , and the others meet criterion 1jy + , the function 

state of the system is still jS .
According to the results of N -times simulations, if the results of 

k -times simulations belong to Ω , then the reliability obtained by 

statistical analysis is k
N

.

4.2.	C hance theory based reliability simulation method

Assume that the structural system is reliable when the system 
state belongs to the set { }1, ,...,w w qS S S+Ω = , and is unreliable 

when the system state belongs to the set { }1 2 1, ,..., wS S S −Ω = . Thus, 
according to Eq.(21), the critical surface is given by the function 

1 2( , ,..., ) 0i ng x x x =  for state iS , and the performance reliability of 
the system is:

	

{ }

{ }( , ) , 1,2,...,

1 ( ( , ) 0, 1,2,..., )

reliability

j R F

i R F

Ch Ch Y

Ch f x x j n

Ch g x x j n

= ∈Ω

= ∈Ω =

= − ≤ =





 	  (25)

In order to compute the uncertain function 

{ }( , ) 0, 1,2,...,j R FCh g x x j n≤ = , using the method proposed in 

Section 4.1, 1 2, ,...,F F FNx x x    and 1 2, ,...,R R RNx x x  are randomly 

Fig. 1. The two-state performance reliability assessment with multiple input variables

Fig. 2. Performance reliability model considering fuzzy and random factors
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generated from the credibility space ( , , )P Crθ  and the probability 

space ( , ,Pr)AΩ , respectively. For each Fkx , 

Pr ( , ) , ,Pr ( , ) ,g x x for all j g x x for some jj R Fk j R Fk ≤{ } >{ }0 0  (26)

is estimated by stochastic simulation via the samples 
1 2, ,...,R R RNx x x  .
Besides, by using the credibility inversion theorem Eq.(2), the 

expression in Eq.(5) can be presented as follows:

	
{ } { }

{ }

{ } { }

1

1

1

1

max Pr ( , ) 0,

1max ( sup ( ) 1 sup ( )) Pr ( , ) 0,
2

max Pr ( , ) 0,

1max ( sup ( ) 1 sup
2

Fk Fk

Fk Fk

Fk j R Fk
k N

Fk Fk j R Fk
k N x x

Fk j R Fk
k N

Fk
k N x x

Cr x g x x for all j

x x g x x for all j

and

Cr x g x x for some j

x

µ µ

µ

≤ ≤

≤ ≤ ∈Ω ∈Ω

≤ ≤

≤ ≤ ∈Ω

∧ ≤

  = + − ∧ ≤ 
  

∧ >

= + −

 

 

 

  

 

 { }( )) Pr ( , ) 0,Fk j R Fkx g x x for some jµ
∈Ω

   ∧ > 
  

 

 	
 (27)

Then according to Eq.(5), after simulating for N -times, if:

	 max Pr ( , ) , .
1

0 0 5
≤ ≤

{ }∧ ≤{ } <
k N

Fk j R FkCr x g x x for all j 

   (28)

then the value of Ch g x x j nj R F( , ) , , ,..., ≤ ={ }0 1 2
 
is:

	
Ch g x x Cr x g x x for all jj R F

k N
Fk j R Fk( , ) max Pr ( , ) ,  ≤{ } = { }∧ ≤{

≤ ≤
0 0

1
}} =j n1 2, ,...,

 	
(29)

Otherwise, if:

	
max Pr ( , ) , .

1
0 0 5

≤ ≤
{ }∧ ≤{ } ≥

k N
Fk j R FkCr x g x x for all j  , 

then:

Ch g x x Cr x g x x for somj R F
k N

Fk j R Fk( , ) max Pr ( , ) ,  ≤{ } = − { }∧ >
≤ ≤

0 1 0
1

ee j j n{ } =1 2, ,...,  	

 (30)

Finally, the chance theory based reliability reliabilityCh  of the 
multi-state system can be calculated by Eq.(25).

Considering fuzzy and random variables, the chance theory based 
simulation method is proposed to conduct reliability calculation in 
Eq.(25). Five steps are involved in the proposed method. The first 
three steps are the simulation process, while the last two steps are the 
analytical process. The flowchart of the proposed method is shown 
in Fig.3.

5. An illustrated example

The main failure model of the harmonic gear reducer is due to 
the increase of the clearance between the components caused by the 
wear cumulating [27]. The clearance affects the transmission error 

hgϕ∆  and the backlash jϕ  of the harmonic gear reducer, reducing 
the accuracy.

Fig.4 shows a harmonic gear reducer, the wave generator H  is 
active, circular spline is fixed RZ , and flex spline GZ  is the output. 

