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1. Introduction

With the rapid development of high-speed rail (HSR) around 
the world, the current world speed record for a commercial train has 
reached to 574.8 km/h. Increased train speed is convenient but also 
causes safety and reliability problems. Track circuits, railway annuncia-
tors and switches are generally the three main components that con-
tribute to the operational safety of HSR. Of these three components, 
switches (Fig. 1), which connect equipment that supports train transit 
from one track to another, are mainly responsible for the efficiency and 
safety of HSR. However, switch failures have recently caused several 
major railway accidents [28]. According to a statistical report by the 
Jinan Railway Bureau in 2015-2016, 191 switch faults accounted for 
approximately 60% of signal faults. Thus, early diagnosis of issues with 
switch systems is critical for the operational safety of HSR.

To achieve the safe operation of HSR, microcomputer monitor-
ing systems (MMSs) have been widely introduced to timely monitor 
switch states in China [27]. MMSs collect switch operation current 
and power curves that allow maintenance staff to identify the state of 
switches and make diagnoses based on their experience. However, a 
lack of experience can lead to missing or false alarms, both of which 
pose serious security risks. Furthermore, the number of switch op-
eration curves is relatively large, and many financial and human re-
sources are involved in such work.

Domestic and foreign experts have conducted several studies on 
fault diagnosis. Early attempts employed simple thresholding meth-
ods [16, 21] to detect faults, but frequent false and missing alarms 
limit the extensive application of these methods. A more recent study 
[6] summarized three primary approaches in the literature for switch 
diagnostics: feature, model and empirical methods.
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Zwrotnice stanowią jeden z najważniejszych elementów infrastruktury systemów sygnalizacji kolejowej i mają znaczący wpływ 
na  wydajność i bezpieczeństwo eksploatacji pociągów. Obecnie, identyfikacja awarii zwrotnic zależy głównie od doświadcze-
nia personelu kolejowego i opiera się na stosowaniu prostych metod progowania. Jednakże te elementarne metody są wysoce 
niedokładne i często skutkują fałszywymi alarmami lub brakiem alarmu. Niniejszy artykuł ma na celu opracowanie hybrydowej 
metody diagnostyki błędów (HFD) dla zwrotnic kolejowych. Metoda ta jest inteligentną metodą diagnostyczną, która wykorzystuje 
wykresy przebiegu prądowego zebrane przez mikrokomputerowe systemy monitorowania. Najpierw krzywe prądowe działania 
zwrotnicy dzieli się na trzy segmenty w oparciu o trzy procesy mechaniczne, które zachodzą podczas jej działania. Następnie, 
spośród krzywych opisujących działanie bezusterkowe, wybiera się przebieg standardowy, a w dalszej kolejności ustala się, z wy-
korzystaniem mikrokomputerowego systemu monitorowania, najczęściej występujące, typowe błędy działania zwrotnicy. Wreszcie, 
do identyfikacji krzywych błędów stosuje się schemat kwartylowy oraz metodę derivative dynamic time warping wykorzystującą 
pochodne do klasyfikacji szeregów czasowych. Eksperyment oparty na krzywych prądowych zebranych przez Guangzhou Railway 
Bureau w Chinach pokazuje, że metoda HFD jest wyjątkowo dokładna i skutkuje niską liczbą fałszywych i brakujących alarmów. 
HFD daje lepsze wyniki niż szeroko stosowane do diagnozowania błędów metody maszyny wektorów nośnych (SVM) i dynamic 
time warping (DTW).
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For feature-based methods, special features that can be rapidly 
identified are extracted. Data collection, feature extraction, and fea-
ture selection form three subsections of this model. Marquez et al. 
[17] used data from tests conducted on a commonly found point 
mechanism and discussed the benefits of adopting a Kalman filter for 
preprocessing data collected during tests. Eker et al. [6] proposed a 
support vector machine (SVM) operated through principle compo-
nent analysis (PCA) for dimensionality reduction to diagnose faults 
in switches. Six different features were selected, and four remained 
following a T-test. Asada et al. [2] developed a new approach to fault 
detection and diagnosis that involved utilizing parameters collected 
from low-cost and accessible sensors; they focused on fault detection 
and diagnosis for ‘overdriving’ and ‘underdriving.’ Lee et al. [13] in-
troduced a data mining solution that employs audio data to detect and 
diagnose switch faults. Zhou et al. [27] proposed an improved SVM 
that accommodates fault detection, and the authors optimized the geo-
metric parameter feature extraction method developed by He [10].

