ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein

JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies


 We verify submissions originality with the use of iThenticate plagiarism checker


 All accepted articles are published Open Access under the Creative Commons Licence: CC-BY 4.0

Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line


The average number of weeks from article submission to the final decision: 4 weeks




http://scientific.thomsonreuters.com/cgi-bin/jrnlst/jloptions.cgi?PC=D

http://www.thomsonreuters.com/products_services/scientific/Journal_Citation_Reports

http://doaj.org

http://infobaseindex.com

http://www.info.scopus.com/why-scopus/publishers/?url=detail/what/publishers/

http://www.ebsco.com


MOST CITED

Update: 2021-07-01

1. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 59
2. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 53
3. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 51
4. INNOVATIVE METHODS OF NEURAL RECONSTRUCTION FOR TOMOGRAPHIC IMAGES IN MAINTENANCE OF TANK INDUSTRIAL REACTORS
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 21 Issue: 2 Pages: 261-267 Published: 2019

Times Cited: 50
5. APPLICATION OF NEURAL RECONSTRUCTION OF TOMOGRAPHIC IMAGES IN THE PROBLEM OF RELIABILITY OF FLOOD PROTECTION FACILITIES
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 20 Issue: 3 Pages: 425-434 Published: 2018

Times Cited: 45
6. ASSESSMENT MODEL OF CUTTING TOOL CONDITION FOR REAL-TIME SUPERVISION SYSTEM
By: Kozlowski, Edward; Mazurkiewicz, Dariusz; Zabinski, Tomasz; Prucnal, Slawomir; Sep, Jaroslaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 21 Issue: 4 Pages: 679-685 Published: 2019

Times Cited: 40
7. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 39
8. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Volume 14, Issue: 2   Pages: 135-144   Published:2012

Times Cited: 38
9. TESTS OF EXTENDABILITY AND STRENGTH OF ADHESIVE-SEALED JOINTS IN THE CONTEXT OF DEVELOPING A COMPUTER SYSTEM FOR MONITORING THE CONDITION OF BELT JOINTS DURING CONVEYOR OPERATION
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 34-39 Published: 2010

Times Cited: 37
10. RELIABILITY ANALYSIS OF RECONFIGURABLE MANUFACTURING SYSTEM STRUCTURES USING COMPUTER SIMULATION METHODS
By: Gola, Arkadiusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 21, Issue: 1, Pages: 90-102, Published: 2019

Times Cited: 36

 

 



Task „Implementation of procedures ensuring  the originality of scientific papers published in the quarterly „Eksploatacja i Niezawodność – Maintenance and Reliability” financed under contract 532/P-DUN/2018 from the funds of the Minister of Science and Higher Education for science dissemination activities.


sieć bayesowska

Modelowanie i ocena niezawodności systemu w oparciu o sieci bayesowskie na przykładzie układu napędu paneli słonecznych

Wraz ze wzrostem złożoności w systemach technicznych, pojawia się wiele charakterystyk dynamicznych w ramach procesu awarii systemu, takich jak zależność sekwencyjna, zależność funkcjonalna czy zabezpieczające elementy zapasowe. Oparte na koncepcjach Markowa dynamiczne drzewa uszkodzeń mogą posłużyć do modelowania systemów z powyższymi charakterystykami. Jednak w konfrontacji z problemem eksplozji stanów wynikającym ze wzrostu złożoności systemu, podejście oparte na teoriach Markowa nie jest już skuteczne. W niniejszej pracy łączymy sieci bayesowskie z dynamicznymi drzewami uszkodzeń w celu modelowania niezawodności tego typu systemów. Technikę wnioskowania sieci bayesowskiej wykorzystano do oceny niezawodności i prawdopodobieństwa wystąpienia uszkodzenia. Skuteczność niniejszej metody wykazano na przykładzie układu napędu paneli słonecznych.

System reliability modeling and assessment for solar array drive assembly based on bayesian networks

Along with the increase of complexity in engineering systems, there exist many dynamic characteristics within the system failure process, such as sequence dependency, functional dependency and spares. Markov-based dynamic fault trees can figure out the modeling of systems with these characteristics. However, when confronted with the issue of state space explosion resulted from the growth of system complexity, the Markov-based approach is no longer efficient. In this paper, we combine the Bayesian networks with the dynamic fault trees to model the reliability of such types of systems. The inference technique of Bayesian network is utilized for reliability assessment and fault probability estimation. The solar array drive assembly is used to demonstrate the effectiveness of this method.

Reliability and risk assessment of aircraft electric systems

It is rather difficult in identifying the fault location and performing risk assessment for complex electronic systems. In this paper a reliability assessment method based on the interval analytic hierarchy process (IAHP) and Bayesian network is proposed to facilitate reliability and risk assessment. After considering the major fault factors, the interval eigenvector method (IEM) is also presented to assess the reliability and comprehensive weights of subsystems. The conditional probability matrices for the factors of risk are defined using an inference rule. Then an updating model of information fusion in the context of Bayesian network is established to assess the risk of system. The proposed method is demonstrated through the risk assessment of an aircraft electric system. The result of the illustrative example shows that the proposed method can not only incorporate the evidence information, but also synthesize all the historical information. A further dynamic adjustment in the safety and risk priority of control measures is quite effective to improve the reliability while mitigating the risk of the electric system.

