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ON SYSTEM RELIABILITY OF INCREASING MULTI-STATE
LINEAR k-WITHIN-(m,s)-OF-(m,n):F LATTICE SYSTEM

ZWIEKSZANIE NIEZAWODNOSCI WIELOSTANOWYCH SYSTEMOW LINIOWYCH
TYPU k-W- (m,s) -Z- (m,n):F O STRUKTURZE KRATOWE)J

A “multi-state linear k-within-(m,s)-of-(m,n):F lattice system” (MS L(k,m,s,n:F)) comprises of m>n components, which are or-
dered in m rows and n columns. The state of system and components may be one of the following states: 0, 1, 2, ..., H. The state
of MS L(k,m,s,n:F) is less than j whenever there is at least one sub-matrix of the size mxs which contains k; or more components
that are in state less than [ for all j <1 < H. This system is a model for many applications, for example, tele communication, radar
detection, oil pipeline, mobile communications, inspection procedures and series of microwave towers systems. In this paper, we
propose new bounds of increasing MS L(k,m,s,n:F) reliability using second and third orders of Boole-Bonferroni bounds with i.i.d
components. The new bounds are examined by previously published numerical examples for some special cases of increasing MS
L(km,s,n:F). Also, illustration examples of modelling the system and numerical examples of new bounds are presented. Further,
comparisons between the results of second and third orders of Boole-Bonferroni bounds are given.

Keywords: network reliability, reliability engineering, structural reliability, system failure modelling,
reliability optimization, probabilistic methods.

"Wielostanowy system liniowy k-w- (m, s ) -z- ( m, n ):F o strukturze kratowej" (MS L(k, m, s, n:F)) sktada si¢ z m x n ele-
mentow, uporzqdkowanych w m wierszach i n kolumnach. Stan systemu i elementow moze by¢ jednym z nastgpujgcych stanow:
0, 1,2, ..., H Stan MS L (k, m, s, n: F) jest mniejszy niz j, gdy istnieje co najmniej jedna pod-matryca o rozmiarze m x s, ktora
zawiera kl lub wigcej elementow, ktore znajdujq sie w stanie mniejszym niz [ dla wszystkich j <1 < H. System ten stanowi model dla
wielu zastosowan, na przyklad w telekomunikacji, detekcji radarowej, rurociggach naftowych, komunikacji mobilnej, procedurach
przegladu oraz systemach wiez radiolinii. W niniejszym artykule proponujemy nowe granice zwigkszania niezawodnosci MS L
(k, m, s, n: F) z wykorzystaniem drugiego i trzeciego stopnia nierownosci Boole'a—Bonferroniego z niezaleznymi elementami o
Jjednakowym rozkladzie. Nowe granice oméwiono na podstawie poprzednio publikowanych przykiadow numerycznych dla niekto-
rveh szczegolnych przypadkow zwigkszania MS L (‘k, m, s, n: F). Przedstawiono takze przyklady ilustrujgce modelowanie systemu
oraz numeryczne przyktady nowych granic. Ponadto porownano wyniki uzyskane dla drugiego i trzeciego stopnia nierownosci
Boole'a—Bonferroniego.

Stowa kluczowe: niezawodnos¢ sieci, inzynieria niezawodnosci, niezawodnos¢ konstrukcyjna, modelowanie
uszkodzen systemu, optymalizacja niezawodnosci, metody probabilistyczne.

Notations .
mysnkp, system parameters ¢ (x) the structure function of the system, ¢(x) €{0,1,2,....H}.
.8, 0,K,D; .
N =n—-s+1.
H highest state for the syst ts. o -
X rrfnifriursnanin(l)éer (e) fsz(s)rim and cor}rllp onen sb . ] p; probability that state of the componentisj, Y. p; =1.
i ponents that must be 1n state less par
than j in the sub matrix of the size mxs,j=1,2, ..., H. P; probability that state of the component is greater than or
K minimum number of components that must be in state . H
greater than or equal ;j in the sub matrix of the size m xs, j equal j, P = 2D
=1,2,...,H; ij:(me)—ij. =7
k G a vector of k/'GS Q probability that state of the component is less than j, Q; =
k; a vector of k;7-s. ~
1-P;
Sj number of components that are in state less than j inside
he sub - ofthe si 4 ; an event that at least k; components in state less than /,
the sub-matrix of the size m Xs. b
Xij the state of the component, which are located in the row i j <1< H, of the sub-matrix with the size m x s , that
and the column j, x; ; € {0,L,.... H} . begin with the component (1, i) and end with the com-
Xip o X e Xy, ponent (m, i +s-1).
X the states of all components, x = XZ.»‘ x2.,2 x%s" ] u denote the random number of events among
Xl Xm2 o Xpn Al,j’AZ,js--':AN,j which occur.

81,7552, j>53, j : the binomial moments of 1 .
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Sij > Pr(4, ), for I<a<N.