In model-based methods, a model is defined to characterize a sys-
tem. Deviation from the model is defined as a failure and is identified 
as the difference between the model outcome and actual data. Eker 
et al. [7] presented a simple state-based prognostic (SSBP) method 
for fault detection and forecasting in electromechanical systems. Ar-
dakani et al. [1] established a strategy and technical architecture for 
the prognostic and health management (PHM) of electromechanical 
point machines. Zhang et al. [23, 24] proposed a switch fault detection 
algorithm based on a probabilistic neural network and back propaga-
tion neural network. Letot et al. [14] proposed a model for degra-
dation trend assessment and a methodology that updates degradation 
paths and reliability data to accurately estimate the remaining useful 
life. Wang et al. [22] proposed a failure prediction model based on a 
Bayesian network to evaluate the effects of weather patterns on rail-
way switches.

In empirically based methods, a fault-free sample is used as a ref-
erence signal, and failures are identified based on the resemblance of a 
given signal to a reference signal. Atamuradov et al. [3] introduced an 
expert system based on an economic analysis method that identifies 
the best maintenance policy for a failure mode and/or system com-
ponent. Zhao and Lu [26] presented a switch fault diagnosis method 
based on gray correlation analysis. The authors related the basis of the 
variations in the power curve to the typical faults of a switch machine. 
Kim et al. [12] proposed a diagnosis method that involves applying 
DTW to manage variations in the duration of railway point machine 
use; this model manages only phase-shifted shape faults, and the pa-
rameter δ of DTW chosen by maintenance staff serves as a threshold.

However, the abovementioned methods do not adequately ad-
dress the problem at hand. For example, the Kalman filter method 

can achieve success only for a portion 
of a dataset (reverse to normal). SVM-
based methods are sensitive to feature 
selection, and few authors can explain 
how to select such features. Artificial 
neural networks are not suitable for this 
task, as lacking a sufficient number of 
fault samples can result in underfitting. 
In addition, an expert system functions 
according to large amounts of priori 
knowledge, thereby requiring a consid-
erable amount of manpower from expe-
rienced railway staff. Although DTW 
performs effectively for shape faults, 
it cannot detect faults over shorter or 
longer durations. To overcome these 
limitations, this paper trains HFD us-
ing a small sample dataset, i.e., with 
a small amount of priori knowledge. 
In addition, HFD is used to detect and 

diagnose eleven typical faults summarized by the maintenance staff 
of the Guangzhou HSR. Moreover, HFD identifies fault curves auto-
matically from a computer and can reduce the quantities of manpower 
and resources required.

The remainder of this paper is organized as follows. Section 2 
introduces switch operation current curves and explains why these 
curves must be divided into three segments before fault diagnosis. 
The mathematical principles and calculation processes of HFD are 
explained in Section 3. Section 4 presents a numerical experiment us-
ing real switch operation current curves for fault diagnosis, followed 
by a discussion and concluding remarks in Section 5.

2. Analysis of switch operation current curves

2.1.	 Basic analysis of current curves

Although MMSs can collect current and power curves, only cur-
rent curves have been widely used for fault diagnosis because cur-
rent values provide an enormous amount of information regarding 
switches, such as their electrical and mechanical characteristics [25]. 
Therefore, experienced maintenance staff can identify switch faults 
by observing various characteristics of current curves. Current curves 
can be divided into the following three segments based on three me-
chanical processes: the start stage, action stage and release stage. For 
example, Fig. 2 shows the fault-free curves of a railway switch. The 
start stage ( )10 T−  exhibits a peak current when the machine begins 
to operate; the action stage ( )1 2T T−  is relatively smooth, and it cor-
responds to the working process of the switch; and the release stage 
( )2 3T T− , which is typically called the “small step”, indicates that 
the switch has finished switching and has connected the relevant cir-
cuit.

2.2.	 Fault types and segmented current curves

Through long-term observation and analysis, the maintenance 
staff of the Guangzhou HSR summarized the fault current curves for 
the track. Eleven types of faults occurred on the track: abnormal fluc-
tuation, poor contact in the action circuit, abnormal impedance in the 
action circuit, start failure, conversion failure, release failure, open 
start-up circuit, electric relay 2DQJ switch failure, blocking in the 
gap, machine idling, and overlong release time of the starting relay. 
These faults, referred to as M1-M11, are described in Table 1.

