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Diagnosis strategy for complex systems based 
on reliability analysis and MADM under epistemic uncertainty

Strategia diagnostyki dla systemów złożonych oparta na analizie 
niezawodności oraz metodach wieloatrybutowego podejmowania 

decyzji MADM w warunkach niepewności epistemologicznej
Fault tolerant technology has greatly improved the reliability of train-ground wireless communication system (TWCS). However, 
its high reliability caused the lack of sufficient fault data and epistemic uncertainty, which increased significantly challenges in 
system diagnosis. A novel diagnosis method for TWCS is proposed to deal with these challenges in this paper, which makes the best 
of reliability analysis, fuzzy sets theory and MADM. Specifically, it adopts dynamic fault tree to model their dynamic fault modes 
and evaluates the failure rates of the basic events using fuzzy sets theory and expert elicitation to hand epistemic uncertainty. Fur-
thermore, it calculates some quantitative parameters information provided by reliability analysis using algebraic technique and 
Bayesian network to overcome some disadvantages of the traditional methods. Diagnostic importance factor, sensitivity index and 
heuristic information values are considered comprehensively to obtain the optimal diagnostic ranking order of TWCS using an im-
proved TOPSIS. The proposed method takes full advantages of the dynamic fault tree for modelling, fuzzy sets theory for handling 
uncertainty and MADM for the best fault search scheme, which is especially suitable for fault diagnosis of the complex systems.

Keywords:	 Train-ground wireless communication system, Reliability analysis, MADM, Epistemic uncertainty, 
TOPSIS.

Technologia odporna na błędy przyczyniła się do dużej poprawy niezawodności systemów łączności bezprzewodowej pociąg-
ziemia (TWCS). Jednakże wysoka niezawodność tych systemów pociąga za sobą brak wystarczających danych o uszkodzeniach 
oraz niepewność epistemologiczną, której zwiększenie stworzyło liczne wyzwania w zakresie diagnostyki systemów. W niniejszej 
pracy zaproponowano nowatorską metodę diagnozowania TWCS, która odpowiada na owe wyzwania wykorzystując analizę 
niezawodności, teorię zbiorów rozmytych oraz metody wieloatrybutowego podejmowania decyzji MADM. W szczególności, za-
proponowana metoda wykorzystuje dynamiczne drzewa błędów do modelowania dynamicznych stanów niezdatności oraz pozwala 
na oszacowanie częstości występowania uszkodzeń dla zdarzeń podstawowych z wykorzystaniem teorii zbiorów rozmytych oraz 
oceny eksperckiej, rozwiązując w ten sposób problem niepewności epistemologicznej. Ponadto, metoda ta umożliwia obliczenie 
niektórych parametrów ilościowych na podstawie informacji pochodzących z analizy niezawodności, z zastosowaniem techniki 
algebraicznej oraz sieci bayesowskich, co pozwala na obejście ograniczeń tradycyjnie stosowanych metod. W artykule przeprowa-
dzono szczegółową analizę czynnika ważności diagnostycznej, wskaźnika czułości oraz wartości informacji heurystycznej w celu 
określenia optymalnej kolejności działań diagnostycznych dla TWCS z zastosowaniem poprawionej wersji TOPSIS Proponowana 
metoda w pełni wykorzystuje zalety metody drzewa błędów do modelowania, teorii zbiorów rozmytych – do rozwiązywania pro-
blemu niepewności oraz MADM – do wyznaczania najlepszej metody wyszukiwania niezdatności, co jest szczególnie przydatne w 
przypadku diagnozowania niezdatności systemów złożonych.

Słowa kluczowe:	 system łączności bezprzewodowej pociąg-ziemia, analiza niezawodności, MADM, niepewność 
epistemologiczna, TOPSIS.

1. Introduction

Train-ground wireless communication system (TWCS) is a safe-
ty-critical subsystem of urban rail transit and its reliability has a direct 
effect on the stability and safety of the train operation system. For fast 
technology innovation, the performance of TWCS has been greatly 
improved with the wide application of high dependability safeguard 
techniques on one hand, but on the other hand, its complexity of 
technology and structure increasing significantly raise challenges in 
system maintenance and diagnosis. These challenges are shown as 
follows. (1) Lack of sufficient fault samples. Fault samples integrity 
has a significant influence on the system diagnostic performance. 

