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1. Introduction

The application of high technology to the engineering system has 
significantly improved the performance of modern systems and at the 
same time greatly increased the complexity of the systems structure. 
Manufacture cost of these systems is too high. Once these systems fail, 
it will cause a great loss. Therefore, it will be extremely important to 
establish a fault diagnosis model based on their unique fault character-
istics and develop a dynamic diagnosis strategy which can locate the 
fault component quickly and reduce the maintenance cost when these 
systems break down. Usually, fault diagnosis requires a large amount 
of historical fault data. However, in engineering practice, application 
of redundant technologies have improved the reliability of these sys-
tems, which raises some challenges in fault diagnosis. For one thing, 

the behaviours of components in these systems, such as failure prior-
ity, functional dependent failures, and sequentially dependent failures 
should be taken into account. For another, high reliability makes it ex-
tremely difficult to obtain complete fault data because these systems 
may still be in the early life cycle, which results in the epistemic un-
certainty. Aiming at these challenges, many researchers have put for-
ward a large number of efficient fault diagnosis methods over the last 
few decades. Johnson presented a sequential diagnostic method based 
on heuristic information search [10], which constructed a sequential 
test procedure to locate the failure using information theory. However, 
the diagnostic result was not satisfied. A novel diagnosis strategy for 
multi-value attribute system was proposed based on rollout algorithm, 
and it obtained an optimal diagnostic sequence [9]. Based on these 
researches, Tian et al. proposed a fault diagnostic strategy of mul-
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tivalued attribute system based on growing algorithm, which chose 
failure states and found an appropriate test set for these states [21]. 
This growing algorithm could avoid the backtracking approach of tra-
ditional algorithms and obtained good diagnostic results with a high 
efficiency. A real-time fault diagnosis approach was presented based 
on reliability analysis and Bayesian networks (BN) [6]. BN was used 
to calculate the system reliability, and the real-time system reliability 
was monitored and compared with the previous values. If the devia-
tions exceeded the preset threshold, a heuristic algorithm was used to 
locate the failed component which had the greatest changes between 
the prior probability and posterior probability. In the literature [3], a 
real-time fault diagnosis method for complex sys-
tems using object-oriented BN was proposed. It 
included an off-line BN construction phase and an 
on-line fault diagnosis phase. Nevertheless, these 
methods constructed the BN model based on the 
parameter learning algorithm, which needed a 
large amount of fault data and could not handle 
epistemic uncertainty. Chiremsel et al. proposed 
a probabilistic fault diagnosis method of safety 
instrumentation system using the fault tree and 
BN [4]. A static fault tree was used to construct 
the fault model of safety instrument system and 
was mapped into BN to calculate the importance 
measure which was used to design the diagnosis 
algorithm. Nevertheless, this method is unable 
to model the dynamic fault behaviours and deal 
with epistemic uncertainty.

For dynamic fault characteristics, Dugan introduced a DFT to 
model the dynamic fault behaviours and used diagnostic importance 
factor (DIF) to determine the diagnostic sequence [1-2]. However, 
this method calculated DIF based on Markov chains which had a state 
space explosion problem and determined the diagnosis sequence only 
by components’ DIF which is a single attribute decision making prob-
lem, thereby influencing the diagnosis efficiency. Besides, it assumed 
that the failure rates of the components are expressed in defined val-
ues describing their reliability characteristics and failed to cope with 
the epistemic uncertainty. Although some researchers put forward 
interval analysis [24], the possibility theory [19, 22], imprecise prob-
ability [12], fuzzy set theory [5, 11] and evidence theory [25], these 
theories were only used for the reliability analysis and risk assessment 
and were not further applied to the fault diagnosis. Therefore, Duan 
et al. presented a novel fault diagnosis method based on fuzzy set and 
DFT analysis [8]. The fuzzy information obtained by fuzzy set theory 
and domain expert was transformed into quantitative information to 
obtain the fuzzy failure rates of components. Discrete time Bayesian 
Networks was used to calculate some reliability results, and an ef-
ficient diagnosis algorithm was developed based on qualitative struc-
tural information and quantitative parameters. However, it is usually 
difficult to determine the corresponding membership function of each 
language value, and this diagnosis algorithm was also a single attribute 
decision making problem. To overcome these limitations, multiple at-
tributes decision-making was used in [7, 20]. However, these methods 
usually used the attributes with defined values and could not make 
decisions under uncertainty. Besides, the proposed methods dealt with 
the decision problems regarding one particular type of values. It was 
more reasonable to express the different attributes in their appropriate 
data types. Only a few work took into consideration the heterogeneous 
information [13, 23]. However, there was litter work connected with 
the diagnostic strategy for complex systems. Furthermore, diagnostic 
algorithms failed to update the diagnostic decision table according to 
the previous diagnosis result.

