ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein
Our IF is 1.383
JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies

 


Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line

 




 

Impact Factor

Impact Factor

Impact Factor

SCImago Journal & Country Rank

MOST CITED

Update: 2018-11-13

1. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 45
2. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 35
3. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 32
4. UTILIZATION OF DIFFUSION PROCESSES AND FUZZY LOGIC FOR VULNERABILITY ASSESSMENT
By: Valis, David; Pietrucha-Urbanik, Katarzyna

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 1   Pages: 48-55   Published: 2014

Times Cited: 30
5. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Issue: 2   Pages: 135-144   Published:2012

Times Cited: 28
6. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 28
7. SELECTED ASPECTS OF PHYSICAL STRUCTURES VULNERABILITY - STATE-OF-THE-ART
By: Valis, David; Vintr, Zdenek; Malach, Jindrich

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 189-194 Published: 2012

Times Cited: 26
8. RELIABILITY BASED OPTIMAL PREVENTIVE MAINTENANCE POLICY OF SERIES-PARALLEL SYSTEMS
By: Peng Wei; Huang Hong-Zhong; Zhang Xiaoling; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 2 Pages: 4-7 Published: 2009

Times Cited: 24
9. DIAGNOSTIC OF DIRECT CURRENT MACHINE BASED ON ANALYSIS OF ACOUSTIC SIGNALS WITH THE USE OF SYMLET WAVELET TRANSFORM AND MODIFIED CLASSIFIER BASED ON WORDS
By: Głowacz Adam

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 4   Pages: 554-558   Published: 2014

Times Cited: 23
10. MODELLING OF PASSIVE VIBRATION DAMPING USING PIEZOELECTRIC TRANSDUCERS - THE MATHEMATICAL MODEL
By: Buchacz, Andrzej; Placzek, Marek; Wrobel, Andrzej

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 2   Pages: 301-306   Published: 2014

Times Cited: 23

 

Visits since 2016.06.29:
darmowe liczniki



Task „Implementation of procedures ensuring  the originality of scientific papers published in the quarterly „Eksploatacja i Niezawodność – Maintenance and Reliability” financed under contract 532/P-DUN/2018 from the funds of the Minister of Science and Higher Education for science dissemination activities.


Remaining useful life

Synteza wskaźników stanu technicznego oraz ocena pozostałego okresu użytkowania silników turbowentylatorowych z wykorzystaniem zbiorów danych o pracy do czasu uszkodzenia

Silniki turbowentylatorowe niepoddane konserwacji ulegają stopniowej degradacji aż do czasu wystąpienia uszkodzenia lub zakończenia cyklu życia. Rzetelna ocena degradacji oraz pozostałego okresu użytkowania (RUL) mają wpływ zarówno na bezpieczeństwo maszyn lotniczych jak i racjonalne podejmowanie decyzji dotyczących utrzymania ruchu. W artykule zaproponowano sterowaną danymi metodę prognostyczną opartą na danych o pracy do czasu uszkodzenia (run-to failure, RTF), które są wielowymiarowymi danymi sensorycznymi zbieranymi podczas normalnej pracy silnika aż do jego uszkodzenia. Po niezbędnej wstępnej obróbce danych, przeprowadzono analizę skupień w celu wygenerowania skupień reprezentujących multi-stany procesu degradacji. Wyodrębniono klaster stanów uszkodzenia, a następnie obliczono odległość między wstępnie przetworzonymi danymi a wyodrębnionym klastrem. Następnie wygenerowano jednowymiarowe szeregi czasowe, które zdefiniowano jako wskaźniki stanu technicznego. Na podstawie tych wskaźników zbudowano modele degradacji. Wreszcie, w oparciu o analizę podobieństwa do opracowanych modeli oceniono RUL jednostki testowej. Główne algorytmy zastosowane w niniejszym opracowaniu to algorytmy grupowania hierarchicznego (HC) oraz maszyny wektorów istotnych (RVM). Aby zweryfikować zaproponowaną w pracy metodę, przeprowadzono studium przypadku z wykorzystaniem danych dot. silników turbowentylatorowych pochodzące z Prognostic Center of Excellence (PCoE) przy NASA Ames Research Center oraz przedstawiono odpowiednie porównania.

