ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein
Our IF is 1.145
JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies

 


Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line

 




 

Impact Factor

Impact Factor

Impact Factor

Impact Factor

SCImago Journal & Country Rank

MOST CITED

Update: 2017-11-16

1. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 40
2. UTILIZATION OF DIFFUSION PROCESSES AND FUZZY LOGIC FOR VULNERABILITY ASSESSMENT
By: Valis, David; Pietrucha-Urbanik, Katarzyna

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 1   Pages: 48-55   Published: 2014

Times Cited: 28
3. SELECTED ASPECTS OF PHYSICAL STRUCTURES VULNERABILITY - STATE-OF-THE-ART
By: Valis, David; Vintr, Zdenek; Malach, Jindrich

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 189-194 Published: 2012

Times Cited: 26
4. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 24
5. RELIABILITY BASED OPTIMAL PREVENTIVE MAINTENANCE POLICY OF SERIES-PARALLEL SYSTEMS
By: Peng Wei; Huang Hong-Zhong; Zhang Xiaoling; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 2 Pages: 4-7 Published: 2009

Times Cited: 23
6. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Issue: 2   Pages: 135-144   Published:2012

Times Cited: 22
7. MODELLING OF PASSIVE VIBRATION DAMPING USING PIEZOELECTRIC TRANSDUCERS - THE MATHEMATICAL MODEL
By: Buchacz, Andrzej; Placzek, Marek; Wrobel, Andrzej

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 2   Pages: 301-306   Published: 2014

Times Cited: 21
8. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 21
9. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 18
10. PRODUCTIVITY AND RELIABILITY IMPROVEMENT IN TURNING INCONEL 718 ALLOY - CASE STUDY
By: Zebala, Wojciech; Slodki, Bogdan; Struzikiewicz, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15   Issue: 4   Pages: 421-426   Published: 2013

Times Cited: 17
 

 

Visits since 2016.06.29:
darmowe liczniki


preventive maintenance

Optimization of preventive maintenance and information system

The paper presents a method for determining the optimal interval for preventive maintenance/replacement using either an age related or a diagnostic related renewal strategy. Additionally, the authors rise the question: "How does preventive maintenance influence the probability of failure and the mean life-time of preventively maintained elements of a technical system?" They answer the question using analytical and simulation computing approaches to arrive at the solution. The results are in quantitative form. giving relationships between preventive maintenance intervals and survival probability functions and mean life-time characteristics. Examples demonstrate suitability of the method for typical engineering components with Weibull life distributions. Applications offer substantial benefits to both the manufacturer and the user of technical equipment.

Cost – effective maintenance with preventive replacement of oldest components

We consider preventive maintenance of a continuously operating system, whose real-life prototype is a rotating chemical reactor for production of phosphorous acid. The drum, in which the reaction takes place, has 42 rollers (elements), which are subjected to a heavy load and to chemical corrosion. The components are organized in a ring-type structure. The system failure is defined either as the failure of 2 adjacent elements, or as a failure of any three elements in a set of 6 adjacent elements. The existing servicing policy prescribes replacing only the failed elements at the instant of system failure occurrence. The operational conditions permit the opportunistic replacement of non-failed components at the instant of system failure. In this paper, we propose a cost-effective policy of preventive maintenance: at the same time the system fails, several of the oldest non-failed components are replaced by new ones. The application of the above optimal preventive maintenance policy results in a reduction of the average cost per unit time by 15-30%.

Particle Swarm Optimization Fuzzy Systems for the Age Reduction Imperfect Maintenance Model