Motivated by the problems mentioned above, this paper proposes 
a dynamic diagnostic strategy based on reliability analysis and dis-
tance-based VIKOR, a multi-criteria decision analysis method, with 

heterogeneous information considering epistemic uncertainty shown 
in Fig. 1. A DFT is used to establish the system fault model to de-
scribe the dynamic fault characteristics. Interval numbers are used to 
describe the failure rate of components to deal with epistemic uncer-
tainty. Furthermore, a DFT is converted into a DEN to obtain the reli-
ability parameters such as DIF and risk achievement worth (RAW). In 
addition, DIF, RAW, test cost and previous diagnosis result are taken 
into account comprehensively to obtain the optimal diagnostic rank-
ing order using a distance-based VIKOR with heterogeneous informa-
tion. Finally, a train-ground wireless communication system is given 
to demonstrate the efficiency of this proposed method.

The remainder of this article is organized as follows. Section 2 
presents the DFT model construction and quantitative analysis of DFT 
based on DEN. A novel dynamic diagnostic strategy based on reli-
ability analysis and distance-based VIKOR with heterogeneous infor-
mation considering the epistemic uncertainty is given in Section 3. 
Section 4 is devoted to a simple illustration example of the proposed 
approach. Some conclusions are given in the final section.

2. DFT analysis

2.1.	 Model Construction of DFT

Fault tree is a deductive method to decide the potential causes that 
may cause the occurrence of a predefined undesired event, generally 
denoted as the top event. DFT extends a static fault tree to describe the 
dynamic failure behaviours such as priorities of failure events, spares, 
and sequence-dependent events. Dynamic gates in DFT include the 
priority AND gate, the functional dependency gate (FDEP), the se-
quence enforcing gate, the cold, hot, and warm spare gates. The model 
construction of the fault tree usually requires an in depth knowledge 
of the system and its components. It includes the construction of a 
network topology and the failure rates estimation of components. The 
former can resort to fault mode and effect analysis and the latter needs 
to obtain lots of fault data, which is almost impossible to estimate 
precisely the failure rates of the basic events in the practical engineer-
ing application. In this paper, interval numbers are used to describe 
the failure rates of the basic events based on the expert elicitation and 
some data sheet at the design stage.

2.2.	 Quantitative analysis of DFT based on DEN

Traditional DFT assumes that the failure rates of the components 
are expressed in defined values is inadequate to deal with epistemic 
uncertainty. To this end, the failure rates of the basic events in DFT 
are considered as interval numbers in this paper and a new DFT solu-
tion is proposed to calculate the reliability results by mapping a DFT 
into a DEN.

Fig. 1.	 A dynamic diagnostic framework based on reliability analysis and distance-based VIKOR with 
heterogeneous information.
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In evidence theory, { , }i iW FΘ =  is the knowledge framework of 
the component i and the focal elements are defined by:

	 2 {{ },{ },{ },{ , }}i i i iW F W FΘ = ∅ 	 (1)

where {Wi} and {Fi} denote the working state and failure state respec-
tively. The state of {Wi, Fi} corresponds to the epistemic uncertainty.

Belief measure (Bel) defines the lower bound of the probabilities 
that the focal element exists, and plausibility measure (Pl) defines 
the upper bound of the probabilities that the focal element exists. The 
basic belief assignment on the system state expresses an epistemic 
uncertainty, where Bel and Pl measures are not equal and bound the 
system reliability. Therefore, the basic probability assignment (BPA) 
of component i can be computed as:

	

({ }) ({ })
({ }) 1 ({ })
({ , }) ({ }) ({ })

i i

i i

i i i i

m W Bel W
m F Pl W
m W F Pl W Bel F

=
 = −
 = −

	 (2)

If a component i follows the exponential distribution with the in-
terval failure rate [ , ]λ λ , the interval failure probability of the compo-
nent at a mission time T can be calculated as follows:

	 [ ( ), ( )] 1 ([ , ] )i iP x P x exp Tλ λ= − 	 (3)

where ( )iP x  and ( )iP x  denote respectively the lower failure prob-
ability of the component and the corresponding upper failure prob-
ability.

Presumably, the upper and lower bounds of the component’s fail-
ure probability is equivalent to the BPA of component i in the DEN:
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where ({ }) ( )i iBel F P x= and ({ }) ( )i iPl F P x= .

