ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein
Our IF is 1.145
JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies

 


Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line

 




 

Impact Factor

Impact Factor

Impact Factor

Impact Factor

SCImago Journal & Country Rank

MOST CITED

Update: 2017-08-25

1. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 36
2. UTILIZATION OF DIFFUSION PROCESSES AND FUZZY LOGIC FOR VULNERABILITY ASSESSMENT
By: Valis, David; Pietrucha-Urbanik, Katarzyna

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 1   Pages: 48-55   Published: 2014

Times Cited: 28
3. SELECTED ASPECTS OF PHYSICAL STRUCTURES VULNERABILITY - STATE-OF-THE-ART
By: Valis, David; Vintr, Zdenek; Malach, Jindrich

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 189-194 Published: 2012

Times Cited: 26
4. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 23
5. RELIABILITY BASED OPTIMAL PREVENTIVE MAINTENANCE POLICY OF SERIES-PARALLEL SYSTEMS
By: Peng Wei; Huang Hong-Zhong; Zhang Xiaoling; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 2 Pages: 4-7 Published: 2009

Times Cited: 23
6. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Issue: 2   Pages: 135-144   Published:2012

Times Cited: 20
7. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 18
8. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 17
9. ANALYSIS OF TRANSPORTATION SYSTEM WITH THE USE OF PETRI NETS
By: Kowalski, Marcin; Magott, Jan; Nowakowski, Tomasz; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Volume: 15   Issue: 1   Pages: 48-62   Published: 2011

Times Cited: 15
10. PRODUCTIVITY AND RELIABILITY IMPROVEMENT IN TURNING INCONEL 718 ALLOY - CASE STUDY
By: Zebala, Wojciech; Slodki, Bogdan; Struzikiewicz, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15   Issue: 4   Pages: 421-426   Published: 2013

Times Cited: 14
 

 

Visits since 2016.06.29:
darmowe liczniki


Adam GLOWACZ

Recognition of acoustic signals of induction motor using fft, smofs-10 and lsvm

A correct diagnosis of electrical circuits is very essential in industrial plants. An article deals with a recognition method of early fault detection of induction motor. The described approach is based on patterns recognition. Acoustic signals of specific induction motor are analyzed patterns. Acoustic signals include information about motor state. The analysis of the patterns was conducted for three states of induction motor using Fast Fourier Transform (FFT), shortened method of frequencies selection (SMoFS-10) and Linear Support Vector Machine (LSVM). The results of calculations suggest that the method is efficient and can be also used for diagnostic purposes.

Rozpoznawanie sygnałów akustycznich silnika indukcyjnego z zastosowaniem fft, smofs-10 i lsvm

Prawidłowa diagnostyka obwodów elektrycznych jest bardzo istotna w zakładach przemysłowych. Artykuł zajmuje się metodą rozpoznawania stanów przedawaryjnych silnika indukcyjnego. Opisane podejście jest oparte na rozpoznawaniu wzorców. Sygnały akustyczne określonego silnika indukcyjnego są badanymi wzorcami. Sygnały akustyczne zawierają informację o stanie silnika. Analiza wzorców została przeprowadzona dla trzech stanów silnika indukcyjnego używając FFT, skróconej metody wyboru częstotliwości (SMoFS-10) i liniowej maszyny wektorów wspierających (LSVM). Wyniki obliczeń sugerują, że metoda jest skuteczna i może być również zastosowana dla celów diagnostycznych.

Recognition of armature current of DC generator depending on rotor speed using FFT, MSAF-1 and LDA

Recognition of states of electrical systems is very important in industrial plants. Article describes a recognition method of early fault detection of DC generator. The proposed approach is based on an analysis of the patterns. These patterns are the armature currents of selected electrical machine. Information contained in signals of armature current is depending on generator state. Researches were carried out for four states of generator with the use of Fast Fourier Transform (FFT), method of selection of amplitudes of frequencies (MSAF-1) and Linear Discriminant Analysis (LDA). The results of analysis show that the method is efficient and can be used to protect DC generators. This method was verified with the aid of acoustic signals recognition method.

