ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein
Our IF is 1.806
JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies

 


Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line

 




 

Impact Factor

Impact Factor

Impact Factor

SCImago Journal & Country Rank

MOST CITED

Update: 2018-11-13

1. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 45
2. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 35
3. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 32
4. UTILIZATION OF DIFFUSION PROCESSES AND FUZZY LOGIC FOR VULNERABILITY ASSESSMENT
By: Valis, David; Pietrucha-Urbanik, Katarzyna

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 1   Pages: 48-55   Published: 2014

Times Cited: 30
5. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Issue: 2   Pages: 135-144   Published:2012

Times Cited: 28
6. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 28
7. SELECTED ASPECTS OF PHYSICAL STRUCTURES VULNERABILITY - STATE-OF-THE-ART
By: Valis, David; Vintr, Zdenek; Malach, Jindrich

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 189-194 Published: 2012

Times Cited: 26
8. RELIABILITY BASED OPTIMAL PREVENTIVE MAINTENANCE POLICY OF SERIES-PARALLEL SYSTEMS
By: Peng Wei; Huang Hong-Zhong; Zhang Xiaoling; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 2 Pages: 4-7 Published: 2009

Times Cited: 24
9. DIAGNOSTIC OF DIRECT CURRENT MACHINE BASED ON ANALYSIS OF ACOUSTIC SIGNALS WITH THE USE OF SYMLET WAVELET TRANSFORM AND MODIFIED CLASSIFIER BASED ON WORDS
By: Głowacz Adam

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 4   Pages: 554-558   Published: 2014

Times Cited: 23
10. MODELLING OF PASSIVE VIBRATION DAMPING USING PIEZOELECTRIC TRANSDUCERS - THE MATHEMATICAL MODEL
By: Buchacz, Andrzej; Placzek, Marek; Wrobel, Andrzej

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 2   Pages: 301-306   Published: 2014

Times Cited: 23

 

Visits since 2016.06.29:
darmowe liczniki



Task „Implementation of procedures ensuring  the originality of scientific papers published in the quarterly „Eksploatacja i Niezawodność – Maintenance and Reliability” financed under contract 532/P-DUN/2018 from the funds of the Minister of Science and Higher Education for science dissemination activities.


Holger Schmidt

Modelowanie procesów zachodzących w zbiorniku ciśnieniowym reaktora wodnego wrzącego podczas spadku ciśnienia w warunkach pracy awaryjnej

Kontrola poziomu mieszaniny dwufazowej wody w warunkach nagłego obniżenia ciśnienia w zbiorniku ciśnieniowym reaktora, wynikających z pracy awaryjnej jest ważnym aspektem analizy bezpieczeństwa reaktora jądrowego. Artykuł opisuje i weryfikuje wyniki symulacji zjawisk mechaniki płynów i wymiany ciepła w zbiorniku ciśnieniowym podczas gwałtownego spadku ciśnienia. W trakcie normalnej pracy zbiornik wypełniony jest do pewnego poziomu wodą w stanie nasycenia. Powyżej tego poziomu znajduje się para wodna będąca również w stanie nasycenia. W przypadku szybkiego spadku ciśnienia w zbiorniku np. w wyniku uszkodzenia rurociągu pary, woda w stanie ciekłym gwałtownie odparowuje, prowadząc do stanu nieustalonego w zbiorniku. Stan nieustalony oraz pojawienie się pary w rejonie zajmowanym wcześniej przez ciecz prowadzą do podwyższenia poziomu mieszaniny dwufazowej w zbiorniku. Artykuł prezentuje i porównuje kilka sposobów modelowania udziału fazy parowej oraz zależnych od tego udziału poziomu mieszaniny dwufazowej i wysokości słupa cieczy. Pierwszy z modeli został oparty o równanie analityczne przedstawiające średnią porowatość przepływu jako funkcję bezwymiarowej prędkości pary. Drugi i trzeci model jest oparty o analizę bezwymiarową i równania otrzymane na drodze empirycznej. Modele zostały zweryfikowane z niezależnymi danymi eksperymentalnymi. Modele reprezentują zbiornik ciśnieniowy reaktora obiektu testowego INKA (Integral Test Facility Karlstein) – obiektu dedykowanego do analizy eksperymentalnej reaktora KERENA – średniej mocy reaktora wodnego wrzącego, zaprojektowanego przez firmę Framatome. Porównanie wyników symulacji z danymi referencyjnymi wskazuje na zadowalającą zgodność obliczeń.