2.2.1.	 Mapping a static logic gate into an DEN

Static logic gates mainly include three gates, AND gate, OR 
gate and voting gate. This section takes an OR gate as an exam-
ple and provides the schemes to map an OR gate into a DEN. 
When any of the input components Xi (i=1,…, n) of an OR gate 
fails, the output of the gate fails too. Fig. 2 shows an OR gate and the 
equivalent DEN. Table 1 gives the conditional probabilities of node A 
(T+ΔT) in the DEN. Equation (5) gives the conditional probabilities 
of output node E (T+ΔT). A more detailed description of this work can 
be found in [16].
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2.2.2.	 Mapping a dynamic logic gate into a DEN

Some dynamic logic gates are introduced to model the functional 
and sequential in the DFT. These logic gates include priority AND 
gate, the sequence enforcing gate, FDEP and spare gates. An FDEP 
gate will be used to describe how the dynamic logic gates are mapped 
into DEN. An FDEP gate includes a trigger event and some depend-
ent basic events. The trigger event can be a basic event or an output of 
another gate in the DFT. The occurrence of a trigger event will force 
all basic events to occur, which means all basic events functionally 
depend upon the trigger event. Fig. 3 shows an FDEP gate and the 
equivalent DEN. Table 2 and Table 3 show the conditional probabili-
ties of the node A(T+ΔT) and E(T+ΔT) respectively.

Table 1.	 The conditional probabilities of node A (T+ΔT)

A(T)
A(T+ΔT)

{W} {F} {W,F}

{W} mA(W) mA(F) mA(W,F)

{F} 0 1 0

{W,F} 0 mA(F) 1− mA(F)

Fig. 2 An OR gate and the equivalent DEN

Table 2.	 The conditional probabilities of the node A (T+ΔT)

T(T+ΔT) A(T)
A(T+ΔT)

{W} {F} {W,F}
{W} {W} mA(W) mA(F) mA(W,F)
{W} {F} 0 1 0
{W} {W,F} 0 0 1
{F} {W} 0 1 0
{F} {F} 0 1 0
{F} {W,F} 0 1 0

{W,F} {W} 0 0 1
{W,F} {F} 0 1 0
{W,F} {W,F} 0 0 1

Fig. 3 An FDEP gate and the equivalent DEN.
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2.2.3.	 Calculating reliability results

(1)	 DIF
DIF is usually defined as the probability that a basic event has 

occurred given that the top event has also occurred [2]. The DIF of a 
component i is given by:

	 | |( | ) [ ({ }), ({ })]i i S i SDIF P i S Bel F Pl F= = 	 (6)

where i is a component in the system S; ( | )P i S is the probability that 
the basic event i has occurred given the top event has occurred.

(2)	 RAW
RAW, one of the most widely used importance measures, is de-

fined as the ratio of the system unreliability if a component has failed 
over the system unreliability [17]. Traditionally, the definition of 
RAW does not take the uncertainties into account. An extension of 
RAW is introduced which allows us to deal with epistemic uncer-
tainty. The interval RAW of a component i can be defined as follows 
under uncertainties.
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=
  (7)

where 
i

RAW
XI is the RAW for the event iX , 1| 1({ })

iS XBel F = = and 

1| 1({ })
iS XPl F = = respectively denote the belief and plausibility meas-

ures that the system is in a failed state given that the component i has 
failed.

3. Dynamic diagnosis algorithm based on heterogene-
ous information

3.1.	 Multi-attribute decision-making problem description in 
the fault diagnosis

If a fault tree has m root nodes, each root node represents a diag-
nostic scheme. All diagnostic schemes can be expressed in root node 
set 1 2{ , , , }mX X X X=   and each root node has n attributes to evalu-
ate the performance. Evaluation attributes are expressed in attribute 
set 1 2{ , , , }nv v v v=  . Different attributes may have different weights 
and the weights vector is expressed in ω ω ω ω={ , , , }1 2  n ,

ω ωj
j

n
j

=
∑ = < <

1
1 1,  0 . As for the complexity of decision problem in 

fault diagnosis and uncertainty, the evaluations for each attribute may 
be described in different types of values. For example, for precise in-
formation, defined value is used; otherwise, due to the epistemic un-
certainty, some parameters can be evaluated by some experts. In this 
situation, the interval number, fuzzy number and linguistic term are 

more reasonable. In this paper, attribute values are expressed with 
defined value nv , interval value iv and triangle fuzzy number fv , 
where 

11 2{ , , }n
nv v v v=  , 

1 2 21 2{ , , }i
n n nv v v v+ +=  ,

2 21 2{ , , }f
n n nv v v v+ += 

 
and n i fv v v v=  ; 1 1{1,2, , }N n=  ,

2 1 1 2{ 1, 2, }N n n n= + +  , 3 2 2{ 1, 2, }N n n n= + +  . 