However, it is extremely difficult to obtain mass fault samples which 
need many case studies in practice due to some reasons. One reason 
is imprecise knowledge in an early stage of the new product design. 
The other factor is the changes of the environmental conditions which 
may cause that the historical fault data cannot represent the future fail-
ure behaviours. (2) Failure dependency of components. TWCS adopts 
many redundancy units and fault tolerance techniques to improve its 
reliability. So the behaviours of components in the system and their 
interactions, such as failure priority, sequentially dependent failures, 
functional dependent failures, and dynamic redundancy management, 
should be taken into account. (3) Uncertainty of diagnostic test cost for 
components. Usually, different components have different diagnostic 
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test cost and it is very difficult to estimate a precise diagnostic test cost 
due to the lack of sufficient data, especially for the new components. 
Aiming at these challenges, many efficient diagnostic methods have 
been proposed. Assaf et al. proposed a reliability-based approach to 
determine the diagnosis order of components using diagnostic impor-
tance factor (DIF), which uses the dynamic fault tree to model the fail-
ure dependency of components and can, to some extent alleviate fault 
data acquisition bottleneck [1, 19]. However, the solution for dynamic 
fault tree was based on Markov Chains (MC) model-
which is ineffective in handing larger dynamic fault 
tree and modelling power capabilities. For this purpose, 
Duan et al. proposed a hybrid diagnosis method using 
dynamic fault tree and discrete-time Bayesian network 
(DTBN) [17]. Dynamic logic gates were converted to 
DTBN and the reliability results were calculated by a 
standard Bayesian Network (BN) inference algorithm. 
However, it is an approximate solution for dynamic 
fault tree and requires huge memory resources to obtain 
the query variables probability accurately. Furthermore, 
these diagnostic methods, which are usually assumed 
that the failure rates of the components are considered as crisp values 
describing their reliability characteristics, have been found to be in-
adequate to deal with the challenge (1) mentioned above. Therefore, 
fuzzy sets theory has been introduced as a useful tool to handle chal-
lenges (1) and (3). The fuzzy fault tree analysis model employs fuzzy 
sets and possibility theory, and deals with ambiguous, qualitatively 
incomplete and inaccurate information [8, 12-13]. However, these ap-
proaches use the static fault tree to model the system fault behaviours 
and cannot cope with the challenge (2). So fuzzy dynamic fault tree 
(FDFT) analysis has been introduced [7, 22], which takes into account 
not only the combination of failure events but also the order in which 
they occur. Nonetheless, the solution for FDFT is still MC based ap-
proach, which has the infamous state space explosion problem. To 
overcome these difficulties and limitations, Duan et al. proposed a 
new diagnosis method using fuzzy sets and dynamic fault tree, which 
use fuzzy sets to evaluate the failure rates of the basic events and 
uses a dynamic fault tree model to capture the dynamic failure mecha-
nisms [18]. But the solution for the dynamic fault tree is still based 
on DTBN and cannot avoid the aforementioned problems. Assaf et 
al. firstly introduced the cost diagnostic importance factor (CDIF) to 
incorporate the diagnostic test cost into the diagnosis process in or-
der to optimize the fault diagnosis [2]. They assumed the test cost 
of the components was crisp value, which was highly impracticable 
and almost impossible to apply. So it cannot deal with the challenge 
(3). In addition, all the diagnosis algorithms are based on minimal cut 
sets and DIF or CDIF, which are in essence single attribute decision 
making, and usually cause minimal cut sets with a smaller DIF to be 
diagnosed first, thereby influencing the diagnosis result.