The speed of wave generator is 100 / minn r= , load is 

10T N m= ⋅  , the gear pressure angle is 28.6α =  , the teeth number 

of the flex spline and the circular spline are 1 200z =  and 2 202z =  , 
respectively and the harmonic gear ratio is 100i = . When the trans-

mission error and the backlash are greater than 0.15 , the harmonic 
gear reducer is considered to be invalid. Because of the high accuracy 
and lubrication conditions, the harmonic gear reducer can be consid-
ered to work in the stable wear stage. The wear rate is constant and the 
wear amount increases linearly with time. If the wear rate is µ , the 
cumulative wear is ( )W t tµ= . Therefore, the calculation formula of 

the transmission error hgϕ∆  of the harmonic gear reducer consider-
ing the amount of wear is:
	

1

6
2 2 2 2 2 21

1 2
11

0.2 ( ( ( )))
1.2

412.80.3 ( ) ( ) ( ) ( ) [ ( ) ( ) ]
1.2

B
hg j n

rb j

k dF W t
UiN

dF F E W t
Ui d

πϕ ρ

π ρ

∑
∆ = ± × ∆ + ∆ + +


× ∆ + ∆ + + ∆ +


∑
 	

 (31)Fig. 3. The flowchart of the chance measure based simulation method

Fig. 4. Sketch map of the harmonic gear reducer
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The backlash of the harmonic gear reducer jϕ  is calculated as:

	
2

6.876 tan ( 2( ( )) 2 )M r a rE u f W t Fj
mzϕ

α + + ∆ + − ∆
=  	  (32)

According to the failure criterion, four states of the harmonic gear 
reducer can be defined:

	 0S : 0.15hgϕ∆ <  , 0.15jϕ <  ;

	 1S : 0.15hgϕ∆ <  , 0.15jϕ ≥  ;

	 2S : 0.15hgϕ∆ ≥  , 0.15jϕ <  ;

	 3S : 0.15hgϕ∆ ≥  , 0.15jϕ ≥  .

Thus { }0SΩ = is the state space that the harmonic gear reducer 
can work, and { }1 2 3, ,S S SΩ = is the state space that the harmonic 
gear reducer cannot work. Considering the effect of wear, when the 
operation time is t =8000 hours, the reliability level of the harmonic 
reducer can be evaluated using the proposed performance reliability 
simulation method.

Since the manufacturing installation dimensions of flex splines, 
circular splines, wave generator and bearings include both randomness 
and fuzziness, the error factors that affect the transmission error and 
the backlash can be processed as random and fuzzy variables. The 
random variables in the manufacturing installation error can be re-
garded as normal distribution and the membership function of fuzzy 
variables can be determined according to the actual experience and 
opinions of experts. The distribution parameters of random and fuzzy 
variables in Eq.(31) and Eq.(32) are presented in Table 1 and 2.

The variables 1 2 r, , , , ,n aN F F f Fρ∆ ∆ ∆ ∆ ∆  are defined as fuzzy in-
put variables with the membership functions as follows: 

Thus, fuzziness and randomness appear in the structural system 
simultaneously. An algorithm based on chance theory is designed. 
The steps in the proposed algorithm are as follows:

Algorithm. Chance theory based performance reliability simula-
tion
Step1: The total simulation number of the system is N.
Step2: Set the characteristic parameters of fuzzy and random 

variables by mechanism designer, as shown in Table 2.
Step3: Refer to the method in Section 4.1 and generate random 

numbers based on the characteristic parameters as samples of 
fuzzy and random variables.

Step4: Take the samples into the calculation formulas of error Δφhg 
and jφ.

Step5: Compare the calculation result with the fault criterion 
and determine whether the error satisfies the criteria or not. 
The system is considered as success when criteria is satisfied, 
otherwise it is failure.

Step6: Repeat steps (3) to (6) N-times.
Step7: Use the simulation method of statistical analysis model in 

Section 4.1 to estimate the number of success k via the samples 
and obtain the reliability by k/N. 

Step8: Estimate the chance theory based reliability  using the 
method of section 4.2.

