ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein
Our IF is 1.145
JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies

 


Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line

 




 

Impact Factor

Impact Factor

Impact Factor

Impact Factor

SCImago Journal & Country Rank

MOST CITED

Update: 2017-11-16

1. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 40
2. UTILIZATION OF DIFFUSION PROCESSES AND FUZZY LOGIC FOR VULNERABILITY ASSESSMENT
By: Valis, David; Pietrucha-Urbanik, Katarzyna

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 1   Pages: 48-55   Published: 2014

Times Cited: 28
3. SELECTED ASPECTS OF PHYSICAL STRUCTURES VULNERABILITY - STATE-OF-THE-ART
By: Valis, David; Vintr, Zdenek; Malach, Jindrich

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 189-194 Published: 2012

Times Cited: 26
4. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 24
5. RELIABILITY BASED OPTIMAL PREVENTIVE MAINTENANCE POLICY OF SERIES-PARALLEL SYSTEMS
By: Peng Wei; Huang Hong-Zhong; Zhang Xiaoling; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 2 Pages: 4-7 Published: 2009

Times Cited: 23
6. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Issue: 2   Pages: 135-144   Published:2012

Times Cited: 22
7. MODELLING OF PASSIVE VIBRATION DAMPING USING PIEZOELECTRIC TRANSDUCERS - THE MATHEMATICAL MODEL
By: Buchacz, Andrzej; Placzek, Marek; Wrobel, Andrzej

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 2   Pages: 301-306   Published: 2014

Times Cited: 21
8. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 21
9. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 18
10. PRODUCTIVITY AND RELIABILITY IMPROVEMENT IN TURNING INCONEL 718 ALLOY - CASE STUDY
By: Zebala, Wojciech; Slodki, Bogdan; Struzikiewicz, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15   Issue: 4   Pages: 421-426   Published: 2013

Times Cited: 17
 

 

Visits since 2016.06.29:
darmowe liczniki


Lei XIAO

Joint optimization of replacement and spare ordering for critical rotary component based on condition signal to date

It is widely accepted that condition-based replacement can not only make full use of components, but also decline inventory cost if the procurement of spare parts can be triggered upon accurate failure prediction. Most of the existing degradation or failure prediction models and approaches are population-based failures or suspensions, namely, to predict the failure time of a component, there are some failure or suspension histories of same type or similar components which can be used as reference. However, in practice, there exists the phenomenon in which no failure or suspension histories for some components can be used, what can be utilized is just the collected condition monitoring signals to date. In that case, failure time and probability are difficult to be estimated accurately. In this paper, a novel degradation prediction approach is introduced. Meantime, a new failure probability estimation function is developed based on component “service time” and “degradation extent” simultaneously. Then replacement and spare part ordering are jointly optimized according to the estimated failure probability. The optimization objective is to minimize long-run cost rate. Two bearing datasets are used to validate the proposed approach.

Wspólna optymalizacja wymiany i zamawiania części zamiennych dla krytycznego komponentu obrotowego na podstawie dotychczasowego sygnału stanu

Powszechnie przyjmuje się, że wymiana w oparciu o stan techniczny pozwala nie tylko na pełne wykorzystanie elementów składowych, ale także na zmniejszenie kosztów magazynowych (związanych z przechowywaniem zapasów) jeśli zamawianie części zamiennych da się powiązać z trafnym prognozowaniem uszkodzeń. Większość istniejących modeli i teorii predykcji degradacji lub uszkodzeń opiera się na danych populacyjnych o uszkodzeniach lub zawieszeniu pracy co oznacza, że czas uszkodzenia komponentu przewiduje się w odniesieniu do historii uszkodzeń lub zawieszeń pracy tego samego typu lub podobnego typu elementów składowych. Jednak w praktyce zdarza się, że dla niektórych komponentów nie istnieją historie uszkodzeń lub zawieszenia pracy, do których można by się odnieść; jedyne co można wykorzystać to zgromadzone dotychczas sygnały z monitorowania stanu. W takim przypadku, trudno jest ocenić dokładnie czas i prawdopodobieństwo wystąpienia uszkodzenia. W niniejszej pracy, przedstawiono nowatorskie podejście do przewidywania degradacji. Opracowano nową funkcję szacowania prawdopodobieństwa uszkodzenia opartą na jednoczesnym wykorzystaniu "czasu pracy" oraz "stopnia degradacji" komponentu. Następnie wspólnie zoptymalizowano procesy wymiany i zamawiania części zamiennych zgodnie z szacowanym prawdopodobieństwem wystąpienia uszkodzenia. Celem optymalizacji była minimalizacja długoterminowego wskaźnika kosztów . Poprawność proponowanego podejścia zweryfikowano z wykorzystaniem dwóch zbiorów danych dotyczących łożysk.
 