Rozpoznawanie sygnałów prądu twornika generatora prądu stałego w zależności od prędkości obrotowej wirnika z zastosowaniem FFT, MSAF-1 i LDA

Rozpoznawanie stanów układów elektrycznych jest bardzo ważne w zakładach przemysłowych. W artykule opisano metodę rozpoznawania stanów przedawaryjnych generatora prądu stałego. Proponowane podejście jest oparte na badaniu wzorców. Wzorce te są prądami twornika wybranej maszyny elektrycznej. Informacja zawarta w sygnałach prądu twornika jest zależna od stanu generatora. Przeprowadzono badania dla czterech stanów generatora z zastosowaniem FFT, metody wyboru amplitud częstotliwości (MSAF-1) i liniowej analizy dyskryminacyjnej (LDA). Wyniki analizy pokazują, że metoda jest skuteczna i metoda może być stosowana do ochrony generatorów prądu stałego. Metoda została zweryfikowana za pomocą metody rozpoznawania sygnałów akustycznych.

Diagnostyka maszyny prądu stałego oparta na analizie sygnałów akustycznych z zastosowaniem transformacji falkowej symlet i zmodyfikowanego klasyfikatora opartego na słowach

W pracy autor zaproponował oryginalne podejście do wykrywania, lokalizacji usterek występujących w maszynie prądu stałego. Opisano implementację systemu do diagnostyki maszyn prądu stałego. System przeprowadzał analizę sygnałów akustycznych maszyny prądu stałego. Przeprowadzono badania dla dwóch stanów maszyny prądu stałego. Badania zostały przeprowadzone dla algorytmów przetwarzania danych: Transformacji falkowej Symlet i zmodyfikowanego klasyfikatora opartego na słowach. Proces tworzenia wzorca do rozpoznawania został przeprowadzony dla 10 próbek dźwięku. Proces identyfikacji został przeprowadzony dla 40 próbek dźwięku. Opisana implementacja systemu może być przydatna do ochrony maszyn. Ponadto podejście takie pozwoli zmniejszyć koszty utrzymania i liczbę uszkodzonych maszyn.

Diagnostics of direct current machine based on analysis of acoustic signals with the use of symlet wavelet transform and modified classifier based on words

In the paper author proposed an original approach for detection and localization of faults occurring in Direct Current machine. A system for diagnosing DC machines was described. The system performed an analysis of the acoustic signals of DC machine. Researches were conducted for two states of Direct Current machines. The studies were conducted for the algorithms of data processing: Symlet wavelet transform and modified classifier based on words. A pattern creation process has been carried out for the 10 sound samples. An identification process has been carried out for the 40 sound samples. The described implementation of the system may be useful for protecting machines. Moreover, this approach will reduce the cost of maintenance and the number of damaged machines.

Recognition of monochrome thermal images of synchronous motor with the application of quadtree decomposition and backpropagation neural network

Technological progress and decreasing prices of thermographic cameras make their application to monitoring and assessing a technical state of machines is profitable. In article is described the recognition method of imminent failure conditions of synchronous motor. The proposed approach is based on a study of thermal images of the rotor. Extraction of relevant diagnostic information coded in thermal images is important for diagnosing of machine. It can be performed with the use of selected methods of analysis and recognition of images. Studies were carried out for two conditions of motor with the application of quadtree decomposition and backpropagation neural network. The experiments show that the method can be useful for protection of synchronous motor. Moreover, this method can be used to diagnose equipments in steelworks and other industrial plants.

Rozpoznawanie monochromatycznych obrazów cieplnych silnika synchronicznego z zastosowaniem kwadratowo-drzewowej dekompozycji i sieci neuronowej

Postęp techniczny i malejące ceny kamer termowizyjnych sprawiają, że ich zastosowanie do monitorowania i oceny stanu technicznego maszyn jest opłacalne. W artykule opisano metodę rozpoznawania stanów przedawaryjnych silnika synchronicznego. Proponowane podejście jest oparte na badaniu obrazów cieplnych wirnika. Ekstrakcja istotnej informacji diagnostycznej zakodowanej w obrazach cieplnych jest ważna dla diagnozowania maszyny. Zabieg taki może być wykonany z użyciem wybranych metod analizy i rozpoznawania obrazów. Przeprowadzono badania dla dwóch stanów silnika z zastosowaniem kwadratowo-drzewowej dekompozycji i sieci neuronowej z algorytmem wstecznej propagacji błędów. Eksperymenty pokazują, że metoda może być przydatna do zabezpieczania silników synchronicznych. Ponadto metoda może być stosowana do diagnozowania urządzeń w hutach i innych zakładach przemysłowych.