Motivated by the problems mentioned above, this paper presents 
a novel diagnosis strategy for TWCS based on fuzzy sets, dynamic 
fault tree and MADM shown in Figure 1. It pays particular attention 
to meeting above three challenges. We adopt expert elicitation and 
fuzzy sets theory to deal with insufficient fault data and handle the 
uncertainty problem by treating diagnostic test cost as fuzzy numbers. 
Furthermore, we use a dynamic fault tree model to capture the dynam-
ic behaviours of the TWCS failure mechanisms and calculate some 
quantitative parameters information provided by reliability analysis 
using BN and algebraic technique in order to avoid the aforemen-
tioned problems. In addition, components’ DIF, sensitivity index (SI) 
and heuristic information values (HIV) are considered comprehen-
sively to design a novel diagnosis strategy which can locate the fault 
with the objective of fast and low-cost diagnosis.

The aim of this project is to present the scientific decision for 
the fault diagnosis of TWCS and offer a new idea for fault diagnosis 
in complex systems. The rest sections of this paper are organized as 

follows: Section 2 provides a brief introduction on TWCS and its dy-
namic fault tree model. Estimation of failure rates for the basic events 
is described in Section 3. Section 4 presents a novel dynamic fault tree 
solution which uses BN and algebraic technique. Section 5 presents 
a new diagnosis algorithm which makes use of the components’ DIF, 
SI and HIV using MADM solution. The outcomes of the research and 
future research recommendations are presented in the final section.

2. Dynamic fault tree of TWCS

Credible wireless communication technology is one of the devel-
opment directions of communication based train control because it can 
meet the demands of real-time large amount of information transmis-
sion of train-ground. TWCS based on orthogonal frequency division 
multiplexing adopts some redundancy techniques to ensure higher re-
liability and is widely applied in the train control system, which trans-
mits real-time data between train and ground. TWCS mainly includes 
train-ground communication access devices and train-ground com-
munication transmission system. Train-ground communication access 
devices are responsible for information acquisition, information com-
position, information decomposition, information encoding, informa-
tion decoding, and information transmission security mechanism. This 
can guarantee a safe, reliable and real-time information transmission. 
Specifically, train-ground communication access devices include de-
centralized radio control unit (DRCU) and mobile radio control unit 
(MRCU). DRCU, situated in the decentralized control center, offers 
the interfaces between the decentralized control system and the trac-
tion power supply system and controls the information transmission 
of the decentralized train-ground communication devices. In addition, 
it also performs the most challenging tasks such as information acqui-
sition, composition, decomposition, encoding and decoding among 
the decentralized control system, the vehicle control system, localiza-
tion system and the traction power supply system. MRCU, located on 
the opposite ends of the train, not only offers the interfaces between 
the vehicle control system and the localization system, but also im-
plements information processing among the vehicle control system, 
the localization system, the decentralized control system and the trac-
tion power supply system. Train-ground communication transmission 
system includes ground radio transceiver equipment, mobile radio 
transceiver equipment and wireless communication channel. It is its 
responsibility for the reliable, transparent data transmission between 
train and ground devices. 

TWCS is a typically complex system and adopts redundancy tech-
niques to ensure higher reliability. For example, the hardware redun-
dancy technique is employed in the design of DRCU and MRCU. High 
coupling degree together with complicated logic relationships exists 
between these modules. So the dynamic behaviours of components in 
these modules and their interactions, such as failure priority, sequen-
tially dependent failures, functional dependent failures, and dynamic 
redundancy management, should be taken into consideration. Obvi-
ously, traditional static fault tree is unsuitable to model these dynamic 
fault behaviours. Therefore, we use the dynamic fault tree model to 
capture the dynamic behaviours of system failure mechanisms such as 

Fig. 1. Diagnosis framework for TWCS
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sequence-dependent events, spares and dynamic redundancy manage-
ment, and priorities of failure events. Taken reception failure of the 
operation control location signals as the top event, the dynamic fault 
tree of TWCS is shown in Figure 2.

3. Estimation of failure rates for TWCS 

In order to calculate some reliability parameters for diagnosis, 
failure rates of the basic events must be known. However, fault tol-
erant technology has greatly improved the system reliability and its 
high reliability caused the lack of sufficient fault data and epistemic 
uncertainty. For this reason, it is very difficult to estimate precisely 
the failure rates of the basic events, especially for the new equipment. 

