ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein
Our IF is 1.145
JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies

 


Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line

 




 

Impact Factor

Impact Factor

Impact Factor

Impact Factor

SCImago Journal & Country Rank

MOST CITED

Update: 2017-11-16

1. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 40
2. UTILIZATION OF DIFFUSION PROCESSES AND FUZZY LOGIC FOR VULNERABILITY ASSESSMENT
By: Valis, David; Pietrucha-Urbanik, Katarzyna

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 1   Pages: 48-55   Published: 2014

Times Cited: 28
3. SELECTED ASPECTS OF PHYSICAL STRUCTURES VULNERABILITY - STATE-OF-THE-ART
By: Valis, David; Vintr, Zdenek; Malach, Jindrich

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 189-194 Published: 2012

Times Cited: 26
4. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 24
5. RELIABILITY BASED OPTIMAL PREVENTIVE MAINTENANCE POLICY OF SERIES-PARALLEL SYSTEMS
By: Peng Wei; Huang Hong-Zhong; Zhang Xiaoling; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 2 Pages: 4-7 Published: 2009

Times Cited: 23
6. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Issue: 2   Pages: 135-144   Published:2012

Times Cited: 22
7. MODELLING OF PASSIVE VIBRATION DAMPING USING PIEZOELECTRIC TRANSDUCERS - THE MATHEMATICAL MODEL
By: Buchacz, Andrzej; Placzek, Marek; Wrobel, Andrzej

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 2   Pages: 301-306   Published: 2014

Times Cited: 21
8. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 21
9. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 18
10. PRODUCTIVITY AND RELIABILITY IMPROVEMENT IN TURNING INCONEL 718 ALLOY - CASE STUDY
By: Zebala, Wojciech; Slodki, Bogdan; Struzikiewicz, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15   Issue: 4   Pages: 421-426   Published: 2013

Times Cited: 17
 

 

Visits since 2016.06.29:
darmowe liczniki


Bayesian method

Reliability modelling on two-dimensional life data using bivariate weibull distribution: with case study of truck in mines

An engineering system can exhibit two- or multi-dimensions in its lifetime. As the classical univariate distribution cannot model this multi-dimensional characteristic, it is necessary to extend it to multivariate distribution in order to capture the multi-dimensional characteristics. This paper proposes a bivariate Weibull distribution that combines two classical Weibull models by a common exponent. The common exponent can represent the correlation between the two dimensions. A ratio likelihood test is proposed to test the significance of the correlation between the two dimensions. To solve the parameter estimation problem, this paper suggests a Bayesian method. Moreover, a goodness of fit test method is developed to visually check the fitness of the model. A case study considering mining trucks is presented to apply the bivariate Weibull distribution to model the two-dimensional life data.

Modelowanie niezawodnościowe dwuwymiarowych danych dotyczących okresu eksploatacji z wykorzystaniem dwuwymiarowego rozkładu Weibulla z badań nad wywrotkami kopalnianymi

Systemy inżynieryjne można charakteryzować za pomocą dwóch lub więcej wymiarów dotyczących okresu ich eksploatacji (np. przebieg i czas pracy pojazdu). Ponieważ klasyczny rozkład jednowymiarowy nie wystarcza do zamodelowania tej wielowymiarowej charakterystyki, konieczne jest wykorzystanie rozkładu wielowymiarowego, który pozwala uchwycić wielowymiarowość cyklu życia systemu. W artykule zaproponowano dwuwymiarowy rozkład Weibulla, który łączy w sobie dwa klasyczne modele Weibulla za pomocą wspólnego wykładnika. Wspólny wykładnik może reprezentować korelację między dwoma wymiarami. Zaproponowano test ilorazu wiarygodności, który umożliwia badanie istotności korelacji pomiędzy dwoma wymiarami. Do rozwiązania problemu estymacji parametrów zastosowano metodę bayesowską. Ponadto opracowano metodę badania dopasowania modelu do danych empirycznych służącą do wizualizacji dopasowania modelu. Przedstawiono studium przypadku dotyczące wywrotek kopalnianych, w którym dwuwymiarowy rozkład Weibulla zastosowano do modelowania dwuwymiarowych danych dotyczących okresu eksploatacji tych pojazdów.

