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1. Introduction

The execution of current research on recording the acceleration 
caused by tram vibrations in operating conditions, using on-board di-
agnostics systems and wireless data transmission, enables the track 
condition assessment based on the vehicle dynamic response analysis 
[5 ÷ 7]. This issue is very important from the infrastructure main-
tenance point of view, as it allows for an ongoing assessment of its 
technical condition in normal operating conditions. Such systems are 
particularly suitable for rail networks where driving conditions are 
constant, reproducible and without significant interference or changes 
in driving behavior [e.g. 1; 3; 12]. In urban conditions, this is not a 
trivial task, as it results from the substantial spread of data received 
even from the same vehicle type and the same measuring section. This 
is due to the fact that the vehicle is moving at different speeds within 
the same track, variable load (number of passengers), driving behav-
ior of the motorists (rapid or gentle acceleration and deceleration), 
weather conditions, traffic at different hours and days, technical con-
dition of the vehicle, etc. The measurement uncertainty of the moni-
toring system itself should also be taken into account. All of these 
factors make it difficult to estimate the track condition for light rail 
vehicles using the acceleration level measured in the vehicle. 

In order to eliminate some of the above mentioned factors and 
to propose a methodology for evaluating the track condition, it was 
decided to, at the first stage, select the data from different track sec-
tions (in different parts of the city) of one type, i.e. with 60R2 tram 
rail, excluding areas using a classic railway track (mainly 49E1). In 
addition, it was decided to include the tram speed recordings for a 

given track, forming a certain profile characteristic for a particular 
track condition (the relation between the effective acceleration values 
and the tram speed). For each passing, the maximum speed was taken 
into account, assuming that the information about the technical condi-
tion of the track will be most visible for such driving speed. Another 
factor, whose impact was eliminated, was the technical condition of 
the vehicle itself. The data considered were from a new vehicle, but 
this does not limit the application of the proposed methodology. In 
practice, it is always possible to eliminate this factor by installing a 
vibration measurement system on a new or renovated vehicle. 

The presented analysis used data collected from more than two 
months of operation of a modern low-floor tram in normal passen-
ger traffic. The information on the vibration acceleration value de-
termined from a 1 second time window in the range of 0 to 100 Hz, 
recorded on the vehicle body located above the first bogie. Thus this 
is in a way a measure of travel comfort (there are currently no official 
legal acts in this field dedicated to light rail vehicles such as a tram). 
The effective value of vibration acceleration was selected after a com-
parative analysis of various statistical measures [7].

Evaluation of the track sections actual technical condition was 
determined on the basis of independent information obtained from 
maintenance services, assisted by independent measurements of track 
geometry. Finally, the data presented in Table 1 and presented in Fig-
ure 1 were taken into account. The proposed grading scale of the track 
technical condition assessment is deliberately coincidental with that 
adopted in MPK Poznan (local tramway operator).
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Fig. 1.	 Speed and acceleration profiles on track sections with different techni-
cal condition

As shown in Figure 1, data on various track technical conditions 
strongly intertwine and are strongly dependent on the maximum vehicle 
travel speed. In addition, the available speed range for certain data may 
vary due to the fact that sections of different technical conditions are 
located in a different “urban environment”. These can be i.e. sections 
where the tram travels without stopping and sometimes it may be neces-
sary to brake and accelerate. Hence, the range of maximum speed val-
ues should also be considered. Available data also differ in their number 
(different number of passes through a particular track section), which 
needs to be taken into account in the proposed methodology.

While it is easy to determine good and critical track conditions 
based on average or maximum effective vibration acceleration, the 
remaining intermediate states are no longer easily distinguishable due 
to large scattering (see Table 2, columns 1 and 2). Another simple 
solution would be to create a linear regression model of the passage 
profile for each of the track conditions and to evaluate the y-intercept 
or the slope of the line accordingly. Unfortunately, the slope does not 

carry information about the track condition, and the infor-
mation contained in the y-intercept does not distinguish 
between good and satisfactory. The relevant data is given 
in Table 2.