In this study, the expert elicitation through several interviews and 
questionnaires and fuzzy sets theory are used to estimate the failure 
rates of the basic events through qualitative data processing. An over-
all architecture of the estimation of failure rates for TWCS is shown 
in Figure 3.

3.1.	 Experts evaluation

Experts are people who are familiar with the system and under-
stand the system working environment and the system operation. 
Therefore, experts can be selected from different fields, such as the 
design, installation, maintenance, operation and management of the 
system, to judge the failure rates of the basic events. They are more 

comfortable justifying event failure likelihood using quali-
tative natural languages based on their experiences and 
knowledge about the system, which capture uncertain-
ties rather than by expressing judgments in a quantitative 
manner. The granularity of the set of linguistic values 
commonly used in engineering system safety is from four 
to seven terms. In this paper, the component failure rate 
is defined by seven linguistic values, i.e. very high, high, 
reasonably high, moderate, reasonably low, low and very 
low.

3.2.   Fuzzification module

Experts evaluation expressed in terms of qualitative 
natural languages should be converted into the operational 
format of fuzzy numbers, for example, trapezoidal fuzzy 
numbers. This function can be implemented by fuzzifica-
tion module. The objective of fuzzification module is to 
quantify the basic event qualitative data into their cor-
responding quantitative data in the form of membership Fig. 3. Structure of the estimation of failure rates for TWCS

Fig. 2. Dynamic fault tree of TWCS
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function of fuzzy numbers. In addition, each predefined linguistic val-
ue has a corresponding mathematical representation and the shapes of 
the membership functions to mathematically represent linguistic vari-
ables in engineering systems are illustrated in Figure 4. To eliminate 
bias coming from an expert, six experts are asked to justify how likely 
a basic event will fail in the system under investigation. Therefore, it 
is necessary to combine or aggregate these opinions into a single one. 
There are many approaches to aggregate fuzzy numbers. An appealing 
approach is the linear opinion pool [6]:

	 M A i mi j ij
j

n
= =

=
∑ω

1
1 2 3, , , ,..., 	 (1)

where m is the number of basic events; Aij is the linguistic expression 
of a basic event i given by expert j; n is the number of the experts; ωij 
is a weighting factor of the expert j and Mi represents combined fuzzy 
number of the basic event i.

Usually, an α-cut addition followed by the arithmetic averaging 
operation is used for aggregating more membership functions of 
fuzzy numbers of different types. The membership function of the 
total fuzzy numbers from n experts’ opinion can be computed as fol-
lows:

	 [ ]
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z x x x

f z f x f x f xω ω ω
= + + +

= ∧ ∧ ∧      (2)

where fn(x) is the membership function of a fuzzy number from expert 
n and f (z) is the membership function of the total fuzzy numbers.

3.3.	 Calculating fuzzy fault rates of the basic events

Apparently, the final quantitative data taken from the fuzzification 
module are still in the form of fuzzy numbers and cannot be used for 
fault tree analysis because they are not crisp values. So, fuzzy number 
must be converted to a crisp score, named as fuzzy possibility score 
(FPS) which represents the most possibility that an expert believes 
occurring of a basic event. This step is usually called defuzzification. 
There are several defuzzification techniques. It is very important to 
choose a suitable defuzzification technique for a specific application. 
We use an area defuzzification technique to realize this algorithm, 
which has lowest relative errors and the closest match with the real 
data [16]. If (a, b, c, d; 1) is a trapezoidal fuzzy number, then its area 
defuzzification technique is as follows:

2

2
( 2 2 )((2 2 ) ( )( 3 2 ) 2 (3 ) 4 )

18( )
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a b c d
+ − − + + + − + − − + −

=
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The event fuzzy possibility score is then converted into the corre-
sponding fuzzy failure rate, which is similar to the failure rate. Based 
on the logarithmic function proposed by Onisawa [14], which utilizes 
the concept of error possibility and likely fault rate, the fuzzy failure 
rate can be obtained by the following equation (4). Table 1 shows the 
fuzzy failure rates of the basic events for TWCS.
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4. Calculating reliability parameters using BN and alge-
braic technique

