ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein
Our IF is 1.383
JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies

 


Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line

 




 

Impact Factor

Impact Factor

Impact Factor

SCImago Journal & Country Rank

MOST CITED

Update: 2018-11-13

1. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 45
2. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 35
3. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 32
4. UTILIZATION OF DIFFUSION PROCESSES AND FUZZY LOGIC FOR VULNERABILITY ASSESSMENT
By: Valis, David; Pietrucha-Urbanik, Katarzyna

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 1   Pages: 48-55   Published: 2014

Times Cited: 30
5. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Issue: 2   Pages: 135-144   Published:2012

Times Cited: 28
6. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 28
7. SELECTED ASPECTS OF PHYSICAL STRUCTURES VULNERABILITY - STATE-OF-THE-ART
By: Valis, David; Vintr, Zdenek; Malach, Jindrich

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 189-194 Published: 2012

Times Cited: 26
8. RELIABILITY BASED OPTIMAL PREVENTIVE MAINTENANCE POLICY OF SERIES-PARALLEL SYSTEMS
By: Peng Wei; Huang Hong-Zhong; Zhang Xiaoling; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 2 Pages: 4-7 Published: 2009

Times Cited: 24
9. DIAGNOSTIC OF DIRECT CURRENT MACHINE BASED ON ANALYSIS OF ACOUSTIC SIGNALS WITH THE USE OF SYMLET WAVELET TRANSFORM AND MODIFIED CLASSIFIER BASED ON WORDS
By: Głowacz Adam

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 4   Pages: 554-558   Published: 2014

Times Cited: 23
10. MODELLING OF PASSIVE VIBRATION DAMPING USING PIEZOELECTRIC TRANSDUCERS - THE MATHEMATICAL MODEL
By: Buchacz, Andrzej; Placzek, Marek; Wrobel, Andrzej

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 2   Pages: 301-306   Published: 2014

Times Cited: 23

 

Visits since 2016.06.29:
darmowe liczniki



Task „Implementation of procedures ensuring  the originality of scientific papers published in the quarterly „Eksploatacja i Niezawodność – Maintenance and Reliability” financed under contract 532/P-DUN/2018 from the funds of the Minister of Science and Higher Education for science dissemination activities.


artificial neural networks

Wykorzystanie dyskretnej transformaty falkowej i probabilistycznych sieci neuronowych w diagnostyce silników spalinowych

W artykule przedstawiono próbę oceny stanu pracy silnika w warunkach symulowanego braku dopływu paliwa do poszczególnych cylindrów oraz próbę wykrywania uszkodzeń zaworów silnika spalinowego za pomocą sygnału drgań rejestrowanego na kadłubie silnika. Obiektem badań był czterocylindrowy silnik spalinowy. W badaniach za źródło informacji o stanie silnika przyjęto sygnały przyspieszeń drgań rejestrowane na kadłubie silnika ZI. W przypadku diagnozowania silnika spalinowego metodami drganiowymi nie można zapominać o występowaniu wielu źródeł drgań, co jest przyczyną wzajemnego zakłócania symptomów uszkodzeń. Ze względu na konieczność analizy sygnałów niestacjonarnych i impulsowych w niniejszej pracy wykorzystano dyskretną transformatę falkową (DWT). Z przeprowadzonych badań wynika, że istnieje możliwość wykorzystania probabilistycznych sztucznych sieci neuronowych do oceny procesu dopływu paliwa do cylindrów oraz stanu zaworów w silnikach spalinowych.

Discrete wavelet transform and probabilistic neural network in ic engine fault diagnosis

The article presents an attempt of evaluating the state of engine operation under simulated shortage of fuel in? ow to individual cylinders and the attempt to detect the valve faults in the engine by using the vibroacoustic signal registered on the engine block. The object of research was a four-cylinder combustion engine. The vibration acceleration signals registered on the engine block ZI were assumed the source of information on the engine condition. In case of diagnosing combustion engines by vibration methods, the presence of numerous sources of vibration cannot be neglected, which are the reason for reciprocal interference of symptoms of fault. Owing to the necessity of analyzing non-stationary and impulse signals, a discrete wavelet transform (DWT) has been applied in this study. As results from the research, there is a possibility of using probabilistic artificial neural networks to assess the process of fuel inflow to cylinders and the condition of the valves in the combustion engines.