Since the use of the aforementioned simple methods is 
not effective in unequivocally determining the track condi-
tion, it was decided to resort to methods based on the simi-
larity of specific data to the reference values. The reference 
will be based on the passage profile for the track section 
in good condition. The idea of the method will be to com-
pare the obtained passage profile with the previously con-

structed model. In actual operating conditions, it will take only a few 
days to collect certain data from a particular controlled track section, 
because of the repeated passes on the same route by the same vehicle. 
This is a relatively short measurement time. 

Due to the fact that the data can be very scattered, it was decided 
to use gray-scale modeling tools that can be used not only when there 
is little data available, but also when the data is uncertain. This is 
where the gray GM models can be used to model a particular profile. 
It is also necessary to define the similarity measure of the individual 
driving profiles. This can also be performed using methods for mod-
eling gray systems (GRAs).

2. Track technical condition determination methodol-
ogy

The main part of the research activities will be based on the gray 
systems modeling methods, so it is worthwhile to present some of the 
foundations of this theory. Theory of gray systems was proposed by 
prof. J-L. Deng, and has many different research areas and uses [4]. 
One of them is the study of similarity between data sequences (GRAs) 
[10]. Studying the similarity of data in different collections is of great 
importance in this methodology as it allows for a comparison of a 
given drive profile with the reference for a good track condition. The 
specified measure of similarity in the conditions of maximum travel 
speed can then be easily parameterized giving a single number indi-
cating the degree of compliance with the model, and thus the technical 
condition of the track.

For this purpose, the travel profiles similarity measures should be 
defined. There are a number of measures in the GRA literature that de-
fine the relation between the data. An example is a generalized GRA 
model, which is used to analyze relationships between sequences and 
measures based on distance and similarity. A detailed overview of the 
methods can be found in [10]. Certain other measures have been pro-
posed in [13]. 

An important role in this approach is played by the gray GM sys-
tems modeling in relation to the data set. As a result of certain opera-
tions, it can be treated as a series which allows it to be modeled with 
a gray model, such as GM(1,1) [4; 8; 11; 14; 16; 17]. This provides an 
opportunity for a model representation of primary data that is charac-
terized by high uncertainty and dispersion. One feature of this model 
is the smoothing of local fluctuations (series) by the use of AGO (Ac-
cumulated Generating Operation), which allows for the replacement 
of the original data with model data, which are largely smoothed out.

Figure 2 shows a 
flowchart illustrating 
an algorithm for mod-
eling passage profiles, 
determining similarity 
measures, and deter-
mining the technical 
condition of a track.

Assuming that fur-
ther realizations of pas-
sages for a given track 

Table 1.	 Main data included in the analysis 

Technical condition Number of track sections Total number of dynamic response 
measurements of the vehicle

Good 8 1086

Satisfactory 2 278

Poor 3 103

Critical 2 240

Table 2.	 Simple statistical parameters describing the collected data

Track technical 
condition

RMS vibration accelera-
tion value

[m/s2]

Maximum RMS vibra-
tion acceleration value

[m/s2]

Regression line slope 
describing the travel 

profile

Regression line y-
intercept describing 

the travel profile

Good 0.224 0.386 0.0024 0.0918

Satisfactory 0.184 0.385 0.0034 0.0632

Poor 0.250 0.341 0.0029 0.1408

Critical 0.375 0.537 0.0030 0.2330



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 20, No. 1, 2018 149

Science and Technology

section are available. Let Xi(k), Xj(k), i=1,2, ..n, j = 1,2,…,m denote 
vectors whose elements are the measure of the value of travel comfort 
for the passage through travel profiles i and j. Original data obtained 
using GM(1,1) models must be removed in cases where exactly the 
same speed values correspond to different values of effective vibra-
tion acceleration. This is necessary due to the fact that the GM(1,1) 
models describe a series. Although the speed values are determined to 
the nearest 0,01 km/h, the situation for which different acceleration 
readings are obtained for the exact same speed is quite common and 
should be taken into account. 