After the dynamic fault tree is constructed and all basic events 
have their corresponding failure rates with the exponential distribu-
tion function, reliability results of TWCS can be calculated by solving 
the dynamic fault tree. Traditional solution for dynamic fault tree is 
based on MC model [11], which has the infamous state space explo-
sion problem and cannot solve a larger dynamic fault tree. Therefore, 
DTBN was proposed to solve the dynamic fault tree in [3-4]. Dynamic 
logic gates are converted to DTBN and the reliability results are cal-
culated using a standard BN inference algorithm. However, this is an 
approximate solution and requires huge memory resources to obtain 
the probability distribution accurately. In addition, as the number of 
intervals increases, the accuracy and execution time increases greatly. 
An innovative algorithm has been introduced to reduce the dimension 
of conditional probability tables by an order of magnitude [9]. How-
ever, this method cannot perform posterior probability updating. In 
the following section, we present an improved method to calculate the 
reliability parameters using BN and algebraic technique to overcome 
the disadvantages mentioned above.

4.1.	 Mapping static fault tree into BN

There is a clear correspondence between static fault tree and BN. 
The fault tree can be seen as a particular deterministic case of the BN. 
Conceptually it is straightforward to map a fault tree into a BN: one 
only needs to “re-draw” the nodes and connect them while correctly 
enumerating reliabilities. Figure 5 shows the conversion of an OR and 
an AND gate into equivalent nodes in a BN. Parent nodes A and B 

Fig. 4. Fuzzy numbers used for representing linguistic value

Table 1.	 Basic events’ FPS and FFR

Basic 
events Fuzzy numbers FPS FFR

X1 [0.1602, 0.2093, 0.2381, 0.3001] 0.0749 4.8e-6

X2 [0.1654, 0.2113, 0.2550, 0.3601] 0.0806 6.6e-6

X3 [0.2589, 0.2905, 0.5835, 0.6001] 0.1355 5.4e-5

X4,X5 [0.2501, 0.2662, 0.4261, 0.4601] 0.1269 4.2e-5

X6,X7 [0.2701, 0.3298, 0.5902, 0.6501] 0.1463 7.2e-5

X8,X9 [0.1604, 0.2003, 0.2498, 0.3528] 0.0791 6.1e-6

X10,X11 [0.2381, 0.2472, 0.4201, 0.4591] 0.1209 3.5e-5

X12,X13 [0.2688, 0.3201, 0.5799, 0.6241] 0.1439 6.8e-5

X14,X15 [0.2583, 0.3001, 0.4998, 0.5941] 0.1367 5.6e-5
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are assigned prior probabilities, which coincident with the probabil-
ity values assigned to the corresponding basic nodes in the fault tree, 
and child node C is assigned its conditional probability table (CPT). 
Since the OR and AND gates represent deterministic causal relation-
ships, all the entries of the corresponding CPT are either 0 or 1. The 
detailed algorithm of converting a fault tree into a BN was proposed 
in [3, 15]. 

4.2. Fault Probability of a Module with Sequence Dependence

Let us consider an event sequence composed of n events,

1 2, , , ne e e  including several spare events. An event in the sequence 

is denoted by i
je , which means that the event that failed in the j-th or-

der of the sequence is designated a spare of an event that failed in the 

i-th order. 0
je  denotes an event that was originally in active mode. 

i
je  ( 0,i i j> < ) has a dormancy factor 0 1jα≤ ≤ . The sequence 

probability of 1 2
1 2, , ,i i in

ne e e< >  can be calculated using the n-tuple 
integration as:
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where jx  indicates the occurrence time of i
je , ( )jf x  is the probabil-

ity distribution function of i
je  and ( )jF xα  is the survival function 

of i
je  in standby mode. aS  is a set of events that were originally in 

active mode and saS  ( ssS ) is a set of spare events that fail in active 
(standby) mode [20].