Wykorzystanie histogramów widma i cepstrum drgań korpusu silnika do budowy wzorców luzu w układzie tłok-cylinder dla klasyfikatora neuronowego RBF

W artykule przedstawiono próbę oceny zużycia złożenia tłok-cylinder za pomocą sygnału drgań rejestrowanego na kadłubie silnika ZI. Obiektem badań był czterocylindrowy silnik spalinowy o pojemności 1,1 dm3. Diagnozowanie silnika spalinowego metodami drganiowymi jest szczególnie utrudniona ze względu na występowanie wielu źródeł drgań, co jest przyczyną wzajemnego zakłócania symptomów uszkodzeń. Diagnozowanie uszkodzeń silników metodami wibroakustycznymi jest trudne także ze względu na konieczność analizy sygnałów niestacjonarnych i impulsowych. W procesie diagnozowania stosuje się różne sposoby selekcji sygnału użytecznego. Zmiany stanu technicznego silnika wywołane wczesnymi fazami jego zużycia są trudne do wykrycia ze względu na maskowania usterek mechanicznych przez adaptacyjne układy sterowania silnika. Z przeprowadzonych badań wynika, że istnieje możliwość wykorzystania sztucznych sieci neuronowych do oceny luzu w układzie tłok-cylinder.

Application of cepstrum and spectrum histograms of vibration engine body for setting up the clearance model of the piston-cylinder assembly for RBF neural classifier

The paper presents an attempt to evaluate the wear of piston-cylinder assembly with the aid of vibration signal recorded on spark ignition (SI) engine body. The subject of the study was a four-cylinder combustion engine 1.1 dm3. Diagnosing combustion engines with vibration methods is specifically difficult due to the presence of multiple sources of vibration interfering with the symptoms of damages. Diagnosing engines with vibro-accoustic methods is difficult also due to the necessity to analyse non-stationary and transient signals. Various methods for selection of usable signal are utilised in the diagnosing process. Changes of the engine technical condition resulting from early stages of wear are difficult to detect for the effect of mechanical defect masking by adaptive engine control systems. According to the studies carried out, it is possible to utilise artificial neural networks for the evaluation of the clearance in piston-cylinder assembly.

Przewidywanie rzeczywistego wskaźnika zwrotów towaru z uwzględnieniem poziomu odporności produktu

Niezawodność i wskaźniki zwrotów towaru przewiduje się tradycyjnie przy użyciu norm obciążeniowych i/lub stosując przyspieszone badania trwałości. Jednakże, często wartości niezawodności i wskaźnika zwrotów przewidywane za pomocą tych metod różnią się od ich wartości rzeczywistych. Główną tego przyczyną jest fakt, że produkty nie ulegają awarii wyłącznie pod wpływem czynników obciążeniowych wymienianych w normach i/lub wykorzystywanych w przyspieszonych badaniach trwałości. Istnieją dodatkowe czynniki wpływające na intensywność uszkodzeń, takie jak wyładowania elektrostatyczne, wstrząsy termiczne, spadki, przerwy w dostawie i zmiany napięcia, czynniki jakościowe, itp. Te czynniki także powinny być w jakiś sposób uwzględnione przy dokonywaniu predykcji na etapie badań i rozwoju (R&D). Dlatego też zwiększenie trafności predykcji niezawodności i wskaźników zwrotów towaru wymaga metody, która uwzględniałaby tego typu czynniki. W niniejszej pracy opracowaliśmy parametr, nazwany przez nas "czynnikiem poziomu odporności", który pozwala na uwzględnienie takich czynników, a następnie wykorzystaliśmy ów parametr w połączeniu z tradycyjnymi metodami przewidywania niezawodności. W szczególności, przedstawione podejście bierze pod uwagę jakościowe badania niezawodnościowe wykonywane na etapie R&D łącząc je z badaniami trwałościowymi przy użyciu sztucznych sieci neuronowych ANN. Dzięki temu, w podejściu tym uzyskuje się bardziej trafne predykcje niż w tradycyjnych metodach prognozowania. Jesteśmy przekonani, że użycie powyższego modelu predykcyjnego umożliwi analitykom bardziej trafne wyznaczanie niezawodności oraz wskaźników zwrotów wytwarzanych przez nich produktów.