Za,bPr(Aa,jAb’j) ,for 1ISa<b<N.

Ss; Doan P14y Ay ;A ), for 1Sa<b<c<N.
R; probability that state of the system is greater than or
equal ;.

F; probability that state of the system is less than j,
' F;=1-R;.

LZJ the lower integer part for z.

E; maximum error of the estimation of R;and F; .

UB; the upper bound of R;.

LB; the lower bound of R;.

iid independent identically distributed.

MS multi-state.

L(k,m,s,n:F) linear k-within-(m,s)-of-(m,n):F lattice system

L( K ,m,s,n:G) linear k-within-(m,s)-of-(m,n):G lattice system

1. Introduction

A binary L(k,m,s,n:F) is a two dimensional grid. Its components
have only the state 1 (operating) or state 0 (failed), and arranged in m
rows and n columns. This system fails if at least one (m,s) sub-matrix
of its components contains & or more failed components. Many papers
studied its reliability, such as [13-16, 21, 23]. In the last few years,
many systems generalized to MS systems, because the MS models give
more limberness for modelling the equipment conditions. Such as, MS
consecutive k-out-of-n:F system [9, 22, 24], MS k-out-of-n:F system
[1, 10, 20], MS consecutive k-out-of-r-from-n: F system [8, 19] and MS
L(k,m,s,n:F) [7]. In this paper, we study MS L(k,m,s,n:F). This system
is a model for many applications. The system definition and illustra-
tion examples of modelling the system are given in section 2. The
Boole-Bonferroni bounds are generalized in section 3, that will used
for evaluation the proposed bounds. In section 4, the proposed bounds
and an illustration example are given. The numerical results are pre-

sented in section 5.

2. The MS L(k,m,s,n:F)

The MS L(k,m,s,n:F) contains m xn components, that are ordered
as a matrix of the degree m xn. The possible states of MS L(k,m,s,n:F)
and its components are: 0, 1, ...,H. The state of MS L(k,m,s,n:F) is less
than j whenever there is at least one sub-matrix of the size m xs which

contains k; or more components that are in state less than / for all j <

[ < H. In other words, ¢(x) < j if at least one sub-matrix of the size
mXs is in state less than j. The state of a sub-matrix of the size m xs is
less than j if all the following inequalities are satisfied:

5,2k,

8j+] Z kj+l >

5., 2k

Jj+2 j+2°

5, >k,

The values of k vector, k 1 kz,..., k y » categorize the MS
L(k,m,s,n:F) to three cases:

Casel: When k;>k,> ... >ky, the system is called a decreasing
MS L(k,m,s,n:F). The exact reliability of decreasing MS L(k,m,s,n:F)
evaluated in Ref. [7].

Case2: When k| <k, < ... <ky, the system is called an increasing
MS L(k,m,s,n:F). In this case, that is more difficulty, new lower and
upper bounds are proposed.

Case3: When ki=ky)=...=ky, the system is called a constant
MS L(k,m,s,n:F). This system is a special case of the increasing MS
L(k,m,s,n:F) and decreasing MS L(k,m,s,n:F).

As with the binary system, the MS L(k,m,s,n:F) and the MS L( k°
,m,s,n:G) are considered as mirror images of each other. Further, the

decreasing MS L(k,m,s,n:F) is an increasing MS L( k° ,m,s,n:QG). The
following examples illustrate this system.

Example 1:

A decreasing MS linear (k; = 4, k, = 3, k3 = 2)-within-(2,2)-
of-(2,4):F lattice system, which is an increasing MS linear (

kS =1,k =2,k =3 )-within-(2,2)-0f-(2,4):G lattice system,
consists of 8§ components, that arranged in 2 rows and 4 columns. This
system contains 3 sub-matrices of the degree 2 x2. The state of any one

of them is:
*lessthan 1,if §, 24, 8, 23 and 3, 22,
e lessthan2,if 8, 23 and 6, 22,
e less than 3, if &, > 2.

For state 1:

O (x) <1, if at least one sub-matrix of the degree 2x2 is in state

_ (0023
less than 1. For example, when x = (0 03 1)

SO

* The state of ( 8) is less than 1, such that§, =98, =96, =4.

¢ The state of

—

8 %) is less than 3, such that$, =3, =2 and

5,=3.
* The state of (% ‘;’) is less than 3, such thatd, =0, 8, =1and

5, =2.
Then ¢(

1300 2000
¢b 100)<1’¢h,000)<Lem

For state 2:

SO

02
03

—_
[e>Ren)

) <l. Similarly, ¢(g 8 %) <1,

0(x) <2, if at least one sub-matrix of the degree 2 x2 is in state

_(0113
less than 2. For example, when x = (2 31 0)
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* The state of ((2) ;) is less than 3, such thatd, =1, §, =2 and

85,=3.
* The state of (; i) is less than 2, such that 51:0,

5,=06,=3.
* The state of (i 3) is less than 2, such thatd, =1,

113 - 1023

3] 0)<2. Similarly, ¢(1 02 2)<2 ,
3
3

For state 3:

0(x) <3, if at least one sub-matrix of the degree 2x2 is in state

(3312}
less than 3. For example, when x—(l 32 0).