3.2. Distance measure for heterogeneous information [18]

3.2.1.	 Interval numbers

Definition 1 Let [ , ]A a a− += and [ , ]B b b− += be two interval 
numbers, the distance between A and B is defined as in 1-norm con-
cept:

	 ( , ) || || | | | |d A B A B a b a b= − = − + − 	 (8)

The larger the distance d(A,B), the greater the degree of separa-
tion will be. In particular, when d(A,B) is 0, it means that A and B are 
equal. 

3.2.2.	 Triangular fuzzy numbers

A triangular fuzzy number is usually given in the form A=(a,b,c), 
where b is the median value, a is the left distribution of the confidence 
interval and c is the right distribution of the confidence interval of 
the fuzzy number A. The membership function of A which associated 
with a real number in the interval [0, 1] can be defined as:

	
( ) / ( ),

( ) ( ) / ( ),
          0           ,

x a b a a x b
x c x c b b x c

others
µ

− − ≤ ≤
= − − ≤ ≤



	 (9)

Definition 2 Let 1 1 1( )A a ,b ,c=  and 2 2 2( )B a ,b ,c=  be two tri-
angular fuzzy numbers, the distance between them is defined as in 
1-norm concept:

	 1 2 1 2 1 2( ) || || | | | | | |d A,B A - B a - a b - b c - c= = + + 	 (10)

Similarly, the larger the distance d(A,B), the greater the degree of 
separation will be. In particular, if d(A,B) is 0, it means that A and B 
are equal.

3.3. VIKOR algorithm based on generalized distance aggrega-
tion function

3.3.1.	 Generalized distance aggregation function

In the decision making situations where the evaluation values are 
represented by more than two values types, it is necessary to deal with 
the heterogeneous information to make full use of this information as 
much as possible. The base for VIKOR approach is an aggregation 
function which measures the distance for multi-attributes to compro-
mise ranking. Due to the different types of values for each attribute, a 
generalized distance aggregation function, G-LP [15, 23], is used and 
is defined as follows:

	
1/

* *
,

1
- [ ( , ) / ( , )]

p
J

p
p i j j ij j j

j
G L d f f d f fω −

=

  = ⋅ 
  
∑ 	 (11)

Table 3.	 The conditional probabilities of the node E(T+ΔT)

T(T+ΔT)
E(T+ΔT)

{W} {F} {W,F}

{W} 1 0 0

{F} 0 1 0

{W,F} 0 0 1
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where 1 p≤ ≤ ∞ ; 1,2,i I=  . d(x, y) is generalized distance meas-
ure function; I is the number of candidate alternatives and J is the 
number of attributes; ωjis the weight of jth attribute; For an alterna-
tive Xi, its rating on jth attribute is represented as ijf ; the positive 
and negative ideal solution on jth attribute is represented as *

jf and 
jf −  respectively; 

1,iL
 
(represented as Ri) is represented as majority rule to satisfy a 

maximum group utility, while ,iL∞  
(represented as Si) is interpreted 

as a rule to satisfy minimum individual regret [23]. Si and Ri are used 
to compromise ranking in group decision and they are calculated by 
the following equations:

	 S f f f fi j
j

J
j ij j j= − −

=

−∑ω
1

( ) ( )* * 	 (12)

	 R max f f f fi
j

j j ij j j= − − −[ ( ) ( )]* *ω 	 (13)

The generalized distance aggregation function is used to eliminate 
the units of different attribute functions. Because d(x, y) is precise real 
number belonging to the interval [0,1], VIKOR algorithm with het-
erogeneous information is similar to the idea of traditional VIKOR.

3.3.2.	 Determine the best value *
jf  and the worst value jf −  of all 

attributes

Dynamic diagnostic strategy is essentially an optimization deci-
sion process. For fault diagnosis of systems with heterogeneous infor-
mation, the first task is to build a decision matrix [ ]ij m nF f ×= . And 
then the positive ideal solution *

jf and the negative ideal solution jf −
of all attributes are calculated as follows according to the different 
types of values.

If the value type of the attributes is a defined number, the positive 
ideal solution *

jf and the negative ideal solution jf − can be solved by 
the following equations:

	
,

1*

1
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ij th
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ij th
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f
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
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    (14)

	 1

1

in { },  if  the  attribute is a benefit attribute;

{ }, if  the  attribute is a cost attribute.

ij th
i m

j
ij th
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m f j
f

max f j
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≤ ≤


= 


    (15)

If the value type of the attributes is an interval number, the posi-
tive ideal solution *

jf and the negative ideal solution jf − can be calcu-
lated by the following equations:

11*

11

[ { }, { }],  if  the  attribute is a benefit attribute;

[ in{ }, in { }],   if  the  attribute is a cost attribute.