Incorporating product robustness level in field return rate predictions

Reliability and return rate prediction of products are traditionally achieved by using stress based standards and/or applying accelerated life tests. But frequently, predicted reliability and return rate values by using these methods differ from the field values. The primary reason for this is that products do not only fail due to the stress factors mentioned in the standards and/or used in accelerated life tests. There are additional failure factors, such as ESD, thermal shocks, voltage dips, interruptions and variations, quality factors, etc. These factors should also be considered in some way when predictions are made during the R&D phase. Therefore, a method should be used which considers such factors, thus increasing the accuracy of the reliability and return rate prediction. In this paper, we developed a parameter, which we call Robustness Level Factor, to incorporate such factors, and then we combined this parameter with traditional reliability prediction methods. Specifically, the approach takes into account qualitative reliability tests performed during the R&D stage and combines them with life tests by using Artificial Neural Networks (ANN). As a result, the approach gives more accurate predictions compared with traditional prediction methods. With this prediction model, we believe that analysts can determine the reliability and return rate of their products more accurately.

Eksploatacyjne miary jakości pojazdów w zastosowaniu do oceny usług transportowych z wykorzystaniem sztucznych sieci neuronowych

Eksploatacyjne miary jakości pojazdów są istotnym elementem wykorzystywanym do oceny realizacji usług transportowych. W praktyce mamy do czynienia z wieloma metodami związanymi z eksploatacyjną oceną pojazdów. Scharakteryzowano je w artykule. Metody sztucznej inteligencji, a zwłaszcza sztuczne sieci neuronowe, również mogą być z powodzeniem wykorzystane do tego celu, a zwłaszcza przy podejmowaniu decyzji w procesach oceny jakości maszyn, w tym pojazdów samochodowych. Zastosowanie metod, które pozwalają wspomagać proces decyzyjny na podstawie faktów jest niezmiernie istotne z punktu widzenia wiarygodności i obiektywności oceny. Metody te mogą być również wykorzystane w odniesieniu do eksploatacji pojazdów w zastosowaniu do oceny usług transportowych. W artykule przedstawiono metodę wykorzystania sztucznych sieci neuronowych do eksploatacyjnej oceny pojazdów wykorzystywanych w usługach transportowych towarów. Podstawę weryfikacji metody stanowiły badania eksperymentalne przeprowadzone w przedsiębiorstwie produkującym produkty mleczarskie, współpracującym z firmami transportowymi, dostarczającymi wyroby do produkcji. Uzyskane wyniki potwierdziły z 99-procentowym prawdopodobieństwem wysoką skuteczność proponowanej metody w dokonywaniu oceny usług transportowych z wykorzystaniem eksploatacyjnych miar jakości pojazdów.

Operational quality measures of vehicles applied for the transport services evaluation using artificial neural networks

Operational vehicle quality measures are an important element used to evaluate the performance of transport services. In practice, there are many methods involved in the operational evaluation of vehicles. They are characterized in this article. Artificial Intelligence methods, especially artificial neural networks, can also be successfully used for this purpose, and especially when deciding on quality assessment processes for machines, including motor vehicles. The use of methods to support decision-making based on facts is extremely important for the credibility and objectivity of the evaluation. These methods can also be used in relation to the use of vehicles in the assessment of transport services. The article presents the method of using artificial neural networks for the operational evaluation of vehicles used in freight transport services. The basis for the verification of the method was an experimental research carried out at a company making dairy products, cooperating with transport companies, supplying products for the production process. The results obtained from the operation of vehicles from the studied companies have confirmed, at the probability level of 99%, high efficiency of the proposed method in evaluating transport services using operational vehicle quality measures.