Niezawodność i ocena ryzyka układu elektrycznego samolotu

Lokalizacja uszkodzeń oraz ocena bezpieczeństwa i ryzyka w przypadku złożonych systemów elektronicznych jest zadaniem dość trudnym. W niniejszej pracy zaproponowano metodę prognozowania niezawodności opartą na procesie przedziałowej hierarchii analitycznej (IAHP), która ma na celu ułatwienie diagnozy uszkodzeń i kontroli ryzyka. Po rozważeniu głównych czynników wywołujących uszkodzenia, zaprezentowano metodę przedziałowych wektorów własnych oraz zdefiniowano, przy użyciu reguły wnioskowania, macierze prawdopodobieństwa dla czynników wpływających na bezpieczeństwo i ryzyko. Następnie, stworzono odnawialny model fuzji informacji w kontekście wnioskowania bayesowskiego służący do oceny stanu zagrożenia Udowodniono, iż włączenie wiedzy eksperckiej do dynamicznej symulacji ułatwia lokalizację uszkodzeń oraz pozwala uzyskać informacje dotyczące diagnozy uszkodzeń. Studium przypadku pokazuje, że dynamiczne dostosowanie priorytetowości związanej z bezpieczeństwem i ryzykiem stosowanych środków kontroli w sposób dość skuteczny zwiększa niezawodność przy jednoczesnym zminimalizowaniu ryzyka w złożonym systemie elektronicznym.

Oparte na sieciach ba yesowskich podejście do analizy zależności czasowychw systemach o zadaniach okresowych wykorzystujące metodę drzewa zdarzeń

Metoda drzewa zdarzeń/drzewa błędów jest najbardziej znanym narzędziem probabilistycznej oceny ryzyka w złożonych, dużych systemach inżynieryjnych; jednak jej klasyczny formalizm najczęściej uwzględnia jedynie niezależne lub niezależne od czasu zdarzenia kluczowe. Praktyczną trudnością występującą w systemach o zadaniach okresowych jest to, że zdarzenia kluczowe, które zazwyczaj przedstawiane są w modelach drzewa błędów jako powiązane zależnościami jawnymi, mającymi związek ze wspólnym zdarzeniem podstawowym, tutaj powiązane są zależnościami czasowymi, jako że przedział czasowy pomiędzy pojedynczymi zdarzeniami kluczowymi nie jest bez znaczenia. W niniejszej pracy, połączyliśmy metodologie sieci Bayesa i analizy drzewa zdarzeń/ błędów aby opisać za pomocą pojęcia prawdopodobieństwa warunkowego, zależności czasowe w systemach o zadaniach okresowych, a następnie rozwinęliśmy tę metodę, wykorzystując dynamiczne sieci Bayesa, które pozwalają na analizę bardziej złożonych zależności czasowych, takich jak zależności funkcjonalne i związane z użyciem części zamiennych. W końcowej części pracy przedstawiliśmy dwa szczegółowe przykłady zastosowania proponowanej metody do analizy złożonych zależności czasowych w drzewach zdarzeń.

A Bayesian networks approach for event tree time-dependency analysis on phased-mission system

Event tree/ fault tree (E/FT) method is the most recognized probabilistic risk assessment tool for complex large engineering systems, while its classical formalism most often only considers pivotal events (PEs) being independent or time-independent. However, the practical difficulty regarding phased-mission system (PMS) is that the PEs always modelled by fault trees (FTs) are explicit dependent caused by shared basic events, and phase-dependent when the time interval between PEs is not negligible. In this paper, we combine the Bayesian networks (BN) with the E/FT analysis to figure such types of PMS based on the conditional probability to give expression of the phase-dependency, and further expand it by the dynamic Bayesian networks (DBN) to cope with more complex time-dependency such as functional dependency and spares. Then, two detailed examples are used to demonstrate the application of the proposed approach in complex event tree time-dependency analysis.

Reliability analysis for multi-state system based on triangular fuzzy variety subset bayesian networks

In this paper, a novel reliability analysis method for multi-state system is proposed on the basis of triangular fuzzy variety subset Bayesian network (BN). The method considers fuzziness, multi-state, and variety of failure probability over time. With advantages in modeling and computation, the BN is utilized for reliability analysis. Fuzzy set theory is introduced into the BN analysis by using triangular fuzzy variety subset to describe failure probability. The uncertainty of fault logical relationship between different nodes is described through fuzzy conditional probability tables. As a function of time, the failure probability of each root node is analyzed first. Subsequently, the triangle fuzzy variety subset is established to describe the fuzzy failure probability of root nodes. This subset is applied to analyze the reliability of multi-state system fuzzy BN. Finally, a case study on the car free movement accident of flexible high-speed elevator lift system is used to demonstrate the effectiveness and practicality of the proposed method. Results show that the proposed approach could effectively address the problems on information uncertainty and multi-state in the early stage.

