ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein
Our IF is 1.806
JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies

 


Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line

 




 

Impact Factor

Impact Factor

SCImago Journal & Country Rank

MOST CITED

Update: 2019-11-17

1. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 51
2. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 48
3. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 43
4. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 33
5. UTILIZATION OF DIFFUSION PROCESSES AND FUZZY LOGIC FOR VULNERABILITY ASSESSMENT
By: Valis, David; Pietrucha-Urbanik, Katarzyna

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 1   Pages: 48-55   Published: 2014

Times Cited: 32
6. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Volume 14, Issue: 2   Pages: 135-144   Published:2012

Times Cited: 32
7. APPLICATION OF NEURAL RECONSTRUCTION OF TOMOGRAPHIC IMAGES IN THE PROBLEM OF RELIABILITY OF FLOOD PROTECTION FACILITIES
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 20 Issue: 3 Pages: 425-434 Published: 2018

Times Cited: 30
8. RECOGNITION OF ARMATURE CURRENT OF DC GENERATOR DEPENDING ON ROTOR SPEED USING FFT, MSAF-1 AND LDA
By: Glowacz, Adam; Glowacz, Witold; Glowacz, Zygfryd

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 17 Issue: 1 Pages: 64-69 Published: 2015

Times Cited: 28
9. TESTS OF EXTENDABILITY AND STRENGTH OF ADHESIVE-SEALED JOINTS IN THE CONTEXT OF DEVELOPING A COMPUTER SYSTEM FOR MONITORING THE CONDITION OF BELT JOINTS DURING CONVEYOR OPERATION
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 34-39 Published: 2010

Times Cited: 28
10. MODELLING OF PASSIVE VIBRATION DAMPING USING PIEZOELECTRIC TRANSDUCERS - THE MATHEMATICAL MODEL
By: Buchacz, Andrzej; Placzek, Marek; Wrobel, Andrzej

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 2   Pages: 301-306   Published: 2014

Times Cited: 27

 

Visits since 2016.06.29:
darmowe liczniki



Task „Implementation of procedures ensuring  the originality of scientific papers published in the quarterly „Eksploatacja i Niezawodność – Maintenance and Reliability” financed under contract 532/P-DUN/2018 from the funds of the Minister of Science and Higher Education for science dissemination activities.


Yanzhi Pang

Inteligentne prognozowanie intensywności uszkodzeń automatycznego systemu ochrony pociągów kolei dużych prędkości w Chinach

Inteligentna i spersonalizowana dynamiczna konserwacja i konfiguracja części zamiennych pociągów kolei dużych prędkości stanowią ostatnio główny trend w zakresie zapewniania bezpieczeństwa pociągów. W niniejszym artykule zaproponowano nową metodę obliczania intensywności uszkodzeń systemu Automatycznej Ochrony Pociągu (ATP), a czas opóźnienia i wymiar zanurzenia określano za pomocą algorytmu CC. Następnie, przestrzeń fazową przekształcono z jednowymiarowego szeregu czasowego do przestrzeni wielowymiarowej. Opierając się na chaotycznych charakterystykach intensywności uszkodzeń, utworzono model krótkoterminowego inteligentnego prognozowania awaryjności systemu ATP. Do uczenia modelu i weryfikacji jego trafności wykorzystano rzeczywiste dane statystyczne dotyczące awarii pociągów z lat 2010–2018. Z wyników prognoz wynika, że proponowany model predykcji, oparty na teorii chaosu, cechuje się dokładnością na poziomie 99,71%, czyli wyższą niż model maszyny wektorów nośnych. Dając możliwość inteligentnej predykcji intensywności uszkodzeń, niniejsza praca rozwiązuje problem braku elastyczności w utrzymaniu ruchu pociągów oraz braku równowagi między podażą a popytem na części zamienne.

Intelligent Forecasting of Automatic Train Protection System Failure Rate in China High-speed Railway

Intelligent and personalized dynamic maintenance and spare parts configuration of high-speed railway have been the main trend to guarantee the safety capability of trains. In this paper, a new Automatic Train Protection (ATP) system failure rate calculation method is proposed, and the delay time and embedded dimension are determined by C-C algorithm. Then the phase space is reconstructed from one-dimensional time series to high-dimensional space. Based on chaotic characteristics of failure rate, a short-term intelligent forecasting model of failure rate of ATP system is established. The actual failure statistics from 2010 to 2018 are used as samples to train and test the validity of the model. From prediction results, it shows that the proposed chaos prediction model has an accuracy of 99.71%, which is better than the support vector machine model. Through the intelligent prediction of failure rate, this paper solves the maintenance inflexibility and imbalance of supply and demand of spare parts configuration.