* The state of (? g) is 3, such that §, =0, 6, =0, =1.

* The state of (g é) is less than 3, such thatd, =0, 5, =1 and

8, =2.

* The state of (é g) is less than 3, such that , =1, 8, =2 and

5, =4
3312 o 2232

Then ¢(1 ) 0)<3 Similarly, ¢(2 33 O)<3’

3233 3233
¢(2 13 3)<3"/’(2 12 0)<3’et°'

Example 2:

Anincreasing MS linear (k; =2, k, =3, k3=4)-within-(2,2)-o0f-(2,4):F
lattice system, thatisa decreasing MS linear (k" = 3,ky =2,k =1

)-within-(2,2)-0f~(2,4):G lattice system, consists of 8 components, that
arranged in 2 rows and 4 columns. This system contains 3 sub-matrices

of the degree 2 x2. The state of any one of them is:
elessthan 1,if §, 22, 8, 23 and §, 2 4,
*lessthan2,if 5, 23 and &, >4,
*lessthan 3,if &, > 4.

For state 1:

0(x) <1, if at least one sub-matrix of the degree 2x2 is in state

101 2).
0122)

less than 1. For example, when x = (

* The state of ((1) (1)) is less than 1, such that &, =2 and

5,=8,=4.

* The state of (0 1) is less than 2, such that §, =1,9, =3 and

12
5, =4.
« The state of (% %) is less than 3, such that §, =0,8, =1 and
5, =4.
1012 .
Then ¢(0 12 2)<1. Similarly, ¢(8 8 8 8)<1’

1111 3300
¢(o 01 1)<1’ ¢(3 30 o)<1’et°-
For state 2:

0 (x) < 2, if at least one sub-matrix of the degree 2x2 is in state

_({0113).
less than 2. For example, when x = (2 11 1) :

« The state of ((2) %) is less than 2, such that 6, =1,8, =3 and

5,=4.

e The state of (% i) is less than 2, such that &, =0 and

8,=8,=4.

* The state of (i ?) is 3, such that §, =0 and 5, =9, =3.

Then ¢(g H f)<2. Similarly, ¢((1) 0 %)<2,

For state 3:

O(x) <3, if at least one sub-matrix of the degree 2x2 is in state

_(3213).
less than 3. For example, when x—(2 12 0).

« The state of (% %) is 3, such that §, =0,8, =1 andd, =3.

« The state of (% ;) is less than 3, such that §, =0,8, =2 and

5, =4.
* The state of (é g) is 3, such that , =1,8, =2 and 5, =3.
3213 L 3213
Then ¢(2 12 0)<3. Similarly, ¢(2 12 0)<3,

Example 3: A Surveillance Cameras System
Given, a surveillance cameras system consists of 20 cameras that
arranged in 4 rows and 5 columns. This system has 4 different surveil-

lance levels:
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* Good surveillance (state 3).

* Medium surveillance (state 2).
» Low surveillance (state 1).

* Non surveillance (state 0).

Each camera also has 4 different surveillance levels:
* Good surveillance, in the first time (state 3).
* Medium surveillance, after some time (state 2).
» Low surveillance, after more time (state 1).
* Non surveillance, the camera not works (state 0).

Then:
* The system state is less than 1, if at least one sub-matrix of the
degree 4x3 contains at least 6 components in state less than 1.
* The system state is less than 2, if at least one sub-matrix of the
degree 4x3 contains at least 4 components in state less than 2.
* The system state is less than 3, if at least one sub-matrix of the
degree 4x3 contains at least 2 components in state less than 3.

We can represent such a system by a decreasing MS linear (6,4,2)-
within-(4,3)-0f-(4,5):F lattice system (or an increasing MS linear (
kS =17,kY =9,kY =11)-within-(4,3)-0f-(4,5):G lattice system).

Example 4: 4 Radar Detection System

Given, a radar detection system consists of 25 radar stations that
arranged in 5 rows and 5 columns. This system has 4 different surveil-
lance levels:

* Good detection (state 3).

* Medium detection (state 2).

» Low detection (state 1).

* Non detection (state 0).
Each station also has 4 different detection levels:

* Good detection, in the first time (state 3).

* Medium detection, after some time (state 2).

» Low detection, after more time (state 1).

* Non detection, the station not works (state 0).
Then:

* The system state is less than 1, if at least one sub-matrix of the
degree 5x3 contains at least 3 components in state less than 1, at
least 5 components in state less than 2 and at least 7 components
in state less than 3.