A bayesian approach for sealing failure analysis considering the non-competing relationship of multiple degradation processes

Degradation analysis is an effective method for reliability analysis when failure time data is rare or hard to observe. Multiple degradation analysis with competing risk model is often used to implement the degradation analysis. However, in reality, the failure of a system is often a result of a combination of multiple degradation processes, such as the sum of multiple degradations. To handle this non-competing relationship of multiple degradation processes, this paper presents a new reliability model for multiple degradation processes analysis. The proposed model is demonstrated through a case-study of a spool valve. In this paper, the gamma process is adopted to construct the reliability model. The Bayesian method is used to obtain the estimations of model parameters and reliability indexes by taking account of uncertainty. The results can then be further used as valuable information for further degradation analysis and decision-making considering uncertainty.

Zastosowanie metody Bayesa do analizy uszkodzeń uszczelnień z uwzględnieniem współwystępujących procesów degradacji o charakterze niekonkurującym

Analiza degradacji jest skuteczną metodą analizy niezawodnościowej w przypadkach gdy dane są skąpe lub trudne do zaobserwowania. W badaniach często wykorzystuje się analizę współwystępujących degradacji z zastosowaniem modelu zagrożeń konkurujących. Jednak w rzeczywistości, awaria systemu często jest wynikiem wystąpienia degradacji niekonkurujących, t.j. wynikiem sumy lub kombinacji współwystępujących procesów degradacji. Aby uwzględnić tę relacje między niekonkurującymi procesami degradacji, w artykule przedstawiono nowy model niezawodności służący do analizy współwystępujących procesów degradacji. Proponowany model zilustrowano za pomocą studium przypadku rozdzielnika suwakowego. Przedstawiony w pracy model niezawodności skonstruowano w oparciu o proces gamma. Do oszacowania parametrów modelu oraz indeksów niezawodności zastosowano metodę Bayesa z uwzględnieniem niepewności. Uzyskane wyniki można wykorzystać w przyszłości jako cenne dane do dalszej analizy degradacji i podejmowania decyzji z uwzględnieniem niepewności.

Reliability growth estimation for unmanned aerial vechicle during flight-testing phases

It is necessary for airplanes to be fl ight-tested during the development process, and they should pass the testing/failurefi nding/improvement/re-testing reliability growth process during the fl ight-testing phases to ensure its reliability. However, due to airplane complexity and the high costs of fl ight-testing, the reliability growth testing is usually done with small samples. It is thus diffi cult to estimate the reliability growth during the fl ight-testing phases. In this paper, Bayesian method for binomial reliability growth based on the Dirichlet prior distribution is applied to reliability growth estimation, and the parameters of the posterior distribution are calculated by using the simulation method of Markov-Chain Monte Carlo. The method is applied to the Unmanned Aerial Vehicle test fl ight phases, and the example shows that the method based on the Dirichlet prior distribution can save the fl ight-testing time. It is easy to confi rm the parameters of the prior distribution by using the prior information. The proposed method is suitable for reliability growth testing estimation during fl ight-testing stages.

Ocena wzrostu niezawodności w bezzałogowym statku latającym podczas kolejnych faz badania w locie

Samoloty muszą być testowane w locie podczas procesu ich opracowywania i dla zapewnienia niezawodności powinny przejść, podczas faz badania w locie, proces wzrostu niezawodności obejmujący kolejne etapy: testowania, poszukiwania ukrytego uszkodzenia, udoskonalania i ponownego testowania. Jednakże z powodu złożonej budowy samolotów i wysokich kosztów badań w locie, badania wzrostu niezawodności z reguły przeprowadza się na małych próbkach. Trudno jest zatem ocenić wzrost niezawodności w kolejnych fazach badań w locie. W niniejszej pracy do estymacji wzrostu niezawodności zastosowano metodę bayesowską dla dwumianowego wzrostu niezawodności opartą na rozkładzie a priori Dirichleta oraz obliczono parametry rozkładu a posteriori wykorzystując metodę symulacji Markov-Chain Monte Carlo. Metodę zastosowano w kolejnych fazach badań w locie bezzałogowego statku latającego (Unmanned Aerial Vehicle), a użyty przykład pokazuje, iż metoda oparta na rozkładzie a priori Dirichleta może skrócić czas badań w locie. Parametry rozkładu a priori łatwo jest potwierdzić na podstawie uprzednio znanych informacji. Proponowana metoda nadaje się do oceny badań wzrostu niezawodności podczas kolejnych etapów badań w locie.