In the next step of the algorithm, the original data is replaced by 
the results of linear interpolation. This is due to the fact that the basic 
GM(1,1) model requires a constant interval between the data, and that 
the compared vectors Xi and Xj must have the same number of ele-
ments. This is a condition for calculating the similarity measure of 
both profiles. For this purpose, it may also be necessary to cut out 
some data so that the compared sets cover the same maximum speed 
range in both comparable passage profiles – the tested one and the 
reference.

In order to model the resulting series, it is necessary to use the 
AGO, which according to [8] can be represented for the Xi vector as:
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The previously mentioned GM(1,1) model is derived from the 
general description of the gray system in the form of a differential 
equation (2). In general for the case where the equation of the p order 
with excitation of m order GM(p,m) as described in [2] the following 
equation will be obtained: 
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where: X1 is a vector of original observations x1(r), (1)
1X  is a system 

state variable vector derived from the original observation vector after 
the AGO operation according to (1) , Xi+1 is the input vector, al , bh  are 
constant coefficients.

Model GM(1,1) for a given data set X can be expressed as:
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The solution of equation (3) with unit step k can be represented [8] 
as:
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where (1)x̂  is the predicted value of the cumulative series element. 
Using finite differences and expressing equation (3) as a series 
of equations for discrete values, according to [8] the following 
approximation is obtained:
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Model parameters are calculated based on the equation (5) using the 
least squares method [16]:
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The parameters of the GM(1,1) model can be estimated using all 
available rolling window methods [15]. Estimating parameters based 
on all data can cause the model to excessively smooth the values and 

Fig. 2.	 Algorithm for the determination of the technical condition of the track 
on the basis of the similarity study of the profile of crossings: recog-
nized and referenced
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as a result not capture certain changes in their trend. Using a narrow 
window causes the model to adapt to the trend and reflect it. The mod-
el can be used when there is little data, so using narrow windows is 
feasible. A window with a length of 80 measurements was arbitrarily 
chosen as a compromise between good data averaging and the ability 
to adapt the model to the data at an interpolation step for the track pas-
sage profile made up of 360 measurement points. At each step of the 
model construction, the window was shifted one measurement and the 
smoothed modeled values were estimated. In cases where the number 
of data points available for the model parameters evaluation was less 
than the window length, the window was shortened respectively. The-
oretically, the window can only be shortened to four measurements 
that are necessary for the estimation of the GM(1,1) model param-
eters. The last four model values are derived from forecasts using the 
model and the last parameters estimated. 

The next step is to calculate the similarity of modeled passage 
profiles. With constant interpolation k, it is possible to define a matrix 
of mutual change own similarity [13]:
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where: ( )ij kσ  is a measure of similarity for passage profiles i and j 
for a given step k, corresponding to a given maximum speed. Here the 

most interesting are the relative measures: 21( )kσ , 31( )kσ , 41( )kσ
, that relate to the travel profiles associated with particular technical 
conditions of the track (satisfactory, poor and critical) and the refer-
ence (labeled as good track conditions). 
The proposed definition of similarity measure of profiles may be 
expressed as:
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(0)x̂  – series values vector after smoothing with the model GM(1,1), 
(0)
1̂x  – first series value, A – a component characterizing the similar-

ity of “shapes” of the compared passages, B – a component taking 
into account different profile values for the smallest travel speed, C 
– a component characterizing the differences in values, α, β, γ – in-
dividual components influence coefficients (the weight of individual 
characteristics taken into account).

The sum of all components in formula (8) does not exceed 1.0 and 
they represent partial similarities in terms of individual characteris-
tics. By adjusting the influence coefficients, different characteristics 
can be given a different level of significance. Part C is used in the 
GRA literature as a measure of similarity, for example [9], while B is 
an adaptation of this measure for the first value of the series. 