* The system state is less than 2, if at least one sub-matrix of the
degree 5x3 contains at least 5 components in state less than 2
and at least 7 components in state less than 3.

* The system state is less than 3, if at least one sub-matrix of the
degree 5x3 contains at least 7 components in state less than 3.

We can represent such a system by an increasing MS linear (3,5,7)-
within-(5,3)-of-(5,5):F lattice system (or a decreasing MS linear
(k7 =13,k =11,k =9 )-within-(5,3)-0f-(5,5):G lattice system).

3. Generalization of Boole-Bonferroni Bounds

The technique of Boole-Bonferroni bounds was derived by
Prékopa and Boros [2, 17], and improved by many papers such as
[2-5, 11, 12, 17]. This technique depends on the solution of the linear
programming problem according to the definition of the binomial

moments.
Let x denote the random number of the events among

A ;,4, ;55 Ay ; which occur. Then:

S = E[(’;)} = ;(f) b, i=12,.N (1)

1

i

where b, = Pr(it =/) and (1) =0,ifi> 1.

The proof of the definition of the expected value in formulae (1)
can be found by Prékopa [18]. The value S is called the ith binomial
moment of u.

If we take by, b,...,by as variables and compute S,

S, jseesS

V' < N , then we have two linear programming problems as follow:

1) V.’

Minimize {b; + by + ...+ by+...+ by} @)

Subject to:

b, +...+(V)bN =Sy,

b 20,b,20,..,b, 20,..,by >0

Maximize {b; + b, + ...+ by +...+ by} 3)
Subject to:

b, +(%)b2 +...+(If)b,, +...+(]¥)bN =S,

b, +...+(g)bV +"'+(17Y)bN =S,

N
b, +...+(V)bN =Sy,

b, >0,b,>0,..,b, 20,...b, 20

The solutions of these problems give us the best possible lower
and upper bounds respectively on the value of

Pr(u=1)=Pr(4,; +..+ 4, ,)=F, 4)

These bounds are called Boole-Bonferroni bounds. In the follow-
ing, we give the known explicit solutions of the linear programming
problems for V' = 2 (the second order) and V' = 3 (the third order).

3.1. The Second Order of Boole-Bonferroni Bounds:

By putting /=2 in the aforesaid linear programming problems
and calculation S, ; and S2,j ,j=1,2,3,..., H, then the lower bound

ofFj. is:
2 2
Fj 2 i 2.j° ®)
u; +1 u;(u, +1)
Where:
2S2'j
=] ©

And the upper bound of F, is:
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F. <SS

j L~

ERY )

3.2. TheThird Order of Boole-Bonferroni Bounds:

By putting /=3 in the aforesaid linear programming problems
and calculation S, , Sz‘j and S3,j ,j=1,2,3,..., H then the lower

bound of F/ is:

FA2¥ (7»A+2N—1)S].—M 2.+£S3. ®)
/ N(Xj+1) / / 7»/ / kj o
Where:
o _p| 882N -2)8,, o
/ 28, +(N-1S,,

And the upper bound of Fj is:

) 2
F/ < Min 17S1,_/ —W[(ZQJ —I)Sz,j _3S3,j:| (10)
Where:
0, =2+ 2y (1
. 2

4, System Reliability of the Increasing MS L(k,m,s,n:F)

From the definition of 4 ;,

MS L(k,m,s,n:F) is in state less than j, if at least one event A,-,j R

i=1,2,..,N, the increasing

i=12,...,N, occurred. Then:

F;= pr{ U A,-,_,} forall Q={1,2,...,N} (12)
ieQ

Calculation F; in equation (12) is very difficult, so we will pro-
pose an approximation for lower and upper bounds of increasing
MS L(k,m,s,n:F) using Boole-Bonferroni bounds. Calculation these

bounds required the knowledge of S, i S and S5 Iz that will be
suggested in the following sections. Further, we can have the lower

bounds and upper bounds of R; as follows:
LBj = 1- (the upper bounds of F;), (13)

UBj = 1- (the lower bound of F ). (14)

Estimation R; by one value can be given by the following for-
mula:

B LBj + UBi |
=—1— 5
J > (15)
The maximum error is:
EszBj—Rj:Rj—LBj. (16)
4.1. Calculation the Binomial Moment S ;
The binomial moment S ; can be given by:
Sl,j :Pr(Al,j)+Pr(A2’j)+...+Pr(AN,j) (17)
= NxPr(4 ;)
Where:
mxs mxs
Pr(4 )= D, [ }Q}B,—(mxs,y), (18)
vk Y

B_j(mXS’J/): H

M—j-1  min(mxs—y—I,,mxs—kys_,—1,) [m xs—y—1 ]
e
e=0 i, =0

le

Xp;‘f/[_e.p;nxs—y—lM—j, j<H (19)
Bu(mxs,y)=pis™, (20)
a-1
Iy =0, I, =1,(ig,if,eiq)= D i, fora=1,2,..., H-j. (21)
b=0