In Table 1, the faults include shape and duration faults. The data 
associated with these fault modes are different from fault-free data 
in shape or duration. The fault stage indicates the stage in which a 

Fig. 1. Railway track switch
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fault occurs. Therefore, the maintenance staff can make rapid fault-
solving decisions when the anomalous stage is known.

Currently, the segmenting methods mainly depend on two fixed 
points to divide current curves into three stages. However, the two 
fixed points may not apply to all switches. Fig. 3 shows the cumula-
tive switch current curves of Station #1 (Fig. 3a) and Station #2 (Fig. 
3b) for January (taking single-phase current data as an example). 
In Fig. 3, the duration of the current data is approximately 5.5 s for 
Station #1, and it is 9 s for Station #2. The durations are typically 
different at all stations, which can be referred to as a “different dura-
tions” problem. Therefore, only two adaptive points can divide all 
current curves into three stages with high accuracy rather than using 
two fixed points.

3. Model and algorithm for railway switch hybrid fault 
diagnosis

The proposed HFD method involves the following three steps: 
fault-free dataset selection, standard curve selection and fault detec-
tion and diagnosis. The first step involves dividing samples (current 

curves) into three segments and constructing a fault-free dataset; 
the second step involves selecting the best sample, referred to as the 
“standard curve,” from the fault-free dataset; and the third step in-
volves comparing test samples with the standard curve and other fault 
types for fault detection and diagnosis. The details of HFD are pre-
sented below.

3.1.	 Fault-free dataset selection

3.1.1.	 Curve segmentation

In this section, an adaptive mean-shift (AMS) algorithm is used 
for segmentation [5, 8]. This algorithm iterates by pointing in the di-
rection of the maximum increase in density and involves the follow-
ing six steps.

Step 1: Collect a current curve from MMSs, and start with an •	

input [ ]1 2 nX x ,x x= … .

Step 2: Choose an arbitrary point as the initial center •	 0y  from 
X , a bandwidth h  and a kernel function ( )K x . In AMS, the 
bandwidth equals σX (the standard deviation of X ), and the 

Fig. 2. Switch operation curves

b)a)

Table 1.	 Fault types and corresponding attributes

Fault
Types

Corresponding Curve 
Characteristics

Fault
Modes

Abnormal
 Stages Symbols

Abnormal fluctuation Abnormal fluctuations in the action current Shape Fault 1 2T T− M1

Poor contact in the action circuit Abrupt change in the action current Shape Fault 1 2T T− M2

Abnormal impedance in the action circuit Conversion current that exceeds the limit Shape Fault 1 2T T− M3

Start failure Small step in the action stage Shape Fault 1 2T T− M4

Conversion failure Rising current in the action stage Shape Fault 1 2T T− M5

Release failure Two peaks exist in the action stage Shape Fault 1 2T T− M6

Open start-up circuit Zero value curve Shape Fault 1 2T T− M7

Electric relay 2DQJ switch failure A “small steps” curve Shape Fault 2 3T T− M8

Blocking in the gap Missing “small steps” Shape Fault 2 3T T− M9

Machine idling Overly long conversion time Duration Fault 1 2T T− M10

Overlong release time of the starting relay Overly long “small steps” Duration Fault 2 3T T− M11
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spherical normal kernel [8] function ( ) K x  is coordinated with 

the bandwidth. The multivariate kernel density estimate ( )f x  

obtained from ( )K x  and σX  is:

	 f x
n

K x x
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For radially symmetric kernels, the profile of the kernel ( )k x  is 
determined to satisfy:

	 K x c k xk( ) = ( )2 ,	 (2)

where kc  is a normalization constant that ensures that ( )K x  satis-
fies:
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where ( )g s  is equal to ( )k s− ′  and yt  is the center of the cur-
rent iteration ( t  starts at index 0). The first term is proportional 
to the density estimate at x  computed from kernel 
G x c g xk( ) = ( )2 , and the second term is the mean-shift.
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Step 4: Iterate the mean-shift procedure until convergence is •	
achieved, including the successive computation of the mean-
shift vector m x

X
t

σ ( ) and the translation of the center 

y y m xt t
t

X+ = + ( )1 σ . This iteration is guaranteed to converge 

to a point where the gradient of the density function is zero [4].
Step 5: Divide the points in •	 X  that satisfy Equation (6) into one 
cluster and remove them from X .

	 x y i ni t X− ≤ ≤ <σ 1 	 (6)

Step 6: Return to Step 2 until there are no points in •	 X .