When the failure time of i
je  in active mode follows an exponen-

tial distribution with jλ , the sequence probability is:
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and 1L−  is the inverse Laplace transform operator.
If every ia  in the above equation is distinct from the other, the 

sequence probability is:

	

1 2
1 2

01

0,

( , , , )( )

( )

k

i
j ss

i i in
n

a tn n
j i n

kie S j k
j j k

Pr e e e t

e

a a
α λ

−

==∈

= ≠

< >

=
−

∑∏ ∏
∏



	 (7)

where 0 0a = .

4.3.	 Mapping dynamic fault tree into BN

Dynamic fault tree extends traditional fault tree by defining spe-
cial gates to capture the components’ sequential and functional de-
pendencies. Currently there are six types of dynamic gates defined: 
the functional dependency gate (FDEP), the cold, hot, and warm spare 
gates (CSP, HSP, WSP), the priority AND gate (PAND), the sequence 
enforcing gate (SEQ). Here, we briefly discuss the FDEP and the WSP 
gates as they will be later used in our examples.

(1) WSP Gate
The WSP gate has one primary input and one or more alternate 

inputs. The primary input is initially powered on and the alternate 
inputs are in standby mode. When the primary fails, it is replaced 
by an alternate input, and in turn, when this alternate input fails, it is 
replaced by the next available alternate input, and so on and so forth. 
In standby mode, the component failure rate is reduced by a factor α
called the dormancy factor. α  is a number between 0 and 1. A cold 
spare has a dormancy factor =0α ; and a hot spare has a dormancy 
factor =1α . The WSP gate output is true when the primary and all the 
alternate inputs fail. Figure 6 shows the WSP gate and its equivalent 
BN. Table 2 shows the CPT of the node A. Supposing that A and S 

follow the same exponential distribution with λ ; Here, 1( )p t  and 

2( )p t in this table can be derived as:

	 p t P A S P S A
P S

e A t
1 1 0 0 1

0
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= = = =
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=

= − −λ α 	 (8)
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( , )( )SP P A t< >  and ( , )( )P A S t< >  are sequence probabilities cal-
culated by equation (10):
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The output of node WSP is an AND gate whose CPT is shown in 
Figure 5.

Fig. 5 The Equivalent BN of OR and AND Gate
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(2) FDEP Gate
FDEP is used to model situations where one component’s cor-

rect operation is dependent upon the correct operation of some other 
component. It has a single trigger input, which could be another basic 
event or the output of another gate, a non-dependent output reflecting 
the status of the trigger, and one or more dependent basic events. Fig-
ure 7 shows FDEP gate and its equivalent BN. Table 3 shows the CPT 

of the node A. Here, 3( )p t  in this table can be derived as:

	 p t P A T e At
3 1 0 1( ) ( )= = = = − −λ 	 (11)

The CPT of output node FDEP is shown in Table 4.

4.4.	 Calculating reliability parameters

According to the dynamic fault tree shown in Figure 2 and the 
basic failure data shown in Table 1, we can map the dynamic fault 
tree into an equivalent BN using the proposed method. Its equivalent 
BN is given in Figure 8. Once the structure of a BN is known and all 
the probability tables are filled, it is straight forward to calculate the 
reliability parameters of TWCS using the inference algorithm. These 
reliability parameters mainly include system reliability, DIF and SI. 

(1) System reliability
Assume the mission time of TWCS is 1000 hours. We can calcu-

late the system unreliability using the following equation:

	 ( 1)=0.1036( )=P S stateP S = 	 (12)

(2) DIF
DIF is defined conceptually as the probability that an event has 

occurred given the top event has also occurred. DIF is the corner stone 
of reliability based diagnosis methodology. This quantitative measure 
allows us to discriminate between components by their importance 
from a diagnostic point of view. Components with larger DIF are 
checked first. This assures a reduced number of system checks while 
fixing the system:

	 ( )iDIF P i S= 	 (13)

where i is a component in system S.
Suppose the system has failed at the mission time 1000 hours, 

we enter the evidence that TWCS has failed i.e. ( 1) 1P S state= =  and 
calculate DIF using the jointree algorithm.