L U
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


(16)
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[ { }, { }],  if  the  attribute is a cost attribute.

L U
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i mi m
j L U

ij ij th
i mi m

m f m f j
f

max f max f j
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


= 



(17)

where [ , ]L U
ij ijf f  is an interval evaluation value of the ith alterna-

tive on the jth attribute.

If the value type of the attributes is a triangular fuzzy number, 
the positive ideal solution *

jf and the negative ideal solution jf − can 
be calculated by the following equations:

        

1 11*

1 11
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1 11

1 11

( in{ }, in { }, in { } ),  if  the  attribute is a benefit attribute;
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(19)

where ( , , )L M U
ij ij ijf f f  is a triangular fuzzy value of the ith alternative 

on the jth attribute given by domain experts; *|| - || 0j jf f − ≠ .

3.3.3.	 Normalize the decision matrix

Usually, evaluation values of different attributes have different di-
mensions, which are not directly comparable. So the decision matrix 

[ ]ij m nF f ×= for heterogeneous information with different dimensions 
should be normalized. A normalized decision matrix C [ ]ij m nP p ×=  is 
obtained based on the 1-norm concept using the following equation:
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3.3.4.	 Calculate the weights of attributes based on the Entropy 
concept 

There are several attributes in the multi-attribute decision making, 
and their weights may be unknown. Subjective evaluation method and 
objective evaluation method can be used to determine the weights of 
attributes. However, the former usually uses the subjective judgment 
of the decision maker to determine the weights of attributes and it has 
subjectivity and arbitrariness to a certain degree. Objective evaluation 
method uses some algorithms to calculate the weights of attributes ac-
cording to the attributes information and it is more scientific. Entropy 
weight method [14] is widely used to determine the weights in practi-
cal engineering. Shannon Entropy is a measure of information uncer-
tainty based on probability theory. It is very suitable for measuring 
the relative contrast intensities of attributes to represent the average 
intrinsic information transmitted to the decision makers. The smaller 
the entropy value of evaluation attribute vj is, the more the value of 
this attribute plays in the decision. That is to say, its weight is larger. 
The steps for determining the weights of attributes based on the en-
tropy weight method are as follows:

Step 1: Normalize the normalized decision matrix and calculate 
the weighted proportion of the ith alternative on the jth attribute using 
the following equation.
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Step 2: Calculate the entropy Hj value of the jth attribute as fol-
lows:

	
1

ln
n

j ij ij
i

H K p p
=

= − ∑ 	 (22)

where 1 / ln  ( 0,0 1)ijK n K p= > ≤ ≤  and assume ln 0ij ijp p =  if 

ijp  is 0.

Step 3: Calculate the value of αj defined as follows:

	 α j jH= −1 	 (23)

where αj is the divergence degree of the intrinsic information of 
the jth attribute. The greater the value of αj, the more important the at-
tribute is in the decision making process.

Step 4: Calculate the weights of attributes using the following 
equation:

	 ω
α

α
j

j

jj
m=
=∑ 1

	 (24)

where ω ωj
j

n
j

=
∑ = ≤ ≤

1
1 0 1, .

3.3.5.	 Calculate the values iS , iR  and iQ

A generalized distance aggregation function is used to obtain the 
optimal ranking in the decision making according to VIKOR algo-
rithm. The optimal ranking should satisfy the maximum group utility 
and satisfy the minimum individual regret. iS , iR  and iQ  are defined 
as follows.

	 S pi j
j

n
ij= ⋅

=
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where - -, ,i i i i
i i i i

S min S S max S R min R R max R+ += = = =  and v 

is introduced as the weight for the strategy of maximum group utility, 
whereas 1-v is the weight of the individual regret. If v>0.5, it means 
that a decision making is based on the conditions agreed by the vast 
majority of policy makers. If v<0.5, the decision making is based on 
the circumstances refused by the vast majority of policy makers. Usu-
ally, v can take any value from 0 to 1 and the value of v is set to 0.5 in 
the paper. Finally, we can obtain the optimal diagnosis ranking by the 
value Qi in ascending order.

3.3.6.	 Updating the decision matrix using the previous diagnosis 
result

The component with a smaller Qi value should be diagnosed first. 
This assures a reduced number of system checks while bringing the 
system back to life. Nevertheless, this approach fails to update the 
reliability parameters in order to optimize the diagnosis process using 
the previous diagnosis result. That is to say, DIF and RAW are not 
updated by the previous diagnosis result, thereby having a significant 
effect on the diagnosis efficiency. When the component diagnosed at 
the present time works we should feed this evidence information to a 
DEN and obtain the updating DIF and RAW. In addition, the decision 
matrix should be updated too and the corresponding value of Qi can be 
calculated to determine the next optimal ranking. And so on, the final 
optimal diagnostic ranking can be obtained.