AMS can divide input X  into several clusters. The cluster with 
the largest number of elements is defined as the action cluster. Fur-
thermore, X  can be grouped into three segments based on the two 
elements with the minimum subscript i  and maximum subscript j  of 
the action cluster. The segmentation result is shown in Fig. 4.

Due to the electromechanical properties of railway switches [20], 
the action cluster always corresponds to the action stage; therefore, 
the three parts of X  correspond to the three stages of switch opera-
tion.

3.1.2.	 Fault-free dataset extraction

In this section, the K-means method is used to obtain a fault-
free dataset. In the “different durations” problem, several features 

Fig. 3. Cumulative Current Curves

b)a)

Fig. 4. Segmented Current Curve 
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are extracted based on previous research [27, 6, 15] to unite dimen-
sions, as shown in Table 2. In the start stage, no fault type exists, and 
relatively few features have been chosen. In the action and release 
stages, duration and shape faults both exist; thus, the time span has 
been selected for duration faults, and other metrics are associated 
with shape faults.

The K-means method has been widely used in clustering for sim-
plicity, and the algorithmic details have been summarized in previous 
research [9]. The inputs of this method consist of two parameters: the 
feature matrix M  and number of clusters K.

	 ( )_ ,KIdx K means M K= 	 (7)

where KIdx  is an array and the superscript of Idx  represents the num-
ber of clusters in the array. The feature matrix M  is defined by the 
twenty features shown in Table 2 (e.g., m  sequences ( )1 2, , , mn n n…  
can generate a feature matrix with m  rows and twenty columns). The 
number of clusters K is determined by assuming that more than half 
of the samples are fault-free for regular switches. The optimal *K  can 
be determined from the following optimization problem:

	 max K
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where:
		  1=  indicator function

		  ( )mode x =  value that appears most often in array x
		  m =  number of samples

The above integer programming problem can be solved by the 
enumeration method. As a result, the fault-free dataset *N  with *K
satisfies:

{ }
* ** * * *

1 2
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, , , | *1
m

K K
j m j j j

j
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.  (9)

3.2.	 Standard curve selection

3.2.1.	 Derivative dynamic time warping

Derivative dynamic time warping (DDTW) is a modified DTW 
method [11]. The approach involves obtaining similarities between 
two arbitrary trajectories, and it achieves better alignment by “warp-
ing” the time axis of one sequence or both sequences. The algorithm 
details can be summarized as follows.

Assume two arbitrary switch current sequences 1X  and 2X  of 
lengths 1n  and 2n , respectively, where:

	 X x x x xi n
1

1
1

2
1 1 1

1
= … …{ }, , , 	 (10)

	 X x x x xj n
2

1
2

2
2 2 2

2
= … …{ }, , , .	 (11)

To align the two sequences, an n-by- m  matrix is considered, 
where the i jth th,( )  element represents the distance d x xi j

1 2,( )  be-

tween points 1
ix  and 2

jx . With DDTW, the distance measure d x xi j
1 2,( )  

is the square of the difference of the estimated derivatives [18] of 1
ix  

and 2
jx . Each matrix element ( )i, j  corresponds to the alignment be-

tween points 1
ix  and 2

jx . Therefore, a warping path W  is used to 
define the mapping between 1X  and 2X . The thl  element of W  is 
defined as w i jl l= ( ), ; thus, we obtain the following relation:

	 { } ( )1 2 1 2 1 2, , , , , ,   , 1l LW w w w w max n n L n n= … … ≤ < + − .    (12)

Previous research [18] on DTW has demonstrated that W  can be 
efficiently found by dynamic programming. To formulate a dynamic 
programming problem, a distance measure must be used between two 

elements. In this paper, the 1-norm ( ⋅ ) is chosen as the distance 
function δ:

	 ( ) 1 2
1, ,i ji j x xδ = 	 (13)

After a distance measure is defined, the DTW problem can be for-
mally defined as a minimization over potential warping paths based 
on the cumulative distance of each path, where δ is a distance mea-
sure between two elements. As a result, the similarity between two 
sequences is defined by Equation (14).