This research includes two topics: (1) the modeling of periodic preventive maintenance policies over an infi nite time span for repairable systems with the reduction of the degradation rate after performing an imperfect preventive maintenance (PM) activity; (2) the parameter estimation of failure distribution and the restoration effect of PM from the proposed PM policy for deteriorating systems. The concept of the improvement factor method is applied to measure the restoration effect on the degradation rate for a system after each PM. An improvement factor is presented as a function of the system's age and the cost of each PM. A periodic PM model is then developed. The optimal PM interval and the optimal replacement time for the proposed model can be obtained by minimizing the objective functions of the cost rate through the algorithms provided by this research. An example of using Weibull failure distribution is provided to investigate the proposed model. The method is proposed to estimate the parameters of the failure process and the improvement effect after each PM by analyzing maintenance and failure log data. In this method, a PSO-based method is proposed for automatically constructing a fuzzy system with an appropriate number of rules to approach the identifi ed system. In the PSO-based method, each individual in the population is constructed to determine the number of fuzzy rules and the premise part of the fuzzy system, and then the recursive least-squares method is used to determine the consequent part of the fuzzy system constructed by the corresponding individual. Consequently, an individual corresponds to a fuzzy system. Subsequently, a fi tness function is defi ned to guide the searching procedure to select an appropriate fuzzy system with the desired performance. Finally, two identifi cation problems of nonlinear systems are utilized to illustrate the effectiveness of the proposed method for fuzzy modeling.

Reliability Based Optimal Preventive Maintenance Policy of Series-parallel systems

To reduce the maintenance cost and improve the effectiveness of the maintenance activities in series-parallel systems, a preventive maintenance (PM) decision model for series-parallel systems subject to reliability was developed. This model considered the effect of failure maintenance on PM cycle and the restriction of system reliability in maintenance decision making, thus can help decision-maker to arrange appropriate and effective maintenance activities. Finally, an example was given to validate the proposed model.

Modelowanie planowych prac eksploatacyjnych przy niejednolitym pojawianiu się defektów i zmiennym prawdopodobieństwie wykrycia defektu

W przypadku określonych czasowo prac serwisowych (Time Based Maintenance), w trakcie planowych prac eksploatacyjnych przeprowadzano zazwyczaj trzy czynności obsługowe, tj. przegląd według listy kontrolnej, naprawę wykrytych lub zgłoszonych defektów oraz inne działania obsługowe. Inne działania obsługowe odnoszą się tu do takich czynności, jak zmiana oleju, smarowanie, czyszczenie, kalibracja, itd., które można po prostu nazwać działaniami obsługi profilaktycznej (Preventive Maintenance, PM). W niniejszej pracy, zamodelowano wpływ wszystkich trzech wymienionych czynności na proces uszkodzeniowy wykorzystując pojęcie czasu zwłoki (delay time). Czas zwłoki odnosi się do dwu-etapowego procesu uszkodzeniowego, którego pierwszy etap to pojawienie się niepożądanego defektu, a drugi to czas od pojawienia się defektu do wystąpienia uszkodzenia jeśli defekt nie zostanie usunięty. Czas trwania drugiego etapu nazywamy czasem zwłoki. Pojęcia tego od lat używa się do modelowania przeglądów, lecz niniejsza praca wnosi do niego dwa nowe elementy. Po pierwsze, częstotliwość pojawiania się ukrytych defektów przedstawia jako funkcję czasu, jaki upłynął od ostatniej obsługi profilaktycznej, co pozwala na zamodelowanie wpływu działań obsługi profilaktycznej. Po drugie, traktuje prawdopodobieństwo wykrycia defektu podczas przeglądu jako funkcję czasu zwłoki, uznając, zgodnie z oczekiwaniami, że łatwość wykrycia defektu wzrasta pod koniec czasu zwłoki. Koncepcję modelowania zilustrowano przykładem numerycznym.

Modeling planned maintenance with non-homogeneous defect arrivals and variable probability of defect identification

For any time based maintenance, three maintenance activities were normally carried out at a planned maintenance epoch, that is, inspection by a check list, repair to defects identified or reported and other maintenance actions. Here the other maintenance actions are referred to activities such as changing oil, greasing, cleaning and calibrating etc and are simply called Preventive Maintenance (PM) actions. In this paper we modelled the impact of all these three activities upon the failure process using a concept called the delay time. The delay time defines a two-stage failure process with the first stage of a random defect arising and the second stage from this point of arising to failure if unattended to. The duration of the second stage is called the delay time. The concept has been used for inspection modelling for years, but two new contributions were made in this paper. First, we allow the rate of arrival of hidden defects be a function of the time since last PM, which models the influence of PM actions, and secondly the probability of defect identification at an inspection is a function of the delay time, which allows that the easiness of defect identification increases toward the end of the delay time as we would have expected. A numerical example is presented to demonstrate the modelling idea.

Strony