4.2. Calculation the Binomial Moment S2 j
The binomial moment S, ; can be given by:
52,7 = ZapPa 4. ) 1<a<h<n

N-1 N
> 2 P4, 4 )

a=1 b=a+1

= % (N —t+1)xPr(4, ;4 ;) (22)
t=2

The Pr(4, ;4 ;) , 1Sa<b< N, can be calculated through the
following two cases:

Case 1: If b-a > s-1, then:

2
Pr(d, 4y )= (Pr(4,,)) - (23)
Case 2: If b-a < s-1, then:

ny ny 2
m m
Pr(4, ;4 ;)= Z( IJQ;V].‘P ,(ml,yl).{ > [ Z]Q]YZ.‘Pf,-(mz,yz,IMj)} , (24)

n=n\71 2=ty
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¥ (m B e meahiey v os
1,)/1)— H z M_e~pj 5_] 7( )
e

e=0 i,=0

Yo (m,y)=py s (26)

1 my mz‘)’z—ljg il my—-yy—Ijp_;
2 2=Y2 - .
i (my, vy Iy )= 1 Z[ p Pii—gPj ML j<ML(27)

g=0 i;,:O g
\P;\/[(mz,J’2’[o):P1r\n/127y2 > (28)
a—1
Iy =0, 1, =I,(i),i i) = 2 ip , for a=1,2,....Mj, (29)
b=0

t =max(0,k; +m(a—->b)), m=m(s—b+a),

t2:max(0ak'_yl)5 mzzm(b_a)a

my =min(my —y; —I,,mxs—ky_,-1,),

my =min(my =y, —Ig,mxs—ky_ o —Iop —Ig,mxs =k =Ty _;—1Ig).
4.3. Calculation the Binomial Moment S, ;
The binomial moment S3 ; can be given by:
S3 =zab¢Pr(A 4y 4. ;) forall 1Sa<b<c<N.
N-2 N-1 N
> o Pr(A, 4, ;4. ;) (30)
a=1 b=a+1c=b+1
The Pr(4, ;4 j4. ;). 1<a<b<c<N, can be calculated

through the following five cases:

Case 1: c-a <s-1

In this case, all the events 4, ;, 4, ; and 4. ; have common com-

ponents. The number of common components between the events

A, Ay and 4,

a,j j i m*(s + a — ¢) components. Then:

1- When j <M,

5 M [ M-j-1 &L (m,-x,-D,
e e e Vel | dyy | me=xXp=Dppy-j
P Lleb/Cj HZ[ H z pML'pj
e

e=lx,=t L=0 d, ;=0 de,L

@31

2- Whenj=M,

Pr(d, ; Ay ;A. ;)= H Z (x j epiee, (32)

e=lx,=t,

where:

fi =max(0, k; +m(a— c)), m = m(s+a - c),

t, = max(0, kj — x; +m(a—Db)) my = ms = m(c— b)
b
t3=t4:max(0,kjfxlfxz), m3:m4:m(b7a)

t5 = maX(O,kj — X — X3 )
de,M—j :me_xe_De,M—j > Di,L =

81,L = Min(ml —x =Dy, mxs—ky | *Dl,L)
&L :Min(m2fx27D2‘L smxs—ky_ =Dy ’DI,L+la»--am><S*kj—D2,L*D1,M—j+l)
81 ZMi“(mrxz =Dy smxs—ky_=Dyp =Dy 1y =Dy pygseemxs—k; _D3,L’DLM—/H’D?.,M—jH)

24 =Min(my =g =Dy mxs—ky_y =Dy =D 1= Dy pygsesmxs=k; =Dy =Dy =Dyt )

g5, =Min (ms =5 =Dssmxs—ky_p =Ds =Dy g =Dy poryeemxs—k;=Ds =Dy *Ds,M—_,‘H)

Case 2: c-a > s-1, b-a < s-1, ¢-b < s5-1

In this case the events A

,.j » 4p,; have common components, and

so the events 4 ;, 4. ;. The number of common components be-

tween the events 4

o E is mx(s + a — b) components and between

Ay

Ay A jis mX(s + b - c) components. But there are no any common
components between the events 4, ;, 4, ;.