Table 2.	 Features of Different Stages

Stages No. Features

Start stage

1 Time span

2 Maximum value

3 Mean current value

4 Median current value

Action stage

5 Time span

6 Max current value

7 Minimum current value

8 Mean

9 Median

10 Standard deviation

11 Peak factor

12 Fluctuation factor

Slow release stage

13 Time span

14 Max current value

15 Minimum current value

16 Mean

17 Median

18 Standard deviation

19 Peak factor

20 Fluctuation factor
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
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3.2.2.	 Standard curve selection

In this section, the “best” option from *N  is selected as the stan-
dard curve. For the fault-free dataset *N  with l  cardinality, an l
-rank square matrix D  can be constructed for which the i jth th,( )  

element represents the similarity between the thi  sequence and thj  
sequence in *N  (the “similarity” is typically defined as 
D DDTWij = ( )n ni j

* *, ).

In this paper, the ths  sequence is defined as the standard curve if 
its index satisfies:

	 s arg min max Di j ij= ( )( ) .	 (15)

3.3.	 Fault detection and diagnosis

3.3.1.	 Duration fault detection and diagnosis

In this section, an arbitrary sequence can be detected using a quar-
tile scheme to determine whether a duration fault has occurred. The 
three steps of the quartile scheme are as follows:

Step 1: Assume that a dataset with •	 m  samples (current curves) 
has been segmented into three stages (set the start stage staF  as 
an example):

	 F F F Fsta sta sta
m
sta= …{ }1 2, , 	 (16)

where sta
iF  is the start stage of the thi  sample. In addition, an array 

staC  is set for when the thj  element sta
jc  equals the cardinality of 

sta
jF .

Step 2: Calculate the interquartile range of •	 staC  as:

	 3 1
sta sta staIQR Q Q= − 	 (17)

where sta
1Q  and sta

3Q  are the first and third quartiles of the start stage, 
respectively.

Step 3: Define a decision function •	 ( )P i .

P i c IQR Q c IQR Q i mi
sta sta sta

i
sta sta sta( ) = − ∨ +( ) ≤ ≤1 1 5 1 5 11 3. .      (18)

where:
∨ = logical OR

As a result, the thi  sample can be identified as a duration fault 
when ( )P i  equals one.

3.3.2.	 Shape fault detection and diagnosis

In this section, three steps are used to diagnose an arbitrary se-
quence F .

Step 1: Divide •	 F  into three segments with the curve segmenta-
tion method:

	 F F F Fsta act rel= { }, , 	 (19)

Step 2: Define a diagnosis dataset •	 M  that includes the stand-
ard current curves of three stages and their corresponding shape 
faults, as follows:
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   

	 (20)

where ( )i jM  denotes thj  stage data of the thi  fault ( jS  is the stan-
dard curve of the thj  stage). In the first stage (start stage), there is 
no fault type, which means that only 1S  exists in the first column 
of M . 1 7M M−  occur in the second stage (action stage); thus, 

( ) ( )1 2 7 2M M−  and 2S  are grouped together in the second column 
of M . Furthermore, 8M  and 9M  occur in the third stage (release 
stage); therefore, the third column of M  consists of ( ) ( )8 3 9 3M ,  M  
and 3S .

Step 3: DDTW is employed to calculate the similarities between •	
one stage in F  and the corresponding stage in M . Each stage 
of F  can be evaluated with Equation (21) and diagnosed with 
Table 3.

Table 3.	 Diagnostic Results for Shape Faults

            Equation (20) Outputs

Diagnostic Results

staLabel actLabel relLabel

Fault-free 1 1 1

M1 1 2 1

M2 1 3 1

M3 1 4 1

M4 1 5 1

M5 1 6 1

M6 1 7 1

M7 1 8 1

M8 1 1 2

M9 1 1 3
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,2

,3
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 ,

sta
i sta i

act
i act i

rel
i rel i

Label arg min DDTW F M

Label arg min DDTW F M

Label arg min DDTW F M

 =

 =

 =

	 (21)

where sta actLabel ,  Label  and relLabel   respectively denote the clas-
sification results of the three stages.

4. Experiment and results

In this study, 1,964 fault-free curves and 115 fault curves were 
collected from the Guangzhou-Shaoguan Railway in China. The data-
set was randomly split into two subsets (training and testing sets) that 
account for 70% and 30% of the entire dataset. For HFD, all training 
data are used to generate the standard curve. Then, 70% fault curves 
of the training set and the standard curve are combined to form the di-
agnosis dataset. The diagnostic results of 10 current curves are shown 
in Table 4.