The use of the GM(1,1) adaptive model in the proposed method-
ology is important in that it allows to capture the similarity features 
associated with the „local” changes in the compared travel profiles 
values. In the case of linear regression modeling of these profiles, the 
information would be lost. It should be noted that the proposed meas-
ure of similarity is universal and can be used to compare different sets 
of data concerning aspects other than the discussed problem.  

Ultimately, the obtained similarity values can easily be parameter-
ized by calculating the average or maximum value and on this basis, 
operational decisions or decisions on additional checks on a particular 
track section can be made. 

3. Results

The described method was applied to the collected data present-
ed in Figure 1. Interpolated and smoothed passage profiles with the 
GM(1.1) model with a measuring window of 80 points are shown in 
Figure 3. Different change rates of the vibration effective acceleration 
value as a function of the vehicle driving speed can be seen. The result-
ing smoothed profiles represented the input for the similarity calcula-

tion procedure 21( )kσ , 31( )kσ , 41( )kσ , where index 1 refers to the 
track profile for the good track condition. The mean values of the simi-
larity calculation for the various weight values are shown in Table 2. 

Fig.3. Result of GM model (1,1) with sliding window
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The data in Table 3 indicates that in all cases the track techni-
cal condition becomes distinctive (as in Table 1). A smaller number 
means less similarity of a given profile to the profile corresponding to 
good track condition. The profiles that were obtained from passages 
in satisfactory track condition were most similar to the pattern defined 
for the track sections as good technical condition. A lower similarity 
can be seen between the data of passages through tracks in poor tech-
nical condition, and the smallest, for those in critical condition.  

 If greater significance is assigned to the distance of these profile 
values from the reference profile values, the distinction becomes par-
ticularly pronounced, hence this feature becomes the most important 
in the obtained profiles. According to the analyzes, this feature (and 
thus the commonly used GRA measure) is sufficient to clearly distin-
guish between the track conditions and, in this case, to better distinc-
tion of these states, it seems however, that a more flexible definition 
may have wider applications also to other data. 

Thanks to the methodology used it is possible to clearly distin-
guish between the technical conditions of the tracks when measuring 
their exploitation in real operating conditions, which is very important 
from the practical point of view. 

3. Conclusions

The problem of evaluating the technical condition of the track 
in real operating conditions is not trivial due to a number of factors 
influencing the measurement results, which are difficult to directly 
account for in the models. The idea of recording the vibration ac-

celeration by the on-board system 
mounted on the tram (provided 
from the vehicle in good techni-
cal condition) and the creation of 
passage profiles on a given tested 
track section enables the clas-
sification of the technical track 
condition. However, this can be 
difficult due to the large spread 
of measurement data values. This 

classification can be performed through modeling of such a profile 
and then calculating the similarity of the measured profile and the 
reference profile. The gray systems theory provides a good foundation 
for this type of modeling, as in principle, it allows the modeling of 
uncertain data, and thus also data sets with large scattering. Using the 
GRA methodology in this case gives unambiguous results and allows 
to distinguish between the technical conditions of the track by simple 
parameterization of the mutual similarities between the modeled pas-
sage profiles. The proposed methodology allows for a relatively quick 
track condition diagnosis. Due to the multiple passages of a given 
vehicle on a given track, gathering the necessary data and creating 
a profile is not a difficult task. This underlines the practicality of the 
proposed methodology.

The similarity measure proposed in the article is very flexible and 
can be applied to a variety of problems. It embraces various aspects of 
the similarity between series. In the case of the data used, the obtained 
results are very good, although in this case the simpler GRA method 
also fulfills the task.
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Table 3.	 Sample results of the mean similarity measure for the data in Figure 1 and different weights

Similarity α=1, β=1, γ=1 α=2, β=1, γ=1 α=1, β=2, γ=1 α=1, β=1, γ=2 α=0, β=0, γ=1

Satisfactory – good 
condition 0.538 0.539 0.489 0.586 0.731

Poor – good condition 0.483 0.507 0.471 0.526 0.654

Critical – good condition 0.448 0.478 0.413 0.453 0.469
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