We can use the formulas (31) and (32) to calculate the
Pr(4, ; 4y ;4. ;) in this case, but with the following data:
fi = max(0, k; + m(c —a — 29)) , m = m(c—a — s)
ty =max(0, k; —x +m(c—b —s5)), my=ma - b +s)
3 =max(0, k; —x —x ) , my=mb — c + s)
fy = max(0, k; — x; ), my =m(b — a)

s =max(0, k; — x3) , ms =m(c — b)

de,M—j :mefxeiDe,M—j

L-1
Dip=Y di,. i=12 ..,5
=0

g = Min(m —x —Dyg, mxs —ky_ —Diy )

QL= Mm(’”z =Xy =Dy mxs—kyp=Dyp =Dy gy sesmxs—k;=Dyy *Dl,ijH)
&L= Mi“(’"s*)fs*Dz,L amxs=ky_p=Dyp =Dy =Dy pypesmxs—kj= Dy =Dyy_ja ’DZ‘MfM)
841 = Min(m4 =X4=Dyp mxs=ky_p=Dyp =Dy pyypemxs—k;= Dy p ’D2,M—j+l)

8.1 = Mi"(ms —xs=Dsp,mxs—ky_=Ds; =Dspy,...omxs—k;=Dsy *D3,M—j+1)

Case 3: c-a > s-1, b-a < s-1, c-b > s-1

In this case the events 4, ;, 4; ; have common components. But

a,j >

the two events 4, ; , 4, ; and so the two events 4, ; , 4, ; are disjoint.

The number of common components between the events 4, ; and 4, ;
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is m*(s + a — b) components. So, we can find the Pr(4, ; 4, ;4. ;)
by the following formula:

Pr(A, ; Ay jAe ) =Pr(4, ; Ay )% Pr(A. ) (33)

Such that, the Pr(4, ; 4 ;) can be obtained by formulas (23) ,
(24) and the Pr(4, ;)can be obtained by formula (18).

Case 4: c-a > s-1, b-a > s-1, c-b < s-1

In this case the two events 4, ; , 4, ; and so the two events 4

a,j > a,j >

4, ;are disjoint. The events 4, ;and 4. ; have common com-

ponents. The number of common components between the events
4y jand 4, ;is mx(s + b — c) components. So, we can find the

Pr(4, ; 4y ;4. ;) by the following formula:

Pr(A, ; Ay Ae ) =Pr(A, ;)X Pr(4y A, ;) (34)

Such that, the Pr(4, ; 4. ;)can be obtained by formulas (23),
(24) and the Pr(4, ;) can be obtained by formula (18).

Case 5: c-a > s-1, b-a > s-1, c-b < s-1
In this case, all the events Aa,j ) Ab’j s ACJ are disjoint.

So, we can find the Pr(4, ; 4, ;4. ;) by the following formula:

Pr(d, ; Ay ;4. ;) =Pr(4, ; )xPr(4y, ;)xPr(4, ;) (35)

Such that, the Pr(4,, J ), Pr( 4, j),Pr(AL.’ J-) can be obtained by
formula (18).

Example S.
Consider an increasing MS L(k,m,s,n:F) with the following data:

n=5m=2,s=2, H=23, the k vector is ( ky,k,,k3) = (1, 2, 3), and
the state distribution of components is ( py, py, pp, p3) =(0.1,0.2,0.4,
0.3). So that, (Q;,0,,0;) =(0.1, 0.3, 0.7). In the following, we illus-

trate the calculations ofSL_]-,SZ,_]-,S&j . The results of this example are
listed in table 4.

At state 3:

Pr(4;3) = i {j)(on)y B5(4,y)=0.6517

y=3

2
2 .
](0.7)” 03772 } =0.506611

2 2 ) 2
Pr(A]‘3A2‘3):Z( ](0.7)“.(0.3)“1.{ Y [

n=1\"1 »=3-y\J2

Pr(A4 345 3) = Pr(4 34, 3) = [Pr(AL3)]2 =0.4247129

(TR R i 3 N W 4

x1=0xp=1x3=3-x) x4=3—x) X5=3-x3

« (0'7)x2 +X3+X4+X5 (0.3)8—():2 +X34x4+X5) _ 0.3823593

Pr(d; 34y 3443) = Pr(Ay 34 3) % Pr(dy 3) = Pr( 4y 345 3) x Pr(4; 3) = 0.506611x 0.6517
=0.3301584
S5 =4%0.6517 = 2.6068
S 3 =3xPr(4; 345 3) + 2% Pr(4 343 3) + Pr(4; 344 3)
=3x%x0.506611 + 2x0.4247129 + 0.4247129=2.7939717
833 = Pr(dy 34y 343 3) + Pr( Ay 34y 344 3) + Pr( Ay 343 3.4 3) + Pr( Ay 343344 3)
= 2 Pr(dy 3 Ay 345 3) + 2% Pr(A; 3 4y 34y 3)
=2x0.3823593+2x0.3301584 =1.4250354
u3:3’ 7\,3:2’ ;=3

At state 2:
4

Pr(4 ;)= G](o.s)y B,(4,y) =0.2997

y=2

>

2
2 (2 2 2
Pr( 4y 14y 5) = Z{ J(os)yl.ﬁz(z,yl).{ > [ J(0.3)y2.ﬁg(2,y2,ll)}
»=0\N y2=2-y \ )2
=0.159795