Reliability analysis of the products subject to competing failure processes with unbalanced data

Considering the degradation and catastrophic failure modes simultaneously, a general reliability analysis model was presented for the competing failure processes with unbalanced data. For the degradation process with highly unbalanced data, we developed a linear random-effects degradation model. The model parameters can be estimated based on a simple least square method. Furthermore, to fully utilize the degradation information, we considered the last measured times of the degradation units that had only one or two measured time points as zero-failure data or right-censored data of the catastrophic failure mode. Then the incomplete data set was composed of zero-failure data and catastrophic failure data. To analyze the incomplete data, the definition of the interval statistics was firstly given. The best linear unbiased parameter estimators of catastrophic failure were obtained based on the Gauss-Markov theorem. Then, the reliability function of the competing failure processes was given. The corresponding two-sided confidence intervals of the reliability were obtained based on a bootstrap procedure. Finally, a practical application case was examined by applying the proposed method and the results demonstrated its validity and reasonability.

Oparta na niezbilansowanych danych analiza niezawodności produktów podlegających procesom powstawania uszkodzeń konkurujących

W pracy przedstawiono ogólny model analizy niezawodności procesów związanych z powstawaniem uszkodzeń konkurujących, który pozwala na wykorzystanie danych niezbilansowanych oraz umożliwia jednoczesne uwzględnienie uszkodzeń wynikających z obniżenia charakterystyk i uszkodzeń katastroficznych. Opracowano liniowy model efektów losowych dla procesu degradacji o wysoce niezbilansowanych danych. Parametry tego modelu można określić na podstawie prostej metody najmniejszych kwadratów. Ponadto, aby w pełni wykorzystać informacje dotyczące obniżenia charakterystyk, dane pochodzące z ostatniego pomiaru jednostek podlegających degradacji, dla których przeprowadzono tylko jeden lub dwa pomiary, rozpatrywano jako dane o zerowym uszkodzeniu lub jako ucięte prawostronnie dane dotyczące uszkodzenia katastroficznego. W ten sposób otrzymano zbiór niepełnych danych składający się z danych o uszkodzeniach zerowych oraz danych o uszkodzeniach katastroficznych. Aby móc przeanalizować uzyskane niepełne dane, podano definicję statystyki przedziałowej. Najefektywniejszy nieobciążony estymator liniowy (BLUE) parametrów uszkodzeń katastroficznych uzyskano na podstawie twierdzenia Gaussa-Markowa. Następnie, podano wzór funkcji niezawodności procesów związanych z powstawaniem uszkodzeń konkurujących. Odpowiednie dwustronne przedziały ufności dla oszacowanej niezawodności uzyskano metodą bootstrapową. Na koniec, przedstawiono przypadek praktycznego zastosowania proponowanej metody, którego wyniki wykazały jej trafność i zasadność.

An integrated model of production scheduling and maintenance planning under imperfect preventive maintenance

For a successful company, machines are always required to work continuously to make more profit in a certain period. However, machines can be unavailable due to the scheduled maintenance activities or unexpected failures. Hence, a model connected production scheduling with maintenance planning for a production line which is composed of multiple machines is developed. Suppose preventive maintenance is imperfect and cannot renew all the machines. Age reduction factor and hazard rate increase factor are introduced to illustrate the imperfect character. Aperiodic preventive maintenance policy is adopted. Replacement as perfect maintenance could restore the machine “as good as new”. When and whether to perform replacement is based on a cost-time rate function which is defined to judge whether or not the preventive maintenance is economical. The objective of the joint model is to maximize the total profit which is composed of production value, production cost, maintenance cost (including the preventive maintenance cost and replacement cost), and tardiness cost (which is related to the job sequence and maintenance activities). To optimize the objective, immune clonal selection algorithm is utilized. The proposed model is validated by a numerical example.

Model zintegrowany harmonogramowania produkcji i planowania obsługi technicznej w ramach niepełnej konserwacji zapobiegawczej

Aby firma mogła działać z powodzeniem i przynosić większe zyski w danym okresie czasu, zainstalowane w niej maszyny muszą pracować w sposób nieprzerwany. Niestety, z powodu planowych działań obsługowych lub nieoczekiwanych awarii, maszyny są czasami wyłączane z produkcji. Dlatego też w niniejszym artykule opracowano model łączący harmonogramowanie produkcji z planowaniem obsługi technicznej dla linii produkcyjnej złożonej z wielu maszyn. W pracy założono, że konserwacja zapobiegawcza jest niepełna i nie prowadzi do odnowy wszystkich maszyn. Aby zilustrować jej niepełny charakter, wprowadzono pojęcia czynnika redukcji wieku oraz czynnika wzrostu wskaźnika zagrożenia. Przyjęto politykę nieokresowej konserwacji zapobiegawczej. Wymiana jako forma pełnej konserwacji pozwala na przywrócenie maszyny do stanu "fabrycznej nowości". Kiedy i czy należy przeprowadzić wymianę zależy od funkcji wskaźnika kosztu w stosunku do czasu, który pozwala ocenić, czy konserwacja zapobiegawcza jest opłacalna. Model zintegrowany ma na celu maksymalizację całkowitego zysku, który jest wypadkową wartości produkcji, kosztów produkcji, kosztów obsługi (w tym kosztów konserwacji zapobiegawczej oraz kosztów wymiany) i kosztów nieterminowego zakończenia zadania (ang. lateness, związanych z kolejnością wykonywanych zadań i czynności obsługowych). Aby zoptymalizować opisany cel, wykorzystano algorytm odpornościowej selekcji klonalnej Proponowany model zweryfikowano na przykładzie liczbowym.