Using the models and the algorithm in Section 4, the reliability 
simulation test for a harmonic gear reducer is performed. Firstly, 
the actual simulation is conducted to decide the critical index and 
the failure criterion of the system. Then the integrated reliability of 
the failure and the accuracy error factors are simulated. Using the 
statistical method, the integrated factors that affect the accuracy of 
the harmonic gear reducer are considered. After N=10000 cycles in 
simulation, the number of success is 8627. Besides, the chance theory 
based reliability  is obtained to be 0.8491 using Eq.(25). That is, after 

Table 1.	 Random variables

Random variables(unit) Meaning Distribution form Mean value Coefficient of 
variation

( )rbE mm The radial motion of the work-
ing axis Normal 0.01 0.050

m Gear modulus Normal 0.3 0.033

1ρ∆ 2ρ∆ 3ρ∆ 4ρ∆ 5ρ∆ 6( )mmρ∆ Radial error of the wave gen-
erator Normal 0.01 0.100

ME The M  value deviation Normal 0.038 0.132

( )ru mm Radial clearance of flexible 
bearings Normal 0.003 0.0333

( )mmµ Wear rate Normal 61.140 10−× 0.136

Table 2.	 Fuzzy variables

Parameters(unit) Meaning Value Type

N The number of teeth actually engaged 0.4/0.5/0.6 Fuzzy triangular variable

ΔFi(mm) Integrated error of circular spline 0.005/0.075/0.01 Fuzzy triangular variable

ΔF2(mm) Integrated error of flex spline 0.005/0.075/0.01 Fuzzy triangular variable

Δρn(mm) Integrated radial error of the wave generator 0.01/0.02/0.03/0.04 Fuzzy trapezoidal variable

Δfa(mm) Radial error of the long axis 0.014/0.021/0.028 Fuzzy triangular variable

ΔFr(mm) Coaxial error of gear ring 0.009/0.015/0.021 Fuzzy triangular variable
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working for 8000 hours, the reliability of harmonic gear reducer drops 
to 0.8491.

Furthermore, depending on the working time t, and using the 
above simulation method, a set of corresponding results about the 
number of success k and the chance theory based reliability can be 
obtained. Accordingly, the trend of the reliability of the harmonic re-
ducer with time t can be observed. The quadratic polynomial fitting 
method is used to fit the results. As shown in Fig.6, curve 1 is the 
result of quadratic polynomial fitting of the statistical analysis, and 
the curve 2 is the fitting result of the chance based reliability.

From the results shown in Table 3 and Fig.6, the chance theory 
based reliability  is 0.9728 at time t =0, which is mainly caused by 
the manufacturing and installation errors of the flex splines, circular 
splines, and wave generators of harmonic gear reducers. However, as 
the working time increases, the wear between the inner wall of the flex 
spline and the outer wall of the flexible bearing increases with respect 
to the moving interface, and the reliability decreases gradually. The 
main reason is that the wear amount gradually accumulates and the 
wear standard deviation becomes larger over time, which increases 
the uncertainty of the result. Hence, the influence of the uncertainty 
on the reliability of the harmonic gear reducer becomes larger. Thus, 
the results obtained by the chance theory based performance model 
are consistent with the changes in the reliability of the actual situation 
affected by the uncertainty factors.

As shown in Fig.6, the trend of the two fitting curves is basically 
the same. It can be seen from the figure that the reliability obtained 
by the proposed chance theory based hybrid performance model is 
smaller than that by the statistical method. Thus, using the statistical 
method in Section 4.1 to determine the reliability of the structure with 
hybrid variables will negatively affect the accuracy and the belief 
degree of the results. That is, the reliability obtained by the proposed 
method is more conservative and can ensure the structure security to 
a larger extent. The result of the proposed method presents more re-
alistic estimation of the structure reliability compared to the classic 
methods.

Fig. 5.	 The flowchart of chance theory based performance reliability 
simulation

Table 3.	 Reliability at different values of time 

Time t Success number
(/10000) Chreliability Time t Success number

(/10000) Chreliability

0 0.9860 0.9728 6000 0.9059 0.8638

500 0.9635 0.9569 8500 0.8507 0.8283

1000 0.9666 0.9426 10000 0.8524 0.8058

1500 0.9546 0.9263 11000 0.8261 0.7848

2000 0.9486 0.9358 12000 0.7448 0.7255

2500 0.9588 0.9453 15000 0.6221 0.6037

3000 0.9441 0.8958 16500 0.5296 0.4714

3500 0.9426 0.9239 17500 0.5273 0.4967

4000 0.9307 0.9105 18500 0.4530 0.3930

5000 0.9276 0.8966 19000 0.4604 0.3991

Fig. 6. Time-dependent reliability of the harmonic gear reducer
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6. Conclusions