Pr(A 543 5) = Pr(4 54, 5) = [Pr(Al’z)]z = [0.2997T =0.0898201

0 (0 0 (0
Pr(dyp 4y 5435) = D, {0](0«3)0 > [OJ(0»3)0(0~4)0

)CIZO dl’OZO
2 (2 820 (2—x,-D e
« Z[ J(os)xz D ( 2 2’0](0.3)"%0(0.4)2 727Dz,
X2=0 x2 d2,0:0 dzvo
2 (2 80 (2—x;-D e
> ( ](0.3))‘3 > [ 3 3")](0.3)"34)(0.4)2 3031
X3:2—xz x3 d370:0 d330
2 2 880 (2-x4 =Dy d 2—x,-D,
x 3 03)% Y 010.3)%40 (0.4)> 4 Pa
X4=2*xz X4 d4,0=0 d4’0
2 (2 850 (2—xs—D e
x 3 ( J(oa)xs 3 ( > 5’0](0.3)"’5’0(0.4)2 5Ds
x5=2-x3\ %5 ds =0 ds
=0.0719061
Pr( Ay 14y 544 2) = Pr(d 5 4y ) X Pr(dy 5) = Pr( Ay y dy 5) x Pr( 4 ) = 0.159795 x 0.2997
=0.0478906

Si»=4x0.2997 =1.1988

S5 =3xPr(A4y p 4y 5) + 2% Pr( 4 543 5) + Pr( 4 5 44 5)
=3x0.159795 + 2x0.0898201 + 0.0898201 =0.7488453

830 =Pr(d ndy 543 5) + Pr(d n4y 5 Ay p) + Pr( Ay p A3 54y 5) + Pr(dy p 43 p Ay 5)
=2xPr(4 p4; y 43 5) + 2 X Pr( 4y 34 544 5)
=2x0.0719061+ 2 x0.0478906 = 0.2395934

Uy =209 =1, @y =2

At state 1:
4

Pr(4) =Y (jj(o. 1) By(4, ) =0.1797 ,

y=1
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2
2 (9 ) 2 2 !

Pr(dy4y1)= 2 [y )(0-1)“‘-B1(2,y1)'{ > ( ](0-1)“-31'(2%,12)}
0\/1 2

= yp=max(0,1-y)

=0.078995
2
Pr(A 1 As) = Pr(A Ay ) = [ Pr4 ) | = [0.1797F =0.0322921

0
Pr( A4y Ay 43,) = Z( ](o 1’ Z [ )(0 3)° Z [ ](0.4)0(0.2>°

x=0 d)9=0 ;=0

2.(2 820 (2—x,-D. 821 (2—x,—D.
<3 one S 27 D20 30§ 2—Dy
x) dyp dy)

X=0 dy0=0 dy1=0

2 2 ,
x Y [ J(O.l)“
x3=max(0,l-x,)\ 3 d39=0

[2](0.1)"4 [ uo 4"](03)““’ [ 47D“1](0.4)”’4,1(0.2)2--“4-134,2

£3,1
03By [ Pu ](0.4)"3-' (0.2)757 P2
d3=0 4

2
x X

xg=max(0,1-x,)

2 2 5,0
x ¥ (0.1)*5
xs=max(0,1-x3) X5 d50 0

=0.0234413

X4 dyy

2-x5-D.

g1
(0 3)d5 0 [ 2-x5-Ds »
ds 1=0 ds)

](0 4%1(02)

Pr(Ay 1Ay, Ay 1) = Pr(Ay Ay ) x Pr( Ay 1) = Pr(dy Ay ) < Pr(4y ) = 0.078995 x0.1797
=0.0141954

S1, =4x0.1797 =0.7188
Sy1 = 3% Pr( 4 14y 1) + 2% Pr( 4 1 43 1) + Pr( 4 14y )
=3x 0.078995 + 2x 0.0322921 + 0.0322921=0.3338613

"J(o.4>"” 02y

Sy = Pr(dy 14y 45 1) + Pr( Ay Ay 1 Ag 1) + Pr(dy A3 Ay y) + Pr(dy 45 14y 1)
=2xPr(dy Ay A3 1) + 2% Pr( 4y 14 1 44)
=2x0.0234413+2x0.0141954 =0.0752734

wy=1,M=1, 0=2

5. Numerical Results

The numerical calculations of increasing MS L(k,m,s,n:F) reliabil-
ity are carried out using Visual Basic Program. The computer codes
were written very carefully. The new bounds and computer codes ex-
amined by previously published numerical examples for some special
cases of increasing MS L(k,m,s,n:F), as shown in tables 1-3.

* When m=1, the increasing MS L(k,1,s,n:F) becomes the increas-
ing MS consecutive-k-out-of-s-from-n: F system. An example of
increasing MS consecutive-k-out-of-s-from-n: F system in Ref
[19] is examined by our bounds and given in table 1.