4. A case study

Train-ground wireless communication system, a vital subsystem 
of urban rail transit, is responsible for data transmission between ve-
hicle equipment and ground equipment. To ensure safe operation, ap-
plication of high technologies has been used to improve its reliability 
greatly. Once train-ground wireless communication system breaks 
down, it may decrease the operation performance and even causes a 
great loss. Therefore, an efficient diagnosis strategy should be taken 
to bring it back to life as soon as possible when it fails. Fig.4 shows 
the DFT model of a train-ground wireless communication system. It 
is assumed that all components have the exponential distribution and 
failure rates of components expressed in interval values are shown in 
Table 4.

The DFT is mapped into a corresponding DEN for quantitative 
analysis using the method mentioned above. Assuming the task time 
T =1000 h, the probability of system failure can be obtained using the 
inference algorithm, and it is [0.08293, 0.10714]. In addition, the DIF 
and RAW of all components can be calculated shown in Table 5 and 

Table 4.	 Interval failure rates of components

Components Interval failure 
rates Components Interval failure 

rates

X1 [4.22e-6, 5.28e-6] X8,X9 [5.49e-6, 6.71e-6]

X2 [5.94e-6, 7.26e-6] X10,X11 [3.15e-5, 3.85e-5]

X3 [4.86e-5, 5.94e-5] X12,X13 [6.12e-5, 7.48e-5]

X4,X5 [3.78e-5, 4.62e-5] X14 [5.04e-5, 6.11e-5]

X6,X7 [6.48e-5, 7.92e-5] X15 [5.04e-5, 6.11e-5]

Table 5.	 DIF of all components

Components DIF of compo-
nents Components DIF of components

X1 [0.0508,0.0518] X8,X9 [0.0857,0.0939]

X2 [0.0709,0.0722] X10,X11 [0.0708,0.0756]

X3 [0.5681,0.5727] X12,X13 [0.2012,0.2156]

X4,X5 [0.0751,0.0822] X14 [0.1788,0.1914]

X6,X7 [0.1963,0.2148] X15 [0.1788,0.1914]
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Fig. 4. DFT model of train-ground wireless communication system

Table 6.	 RAW of all components

Components ( 1| 1)iP S X= =
i

RAW
XI

X1 1 [9.3337,12.0694]

X2 [0.99214,1] [9.2603,12.0694]

X3 [0.99214,1] [9.2603,12.0694]

X4 [0.16768, 0.205466] [1.5651,2.4799]

X5 [0.16768, 0.205466] [1.5651,2.4799]

X6 [0.16768, 0.205466] [1.5651,2.4799]

X7 [0.16768, 0.205466] [1.5651,2.4799]

X8 [0.16768, 0.205466] [1.5651,2.4799]

X9 [0.16768, 0.205466] [1.5651,2.4799]

X10 [0.18919, 0.230323] [1.7658,2.7799]

X11 [0.18919, 0.230323] [1.7658,2.7799]

X12 [0.18919, 0.230323] [1.7658,2.7799]

X13 [0.18919, 0.230323] [1.7658,2.7799]

X14 [0.18919, 0.230323] [1.7658,2.7799]

X15 [0.18919, 0.230323] [1.7658,2.7799]

Table 7.	 Linguistic assessment of Components’ test cost

Components test cost

X1 High

X2 Moderate

X3 Very High

X4,X5 Very Low

X6,X7 Low

X8,X9 Low

X10,X11 Very Low

X12,X13 Low

X14,X15 Low

Table 8.	 Evaluation standards of the test cost

Linguistic expression for test 
cost Fuzzy numbers

Very High (0.7, 0.9, 1)

High (0.5, 0.7, 0.9)

Moderate (0.3, 0.5, 0.7)

Low (0.1, 0.3, 0.5)

Very Low (0.1, 0.2, 0.3)
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Table 6 respectively. DIF enables us to discriminate between com-
ponents by their importance from a diagnostic point of view. RAW 
is defined as the ratio of the system unreliability if a component has 
failed over the system unreliability and it plays an important role in 
the diagnostic sequence. Furthermore, test cost of the components 
has a significant impact on diagnostic strategy. However, test cost of 
all components is usually very difficult to express as defined values 
because of uncertainties. So the linguistic assessments are used for 

generating criteria and alternative ratings, which are transformed into 
triangular fuzzy numbers to describe test cost of all components. Ta-
ble 7 and Table 8 show the linguistic assessment of the test cost and 
alternative ratings of all components.