In this paper, the chance theory and the multi-state performance 
reliability model are used to deal with the epistemic uncertainty, es-
pecially with the subjective randomness and fuzziness mixed in the 
mechanism reliability analysis. A chance theory based quantification 
method integrating the design for performance reliability is proposed. 
A performance reliability model is established based on fuzzy and 
random factors related to the structure failure. The hybrid variables 
and the performance state function are used to represent the subjective 
randomness and fuzziness. The chance measure is adopted to quan-
tify the reliability of the structures. In the framework of the chance 
theory, a definition of the chance theory based performance reliability 
is provided and a formulation is proposed to analyze the reliability 
in a structural system from a viewpoint of the chance measure. With 
the proposed formulations, not only the duality of random events can 
be described, but also the subadditivity of fuzzy events can be ex-
plained. A harmonic gear reducer considering wear failure is provided 
as a case in order to demonstrate and validate the correctness and 
effectiveness of the proposed algorithm. The results obtained from the 

case experiment have demonstrated that the trend of the chance the-
ory based reliability is basically consistent with that of the statistical 
analysis results. Moreover, the comparative results have shown that 
the results of the proposed chance theory based simulation method 
are more conservative and this method can reflect the influence of 
the hybrid variables on the structural reliability more accurately than 
the classical methods. Thus, as a new method to deal with fuzzy and 
random hybrid uncertainties, the proposed chance theory based reli-
ability model can effectively solve the existing problems in engineer-
ing practice.

Acknowledgement:
This study was supported by the National Natural Science Founda-
tion of China (No. 51675026, 71671009), and the National Basic 

Research Program of China (No. 2013CB733002).



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 20, No. 2, 2018228

Science and Technology

26. Liu B. Uncertainty Theory (4th ed.). Berlin: Springer 2015, https://doi.org/10.1007/978-3-662-44354-5.
27. Li J Y, Wang J X, Zhou G W, et al. Accelerated life testing of harmonic driver in space lubrication. Proceedings of the Institution of 

Mechanical Engineers, Part J: Journal of Engineering Tribology 2015; 229(12): 1491-1502, https://doi.org/10.1177/1350650115586032.
28. Liu Y. Uncertain random variables: a mixture of uncertainty and randomness. Soft Computing 2013; 17(4): 625-634, https://doi.org/10.1007/

s00500-012-0935-0;
29. Marano G C, Quaranta G. A new possibilistic reliability index definition. Acta Mechanica 2010; 210 (3-4): 291-303, https://doi.org/10.1007/

s00707-009-0194-z.
30. Muscolino G, Santoro R, Sofi A. Reliability analysis of structures with interval uncertainties under stationary stochastic excitations. Computer 

Methods in Applied Mechanics and Engineering 2016; 300: 47-69, https://doi.org/10.1016/j.cma.2015.10.023
31. Murchland J D. Fundamental concepts and relations for reliability analysis of multi-state systems. Reliability and fault tree analysis 1975.
32. Utkin L V, Gurov S V. A general formal approach for fuzzy reliability analysis in the possibility context. Fuzzy Sets & Systems 1996; 

83(2):203-213, https://doi.org/10.1016/0165-0114(95)00391-6.
33. Wang P, Zhang J, Zhai H, et al. A new structural reliability index based on uncertainty theory. Chinese Journal of Aeronautics 2017, https://

doi.org/10.1016/j.cja.2017.04.008.
34. Wang Z, Huang H Z, Li Y, et al. An approach to system reliability analysis with fuzzy random variables. Mechanism & Machine Theory 

2012; 52(52):35-46, https://doi.org/10.1016/j.mechmachtheory.2012.01.007.
35. Wen M, Kang R. Reliability analysis in uncertain random system. Fuzzy Optimization and Decision Making 2016; 15(4): 491-506, https://

doi.org/10.1007/s10700-016-9235-y.
36. Zadeh L A. Fuzzy sets, information and control. Information & Control 1965; 8(3): 338-353, https://doi.org/10.1016/S0019-

9958(65)90241-X.
37. Zadeh L A. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems 1978; 1(1): 3-28, https://doi.org/10.1016/0165-

0114(78)90029-5.

Lei Zhang
Jianguo Zhang
Hao Zhai
Shuang Zhou
Science and Technology on Reliability and Environmental 
Engineering Laboratory
Beihang University
Xueyuan Road No.37, Haidian District, Beijing 100083, China
School of Reliability and Systems Engineering
Beihang University
Xueyuan Road No.37, Haidian District, Beijing 100083, China

E-mails: zhanglei16@buaa.edu.cn, zjg@buaa.edu.cn, 
zhaihao2010@126.com, zsdyx88@163.com


