ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein
Our IF is 1.145
JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies

 


Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line

 




 

Impact Factor

Impact Factor

Impact Factor

Impact Factor

SCImago Journal & Country Rank

MOST CITED

Update: 2017-11-16

1. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 40
2. UTILIZATION OF DIFFUSION PROCESSES AND FUZZY LOGIC FOR VULNERABILITY ASSESSMENT
By: Valis, David; Pietrucha-Urbanik, Katarzyna

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 1   Pages: 48-55   Published: 2014

Times Cited: 28
3. SELECTED ASPECTS OF PHYSICAL STRUCTURES VULNERABILITY - STATE-OF-THE-ART
By: Valis, David; Vintr, Zdenek; Malach, Jindrich

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 189-194 Published: 2012

Times Cited: 26
4. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 24
5. RELIABILITY BASED OPTIMAL PREVENTIVE MAINTENANCE POLICY OF SERIES-PARALLEL SYSTEMS
By: Peng Wei; Huang Hong-Zhong; Zhang Xiaoling; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 2 Pages: 4-7 Published: 2009

Times Cited: 23
6. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Issue: 2   Pages: 135-144   Published:2012

Times Cited: 22
7. MODELLING OF PASSIVE VIBRATION DAMPING USING PIEZOELECTRIC TRANSDUCERS - THE MATHEMATICAL MODEL
By: Buchacz, Andrzej; Placzek, Marek; Wrobel, Andrzej

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 2   Pages: 301-306   Published: 2014

Times Cited: 21
8. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 21
9. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 18
10. PRODUCTIVITY AND RELIABILITY IMPROVEMENT IN TURNING INCONEL 718 ALLOY - CASE STUDY
By: Zebala, Wojciech; Slodki, Bogdan; Struzikiewicz, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15   Issue: 4   Pages: 421-426   Published: 2013

Times Cited: 17
 

 

Visits since 2016.06.29:
darmowe liczniki


Wenyuan LV

Modelling Preventive maintenance based on the delay time concept in the context of a case study

Using the delay time concept and associated models, this paper presents a modelling study of optimising the preventive maintenance (PM) interval of a production plant within the context of a case study. To establish the relationship between the PM interval and expected downtime per unit time, we need the data of both failure times and the number of defects identified and removed at PM epochs. However, the available data to us was only the recorded times of failures. To overcome this problem, we obtained an estimated mean number of the defects identified at the PM epoch by the plant maintenance technicians. Based on these two types of data, we first establish a likelihood function of the observed times to failure and then a squared function of the difference between the number of defect identification estimated by the technician and the corresponding expected value from the model is mixed with the likelihood function to estimate the unknown model parameters. We test by simulation to show the validity of the above parameter estimation method. Once the parameters of the model are known, a PM model is proposed to optimize the expected downtime per unit time with respect to the PM interval. The modeling process is demonstrated by the case study presented.

Modelowanie konserwacji zapobiegawczej w oparciu o pojęcie czasu zwłoki w kontekście studium przypadku

Wykorzystując pojęcie czasu zwłoki oraz modele stowarzyszone, w artykule przedstawiono badania modelowe optymalizacji przerwy konserwacyjnej w zakładzie produkcyjnym w oparciu o studium przypadku. Aby ustalić związek pomiędzy przerwą konserwacyjną a oczekiwanym czasem przestoju na jednostkę czasu, potrzebne są dane dotyczące zarówno czasów uszkodzeń jak i liczby usterek wykrytych i usuniętych w okresach konserwacji zapobiegawczej. Niestety, w badanym przez nas przypadku jedynymi dostępnymi danymi były czasy uszkodzeń. Aby obejść ten problem, wykorzystaliśmy szacunkową średnią liczbę usterek wykrytych w okresie konserwacji zapobiegawczej przez obsługę techniczną zakładu. W oparciu o wspomniane dwa typy danych, ustaliliśmy, w pierwszej kolejności, funkcję wiarygodności dla obserwowanych czasów do uszkodzenia. Następnie, w celu określenia niewiadomych parametrów modelu, funkcję tę połączyliśmy z funkcją najmniejszych kwadratów dla różnicy pomiędzy liczbą wykrytych usterek oszacowaną przez pracownika obsługi technicznej a odpowiadającą jej oczekiwaną wartością wyprowadzoną z modelu. Wiarygodność powyższej metody oceny parametrów sprawdzono za pomocą symulacji. Znając wartości parametrów modelu, zaproponowano model konserwacji zapobiegawczej pozwalający na optymalizację oczekiwanego czasu przestoju na jednostkę czasu w odniesieniu do przerwy konserwacyjnej. Proces modelowania przedstawiono za pomocą studium przypadku.