* When H=1 and m=1, the increasing MS L(k,1,s,n:F) becomes
the binary consecutive-k-out-of-s-from-n: F system. An example
of binary consecutive-k-out-of-s-from-z: F system in Ref [6] is
examined by our bounds and given in table 2.

* When m=1 and s = n, the increasing MS L(k,1,n,n:F) becomes
the increasing MS k-out-of-n:F system. An example of MS k-
out-of-n:F system in Ref [10] is examined using formula (18) and
given in table 3.

The bounds of the increasing MS L(k,m,s,n:F) reliability with
H=3 and variant values of p;, k;, m, s, n are given in tables 4-7. These
bounds are evaluated using second and third orders of Boole-Bonfer-
roni bounds. The comparison between the results of second and third
orders of Boole-Bonferroni bounds explained in tables 2-7 and figures
1-4. This comparison shows that the third order Boole-Bonferroni
bounds are the best.

Tablel. n=s=4m=1,H=4,k;=1, k;=2, k3=3,ky=4, pyp=0.1, p;=0.2, p,=0.3, p3=0.3, p4=0.1

State (j) 0 1

2 3 4

R 1 0.8669

0.7813 0.6112 0.3439

Table 2. n =15 m=1, s=10, H=4, k;=4, k;=6, k3=7, k;=9, py=0.1, p;=0.2, p,=0.3, p3=0.3, p4=0.1

Bounds S,- S, based S;- S3 based R; E;
LB 0.9786406 0.9820220
UBl 0.9838254 0.0018034
1 0.9884654 0.9856288
LB 0.8541696 0.8862806
UBZ 0.8993991 0.0131184
2 0.9270848 0.9125175
LB 0.1880035 0.3577432
UB3 0.42207593 0.0643328
3 0.5517231 0.4864087
LB 0 0.0628391
UB4 0.1072802 0.0444411
4 0.1957316 0.1517213
Table 3. n =50, m=1, s=40, H=1, k;=28, p,=0.5, p;=0.5
Bounds S;- S, based Si- S3 based R]- E;
LB 0.9560414 0.9696965
UBl 0.9764474 0.0067509
1 0.9863147 0.9831983
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Table 4. n=5m=2,5=2,k; =1, k=2, k3=3,py=0.1, p;=0.2, p;=0.4, p3=0.3

Bounds S;- S, based S1- S3 based R, E;
LB 0.4481306 0.5397878
. 0.5491970 0.0094092
UB, 0.6150613 0.5586062
LB 0.1756226 0.3104519
UBZ 0.3404011 0.0299492
2 0.4504151 0.3703502
LB 0 0.0089921
3 0.0473096 0.0383175
UB3 0.1622619 0.0856270
Table 5.n =10, m =3, s =6, k; =13, k;=14, k3=15,py=0.3, p;=0.3, p,=0.2, p3=0.2
Bounds S,- S, based S;- S5 based ﬁj E;
LB 0.9988797 0.9990029
UBl 0.9990196 0.0000166
1 0.9990861 0.9990362
LB 0.7064799 0.7559996
UBZ 0.7767656 0.0207660
2 0.8306766 0.7975315
LB 0.0000000 0.1815675
UB3 0.2344687 0.0529012
3 0.3740597 0.2873698
Table 6. n=20,m=2,s=16,k;=18, k,=20, k3=21, py=0.3, p;=0.2, p,=0.2, p3=0.3
Bounds S1- S, based S;- Sz based 1?,- E;
LB 0.9944228 0.9951706
UBl 0.9955345 0.0003639
1 0.9967637 0.9958983
LB 0.7542582 0.7968765
UBZ 0.8128056 0.0159291
2 0.8527955 0.8287347
LB 0.0047005 0.0967175
UB3 0.1186511 0.0219336
3 0.1724146 0.1405848
Table 7. n =25 m=2,5s=22,k;=36, k;=38, k3=40, py=0.3, p;=0.2, p,=0.3, p3=0.2
Bounds S1- S, based S1- S3 based Rj E;
LB 0.9969130 0.9973025
UBl 0.9973999 0.0000974
1 0.9979420 0.9974973
LB 0.7189426 0.7519136
UBZ 0.7601564 0.0082428
2 0.7928078 0.7683991
LB 0.0214187 0.0456554
U83 0.0503207 0.0046653
3 0.0643166 0.0549860
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6. Conclusions. examined by previously published numerical examples for some spe-

In this paper, we proposed new lower and upper bounds for in-
creasing MS L(k,m,s,n:F) reliability with i.i.d components using sec-

cial cases of increasing MS L(k,m,s,n:F). The comparison between the
results of second and third orders of Boole-Bonferroni bounds shows
that the third order Boole-Bonferroni bounds are the best.

ond and third orders Boole-Bonferroni bounds. The new bounds are
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