DIF, RAW and test cost are used to build a decision matrix. The 
former two, expressed in interval numbers, belong to the benefit at-
tributes. The latter belongs to the cost attribute, which is expressed 
in a triangular fuzzy number. Table 9 and table 10 show the deci-

Table 9.	 A decision matrix with heterogeneous information

Components DIF RAW Test cost

X1 [0.0508,0.0518] [9.3337,12.0694] (0.5,0.7,0.9)

X2 [0.0709,0.0722] [9.2603,12.0694] (0.3,0.5,0.7)

X3 [0.5681,0.5727] [9.2603,12.0694] (0.7,0.9,1)

X4 [0.0751,0.0822] [1.5651,2.4799] (0.1,0.2,0.3)

X5 [0.0751,0.0822] [1.5651,2.4799] (0.1,0.2,0.3)

X6 [0.1963,0.2148] [1.5651,2.4799] (0.1,0.3,0.5)

X7 [0.1963,0.2148] [1.5651,2.4799] (0.1,0.3,0.5)

X8 [0.0857,0.0939] [1.5651,2.4799] (0.1,0.3,0.5)

X9 [0.0857,0.0939] [1.5651,2.4799] (0.1,0.3,0.5)

X10 [0.0708,0.0756] [1.7658,2.7799] (0.1,0.2,0.3)

X11 [0.0708,0.0756] [1.7658,2.7799] (0.1,0.2,0.3)

X12 [0.2012,0.2156] [1.7658,2.7799] (0.1,0.3,0.5)

X13 [0.2012,0.2156] [1.7658,2.7799] (0.1,0.3,0.5)

X14 [0.1788,0.1914] [1.7658,2.7799] (0.1,0.3,0.5)

X15 [0.1788,0.1914] [1.7658,2.7799] (0.1,0.3,0.5)

Table 10.	A normalized decision matrix with heterogeneous information

components DIF RAW Test cost

X1 1.0000 0.0000 0.2500 

X2 0.9610 0.0042 0.5500 

X3 0.0000 0.0042 0.0000 

X4 0.9473 1.0000 1.0000 

X5 0.9473 1.0000 1.0000 

X6 0.7029 1.0000 0.8500 

X7 0.7029 1.0000 0.8500 

X8 0.9258 1.0000 0.8500 

X9 0.9258 1.0000 0.8500 

X10 0.9578 0.9712 1.0000 

X11 0.9578 0.9712 1.0000 

X12 0.6974 0.9712 0.8500 

X13 0.6974 0.9712 0.8500 

X14 0.7422 0.9712 0.8500 

X15 0.7422 0.9712 0.8500 

Table 11.	The positive and negative ideal solutions 

Attributes Positive ideal solutions Negative ideal solutions

DIF [0.5681，0.5727] [0.0508，0.0518]

RAW [9.3337，12.0694] [1.5651，2.4799]

Test cost (0.1，0.2，0.3) (0.7，0.9，1)
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Table 12.	Values of Si, Ri and Qi for all components

Components Si Ri Qi 

X1 0.5782 0.2905 0.4156
X2 0.4532 0.2792 0.1275
X3 0.3850 0.3836 0.5000
X4 0.6010 0.3259 0.6275
X5 0.6010 0.3259 0.6275
X6 0.5876 0.3259 0.6023
X7 0.5876 0.3259 0.6023
X8 0.6524 0.3259 0.7234
X9 0.6524 0.3259 0.7234

X10 0.5947 0.3165 0.5706
X11 0.5947 0.3165 0.5706
X12 0.5766 0.3165 0.5367
X13 0.5766 0.3165 0.5367
X14 0.5896 0.3165 0.5611
X15 0.5896 0.3165 0.5611

Table 14.	Revised values of Si, Ri and Qi for all components

Components Si Ri Qi

X1 0.5369 0.2746 0.2790
X3 0.3512 0.3496 0.3709
X4 0.6372 0.3757 0.9298
X5 0.6372 0.3757 0.9298
X6 0.6245 0.3757 0.9107
X7 0.6245 0.3757 0.9107
X8 0.6839 0.3757 1
X9 0.6839 0.3757 1