Health index synthetization and remaining useful life estimation for turbofan engines based on run-to-failure datasets

Turbofan engines will gradually degrade until failure occurs or life ends if without maintenance. Reliable degradation assessment and remaining useful life (RUL) estimation make sense on both aviation safety and rational maintenance decisions. This paper proposes a data-driven prognostic method on the premise of run-to-failure (RtF) data which are multivariate sensory data collected from the engines operating from normal to failure. After necessary pre-processing to the data, clustering analysis is executed to generate the clusters which represent the multi-states of the degradation process. The failure state cluster is extracted, and then the distance between the pre-processed data and the cluster is calculated. Therefore, one-dimensional time series are generated and defined as the health indices. Afterwards the degradation models are built based on the health indices. Finally, the RUL of a testing unit can be estimated by similarity analysis with the models. Hierarchical clustering (HC) and relevance vector machine (RVM) are the main algorithms employed in this paper. To validate the proposition, a case study is performed on turbofan engines data from Prognostics Center of Excellence (PCoE) at NASA Ames Research Center, and sufficient comparisons were given.

Metodologia ekstrakcji wskaźnika stanu technicznego do modelowania i prognozowania degradacji przekładni mechanicznych

Monitorowanie i prognozowanie stanu to kluczowa kwestia dla zapewnienia stabilnej i niezawodnej pracy przekładni mechanicznych. Zużycie w przekładni mechanicznej, które prowadzi do wytwarzania cząsteczek zużycia a następnie ciężkiego zużycia, to proces powolnej degradacji, który może być monitorowany poprzez analizę widmową oleju, ale rzeczywisty stopień degradacji często trudno jest ocenić podczas praktycznego użytkowania z uwagi na złożoność wielu widm oleju. W celu rozwiązania powyższego problemu, zaproponowano metodologię ekstrakcji wskaźnika stanu technicznego, aby lepiej scharakteryzować stopień degradacji niż polegając wyłącznie na danych widmowych oleju; pozwala to na dokładne prognozowanie czasu uszkodzenia, gdy przekładnia przestanie spełniać swoją funkcję. Wskaźnik stanu technicznego ekstrahowany jest za pomocą metody średniej ważonej z wyborem danych o degradacji i etapami alokacji dla współczynników wagowych, dając w efekcie odpowiedni model degradacji przekładni mechanicznej. W pierwszym etapie, dane degradacji stosowane jako dane wejściowe wybierane są na podstawie entropii źródłowej, która może opisywać zakres informacji zawarty w każdym zbiorze danych widmowych oleju. Następnie współczynnik wagowy każdego zestawu danych nt. degradacji modelowany jest przez pomiar względnej skali entropii permutacji z wybranych danych degradacji. Na koniec, wybrane dane degradacji są integrowane i ekstrahowany jest wskaźnik stanu technicznego. Zaproponowana metodologia została zweryfikowana przy użyciu studium przypadku obejmującego zbiór wielowidmowych danych dotyczących degradacji oleju pobranego z kilku przekładni kierowniczych wspomaganych.

Health index extracting methodology for degradation modelling and prognosis of mechanical transmissions

 

Condition monitoring and prognosis is a key issue in ensuring stable and reliable operation of mechanical transmissions. Wear in a mechanical transmission, which leads to the production of wear particles followed by severe wear, is a slow degradation process that can be monitored by spectral analysis of oil, but the actual degree of degradation is often difficult to evaluate in practical applications due to the complexity of multiple oil spectra. To solve this problem, a health index extraction methodology is proposed to better characterize the degree of degradation compared to relying solely on spectral oil data, which leads to an accurate estimation of the failure time when the transmission no longer fulfils its function. The health index is extracted using a weighted average method with selection of degradation data with allocation steps for weight coefficients that lead to a reasonable mechanical transmission degradation model. First, the degradation data used as input are selected based on source entropy which can describe the information volume contained in each set of spectral oil data. Then, the weight coefficient of each set of degradation data is modelled by measuring the relative scale of the permutation entropy from the selected degradation data. Finally, the selected degradation data are fused, and the health index is extracted. The proposed methodology was verified using a case study involving a degradation dataset of multispectral oil data sampled from several power-shift steering transmissions.