In Table 4, 10M  and 11M  are determined by the quartile scheme, 
and the other faults are determined by DDTW. Test samples can be 
classified only as 10M  and 11M  when the corresponding decision 
function equals one. Without considering duration faults ( 10M  and 

11M ), the minimum of each row is found, which indicates that the 
thi  test sample is highly similar to the reference template; therefore, 

the samples can be classified in the same class.
Additionally, the DTW method [8] with the quartile scheme and 

the SVM method based on twenty features (Table 2) are compared 
with HFD. For the SVM, a Gaussian kernel is used as the kernel func-
tion, and the penalty factor and kernel parameter are determined by 
a 10-fold cross-validation method [19]. A quantitative comparison of 
the three methods is provided in Table 5. Two indicators, the false 
alarm rate (FAR) and missing alarm rate (MAR), are introduced in the 
table. FAR denotes the probability of classifying the fault-free data as 
faulty, and MAR denotes the probability of classifying fault data as 
fault free.

The following conclusions can be drawn from Table 5 regarding 
the experimental results.

The HFD method is the best of the three methods due to its high •	
accuracy, low FAR and low MAR.
Compared to HFD, the DTW method exhibits classification re-•	
sults and cannot be used for fault diagnosis because of its high 
MAR. HFD performs better than DTW for two reasons. First, 
drawbacks such as “singularities” [26] prevent DTW from pro-
ducing the best warping results. Second, DTW is focused on 
current values, but HFD focuses on both current values and data 
fluctuations.
Compared to HFD, the SVM method offers a generally accept-•	
able level of classification quality, but it still makes incorrect 
classifications and generates a relatively high MAR, which pre-
vents the application of the SVM method in practical applica-
tions. As shown in Table 5 the HFD method performs better than 
the SVM method because HFD makes full use of all available 
information, whereas SVM disregards certain information when 
applying the feature extraction method.

5. Conclusions

In this paper, an intelligent fault diagnosis method is proposed 
based on the segmentation of railway switches. Through previous 
analysis, this paper illustrates how to divide current curves based on 
three mechanical processes for all railway switches and how to deter-
mine the similarities between them.

The experimental results show that the HFD method can detect 
faults with 99.43% accuracy and can diagnose faults with 98.67% ac-
curacy. This approach is superior to the other two methods introduced 
above. Furthermore, the lower FAR and MAR of the HFD method 
demonstrate that HFD is the most robust tool for fault detection and 
diagnosis.

Future work will strive to integrate power curves with the pro-
posed HFD method to achieve more accurate results. Furthermore, 
undefined switch faults will be examined for broader applicability and 
operability of the method. The final future objective is to more intel-
ligently detect railway switch faults and eventually improve the safety 
and efficiency levels for passenger and cargo transport.
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Table 4.	 Distance between the Test Samples and Reference Faults

i S 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M 11M Predicted
Label

Actual
Label

1 0.31 0.42 49.92 2.26 223.38 8.74 172.04 181.12 1.79 17.51 0 0 S S

2 3.21 1.04 2.57 11.30 49.43 37.62 33.28 20.94 31.24 16.25 0 0 1M 1M

3 4.48 1.49 2.34 3.91 29.21 0.59 43.15 31.23 1.67 17.21 0 0 5M 5M

4 0.41 0.60 1.04 2.26 31.24 8.76 49.43 37.61 1.84 17.22 0 0 S S

5 2.31 1.41 3.10 2.28 32.10 6.91 21.13 0.83 1.91 16.83 0 0 7M 7M

6 0.36 0.49 0.53 2.27 29.89 8.73 51.62 39.69 1.75 17.24 0 0 S S

7 0.36 0.66 0.48 2.25 28.30 8.79 51.21 40.04 1.72 17.23 0 0 S S

8 5.40 0.93 1.02 2.21 19.93 6.97 50.83 30.21 1.73 17.28 1 0 10M 10M

9 4.31 2.10 0.43 2.31 20.08 9.31 53.21 32.25 1.79 17.30 0 0 2M 2M

10 0.40 0.64 0.37 2.28 24.78 8.76 52.67 40.76 1.77 17.23 0 0 S S
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(a) DTW

(b) SVM

(c) HFD

Table 5.	 Fault Detection and Diagnosis Results
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