X10 0.6289 0.3649 0.8636
X11 0.6289 0.3649 0.8636
X12 0.6117 0.3649 0.8377

X13 0.6117 0.3649 0.8377

X14 0.6237 0.3649 0.8557
X15 0.6237 0.3649 0.8557

Table 13.	An updating decision matrix with the previous diagnosis result

Components DIF RAW Test cost

X1 [0.0544,0.0554] [9.9374,12.9137] (0.5,0.7,0.9)
X3 [0.6078,0.6120] [9.8593,12.9137] (0.7,0.9,1.0)
X4 [0.0778,0.0850] [1.6174,2.5785] (0.1,0.2,0.3)
X5 [0.0778,0.0850] [1.6174,2.5785] (0.1,0.2,0.3)
X6 [0.2039,0.2222] [1.6174,2.5785] (0.1,0.3,0.5)
X7 [0.2039,0.2222] [1.6174,2.5785] (0.1,0.3,0.5)
X8 [0.0890,0.0971] [1.6174,2.5785] (0.1,0.3,0.5)
X9 [0.0890,0.0971] [1.6174,2.5785] (0.1,0.3,0.5)

X10 [0.0739,0.0790] [1.8336,2.9019] (0.1,0.2,0.3)
X11 [0.0739,0.0790] [1.8336,2.9019] (0.1,0.2,0.3)
X12 [0.2100,0.2242] [1.8336,2.9019] (0.1,0.3,0.5)
X13 [0.2100,0.2242] [1.8336,2.9019] (0.1,0.3,0.5)
X14 [0.1866,0.1990] [1.8336,2.9019] (0.1,0.3,0.5)
X15 [0.1866,0.1990] [1.8336,2.9019] (0.1,0.3,0.5)
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sion matrix with heterogeneous information and normalized decision 
matrix respectively. The positive and negative ideal solutions can be 
obtained shown in table 11. Based on the entropy methodology, the 
weights of the three attributes, ω1=0.2905，ω2=0.3259，ω3=0.3836 
are obtained using the Eq. (21) - (24). Table 12 presents the values of 
Si, Ri and Qi for all components. The optimal diagnosis sequence is as 
follows according to the corresponding Qi in ascending order.

X2≻X1≻X3≻X12(X13)≻X10(X11)≻X14(X15)≻X6(X7)≻X4(X5)≻X8(X9)

If a train-ground wireless communication system broke down, we 
should diagnose X2 firstly. If X2 fails, then diagnosis is over. Oth-
erwise, we should feed this evidence information (X2 works) to the 
DEN and recalculate DIF and RAW. An updating decision matrix with 
the previous diagnosis result is shown in table 13. Similarly, the re-
vised values of Si, Ri and Qi for all components can be obtained shown 
in table 14. The updating optimal diagnosis sequence is as follows.

X1≻X3≻X12(X13)≻X14(X15)≻X10(X11)≻X6(X7)≻X4(X5)≻X8(X9)

So we can draw a conclusion that the next component diagnosed 
is X1. If X1 fails, then diagnosis is over. Otherwise, we input this evi-
dence information to the DEN and update the decision matrix again. 
These steps are repeated several times, and the final optimal diagnos-
tic ranking can be obtained as follows. 

X2≻X1≻X3>X12(X13)≻X10(X11)≻X4(X5)≻X14(X15)≻X6(X7)≻X8(X9)

Obviously, the diagnostic strategy which takes the previous di-
agnosis result into account is more reasonable and efficient because 
it can update the decision matrix dynamically. To avoid subjectivity 
and arbitrariness, the proposed method determines the weights of at-
tributes based on the Entropy concept. Besides, the optimal ranking 

is obtained directly based on the original heterogeneous information 
without a transformation process using a generalized distance-based 
function, which can improve diagnosis efficiency and reduce informa-
tion loss.

5. Conclusion

In this paper, a novel dynamic diagnostic strategy for complex 
systems is proposed based on reliability analysis and distance-based 
VIKOR with heterogeneous information, which aims to deal with two 
important issues that arise in engineering applications, such as failure 
dependency and epistemic uncertainty. For the challenge of the fail-
ure dependency, a DFT is used to describe the dynamic fault behav-
iours. For the challenge of the epistemic uncertainty, the failure rates 
of components in complex systems are expressed in interval numbers. 
Furthermore, DFT is converted into a DEN to calculate some reli-
ability results and these parameters together with test cost constitute 
a decision matrix. In addition, a dynamic diagnostic strategy is de-
veloped based on an improved VIKOR algorithm and the previous 
diagnosis result. This diagnosis algorithm determines the weights of 
attributes based on the Entropy concept to avoid experts’ subjectivity 
and obtains the optimal ranking directly on the original heterogeneous 
information without a transformation process, which can improve di-
agnosis efficiency and reduce information loss. Finally, a train-ground 
wireless communication system is given to demonstrate the efficiency 
of the proposed method. This method takes full advantages of DFT 
for modelling, DEN for the uncertainty inference and VIKOR for 
dynamic decision making, which is especially suitable to diagnose 
complex systems.
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