Modeling of the water level swell during depressurization of the reactor pressure vessel of the boiling water reactor in accidental conditions

 

Evaluation of the two-phase water mixture level in the case of the sudden depressurization of the Reactor Pressure Vessel resulting from an accident scenario is an important aspect in the reactor safety analysis. This paper discusses results of simulations of the water dynamics and heat transfer during the process of an abrupt depressurization of a vessel filled up to a certain level with saturated liquid water and with the rest of the vessel occupied by steam under saturation conditions. During the pressure decrease e.g. due to a break in the steam pipeline, the liquid water evaporates abruptly leading to strong transients in the vessel. These transients and the sudden emergence of void in the area occupied by liquid at the beginning, result in the elevation of the two-phase mixture. This work presents several approaches for modelling of the void fraction, the level swell and the collapse level. The first approach was based on the churn turbulent drift-flux correlation and an explicit analytic equation for the averge void fraction as a function of dimendsionless superficial vapor velocity. The second and the third aproaches were based on dimensionless analysis and purely empirical corelations. The models were verified against independent experimental data. The models represent the Reactor Pressure Vessel of the Integral Test Facility Karlstein (INKA) – a dedicated test facility for experimental investigation of KERENA – a new medium size Boiling Water Reactor design of Framatome. The comparison of the simulations results against the reference data shows a good agreement.

 

 

Modelowanie zachowania systemu kondensatora awaryjnego w przypadku awarii utraty chłodziwa w reaktorze BWR generacji III+

Kondensator awaryjny jest wymiennikiem ciepła złożonym z dużej ilości U-rurek lekko nachylonych względem pozycji horyzontalnej. Kolektor wlotowy kondensatora połączony jest pojedynczym przewodem z górną częścią zbiornika ciśnieniowego reaktora, w której w trakcie normalnej pracy reaktora znajduje się para wodna. Dolny kolektor połączony jest natomiast ze zbiornikiem ciśnieniowym poniżej lustra wody w stanie ciekłym. Wiązka rurek kondensatora, w trakcie krytycznej pracy reaktora, wypełniona jest zimną wodą i zanurzona jest w basenie z wodą o tej samej temperaturze. Wiązka rurek kondensatora oraz rur doprowadzających tworzą wraz ze zbiornikiem ciśnieniowym zespół naczyń połączonych. W razie sytuacji awaryjnej, w przypadku spadku poziomu wody w zbiorniku ciśnieniowym, woda z kondensatora spływa grawitacyjnie do zbiornika ciśnieniowego, a para, która dostaje się do U-rurek kondensuje na skutek wymiany ciepła z zimną wodą otaczającą kondensator od zewnątrz. W ten sposób kondensator działając pasywnie, zastępuje wysokociśnieniowy oraz niskociśnieniowy wtrysk wody chłodzącej do zbiornika ciśnieniowego. W artykule przedstawiono model systemu kondensatora awaryjnego wraz ze zbiornikiem ciśnieniowym. Model został wykonany przy użyciu niestosowanego wcześniej w tym zakresie języka Modelica oraz środowiska OpenModelica. Następnie opracowany kod został zweryfikowany poprzez porównanie wyników z pomiarami eksperymentalnymi przeprowadzonymi na obiekcie INKA (Integral Test Facility Karlstein) – obiekcie testowym dedykowanym badaniom nad pasywnymi systemami bezpieczeństwa reaktora KERENA – reaktora BWR generacji III+ opracowanego przez firmę Framatome.

Modeling of emergency condenser system response to loss of coolant accident in a BWR III+ generation

Emergency Condenser (EC) is a heat exchanger composed of a large number of slightly inclined U-tubes arranged horizontally. The inlet header of the condenser is connected with the top part of the Reactor Pressure Vessel (RPV), which is occupied by steam during critical operation. The lower header in turn is linked with the RPV below the liquid water level during normal operation of the reactor. The tube bundle is filled with cold water and it is located in a vessel filled with water of the same temperature. Thus, the EC and RPV form together a system of communicating vessels. In case of an emergency and a decrease of the water level in the RPV, the water flows gravitationally from U-tubes to the RPV. At the same time the steam from the RPV enters to the EC and condenses due to its contact with cold walls of the EC. The condensate flows then back to the RPV due to the tubes inclination. Hence, the system removes heat from the RPV and serves as a high- and low-pressure injection system at the same time. In this paper a model of the EC system is presented. The model was developed with Modelica modeling language and OpenModelica environment which had not been used in this scope before. The model was verified against experimental data obtained during tests performed at INKA (Integral Test Facility Karlstein) ̶ a test facility dedicated for investigation of the passive safety systems performance of KERENA ̶ generation III+ BWR developed by Framatome.