Analiza niezawodności systemu wielostanowego z zastosowaniem sieci bayesowskich opartych na rozmytych podzbiorach zmienności opisanych przez trójkątną funkcję przynależności

W niniejszej pracy zaproponowano nową metodę analizy niezawodności systemów wielostanowych wykorzystującą sieci Bayesa (BN) oparte na rozmytych podzbiorach zmienności opisanych za pomocą trójkątnej funkcji przynależności. Metoda ta uwzględnia rozmyty charakter danych dotyczących uszkodzeń, wielostanowość systemu oraz zmienność prawdopodobieństwa wystąpienia uszkodzenia w czasie. BN, które znalazły zastosowanie w modelowaniu i metodach obliczeniowych, wykorzystuje się także do analizy niezawodności. W przedstawionych badaniach, analizę BN uzupełniono o elementy teorii zbiorów rozmytych wykorzystując do opisu prawdopodobieństwa wystąpienia uszkodzenia, podzbiory zmienności opisane przez trójkątną funkcję przynależności. Niepewność zależności logicznej pomiędzy awariami reprezentowanymi przez różne węzły sieci opisano za pomocą tabel rozmytego prawdopodobieństwa warunkowego. W pierwszej kolejności analizowano prawdopodobieństwo uszkodzenia każdego korzenia (węzła głównego) w funkcji czasu. Następnie, wyznaczono trójkątny rozmyty podzbiór zmienności, za pomocą którego opisano rozmyte prawdopodobieństwo uszkodzenia węzłów głównych. Podzbiór ten wykorzystano do analizy niezawodności systemu wielostanowego przy pomocy rozmytych BN. Artykuł kończy opis wypadku podczas ruchu wózka windy szybkobieżnej, który potwierdza skuteczność i możliwość praktycznego wykorzystania proponowanej metody. Wyniki pokazują, że proponowane podejście może skutecznie rozwiązywać na wczesnym etapie problemy związane z niepewnością informacji oraz wielostanowością systemu.

Zastosowanie sieci bayesowskiej do analizy niezawodności złożonych systemów wielostanowych w warunkach niepewności

Analiza niezawodności złożonych systemów wielostanowych obarczona jest niepewnością związaną ze złożonością ich struktury, ograniczoną liczbą próbek badawczych i niewystarczającymi danymi dotyczącymi niezawodności. W przedstawionej pracy, wprowadzenie elementów matematyki rozmytej i teorii szarych systemów do sieci bayesowskiej umożliwiło budowę modelu szarej rozmytej sieci bayesowskiej i zaproponowanie metody analizy niezawodności złożonych systemów wielostanowych w warunkach niepewności, która wykorzystuje niedeterministyczną funkcję przynależności oraz pojęcie interwałowej wielkości charakterystycznej. Zastosowanie trapezoidalnej funkcji przynależności z rozmytą zmienną promienia nośnego do opisu stanu uszkodzenia komponentu, pozwala zniwelować wpływ subiektywnego czynnika ludzkiego na wybór funkcji przynależności i eliminuje konieczność precyzyjnego definiowania stanu uszkodzenia systemu i jego elementów składowych. Opracowana tabela prawdopodobieństw warunkowych zawierająca szare liczby interwałowe pozwala wyrazić niepewne zależności logiki uszkodzeń między systemem a jego składnikami. Ponadto, w pracy skonstruowano model planowania parametrów charakterystycznych wielkości niezawodności systemu wyrażonych w postaci wartości interwałowych. W ostatniej części artykułu omówiono dwie serie eksperymentów numerycznych, których wyniki pokazują, że proponowana metoda stanowi skuteczne i obiecujące podejście do analizy niezawodności złożonych systemów wielostanowych w warunkach niepewności.

Reliability analysis of complex uncertainty multi-state system based on Bayesian network

Reliability analysis of complex multi-state system has uncertainty, which is caused by complex structures, limited test samples, and insufficient reliability data. By introducing fuzzy mathematics and grey system theory into the Bayesian network, the model of the grey fuzzy Bayesian network is built, and the reliability analysis method of complex uncertainty multi-state system with the non-deterministic membership function and the interval characteristic quantity is proposed in this paper. Using the trapezoidal membership function with fuzzy support radius variable to describe the fault state of the component, it can effectively avoid the influence of human subjective factors on the selection of the membership function and solve the problem that the fault states of the system and its components are difficult to define accurately. And the conditional probability table containing interval grey numbers is constructed to effectively express the uncertain fault logic relationship between the system and its components. Moreover, a parameter planning model of the system reliability characteristic quantities is constructed, and the system reliability characteristic quantities are expressed as the form of interval values. Finally, two sets of numerical experiments are conducted and discussed, and the results show that the proposed method is an effective and a promising approach to reliability analysis for complex uncertainty multi-state systems.

 

Strony


SELECT PUBLICATION YEAR