(3) SI
Sensitivity analysis allows the designer to quantify the importance 

of each of the system’s components and the impact the improvement 
of component reliability will have on the overall system reliability. 
Here we show how one can perform sensitivity through the usage of 
SI [10]. SI of the ith basic event is defined as:
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where ( )P S  is the probability of the top event failure; ( )P S i  is the 
probability that the top event has occurred given the basic event i has 
not occurred.

5. Diagnosis strategy based on MADM

MADM models try to answer the question of ‘what is the best 
alternative?’ given a set of selection attributes and a set of alterna-
tives. Generally there are three independent steps in MADM models 
to obtain the ranking of alternatives [23]: (1) Determine the relevant 
attribute and alternatives. (2) Attach numerical measures to the rela-
tive importance of the attribute and to the impacts of the alternatives 
on these attribute. (3) Calculation procedures to determine a ranking 
score of each alternative. Technique for Order Preference by Similar-
ity to Ideal Solution (TOPSIS) is one of the known classical methods 
to solve MADM problem, developed by Hwang and Yoon [5]. It bases 
on the concept that the chosen alternative should have the shortest 

Table 2.	 The CPT of the node A

S=0 S=1

A=0 1−p1(t) 1−p2(t)

A=1 p1(t) p2(t)

Fig. 6. WSP and its equivalent BN

Fig. 7. FDEP and its equivalent BN

Table 3.	 The CPT of the node A

T=0 T=1

A=0 1−p3(t) 0

A=1 p3(t) 1

Table 4.	 The CPT of the node FDEP

T=0 T=1

FDEP=0 1 0

FDEP=1 0 1
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distance from the positive ideal solution (PIS) and the farthest from 
the negative ideal solution (NIS). In the process of TOPSIS, the per-
formance ratings and the weights of the attributes are usually given 
as crisp values. Under many conditions, crisp data are not sufficient 
to model real-life situations. Since human opinions are often vague 
and cannot estimate his performance with an exact numerical value. A 
more realistic approach may be to use linguistic assessments instead 
of numerical values, that is, to suppose that the ratings of the attributes 
are assessed by means of linguistic variables. In this paper, we treat 
the optimal diagnostic sequence problem as a MADM problem and 
propose an improved TOPSIS to solve the MADM problem.

5.1. Constructing diagnostic decision table for TWCS

DIF enables us to discriminate between components by their im-
portance from a diagnostic point of view. SI allows the designer to 
quantify the importance of each of the system’s components and the 
impact the improvement of component reliability will have on the 
overall system reliability. So we treat DIF and SI as attribute v1 and 
v2 respectively. Owing to the different complexity of components 
their test costs are different. A balance should be taken into account 
between the DIF and test costs. Therefore, we introduce a new meas-
ure of importance called HIV, which allows us to optimize the cost of 
diagnosis. This measure is simply the DIF per unit cost. HIV appears 
in the following equation (15):

	  /i i iHIV DIF T= 	 (15)

where iDIF  is the DIF of the component i; iT  is the test cost of the 
component i.

Test costs of the components are usually very difficult to express 
as crisp values because of uncertainty. So we introduce fuzzy linguis-
tic expression to assess the test costs of components. Table 5 and 6 
show the evaluation standards of the test costs and components’ test 
costs for TWCS, respectively. HIV has an important effect on the di-
agnostic sequence and is treated as attribute v3. Table 7 shows the 
diagnostic decision table for TWCS.

5.2. Normalizing diagnostic decision table

Different attributes usually have different 
values and dimensions, which are not always 
directly comparable, so we should normalize the 
diagnostic decision table [21]. For the quantita-
tive data, we normalize them with the following 
equation:

	
2

1

,1 15,1 3ij
ij n

ij
i

a
b i j

a
=

= ≤ ≤ ≤ ≤

∑
       (16)

where ija  is the jth attribute value of the ith com-
ponent.

For the fuzzy numbers, we normalize them 
with the following equation:

	
2 2 2

1 1 1
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i i i

a a a
b b b

a a a
= = =

= = =

∑ ∑ ∑  

	 (17)

Fig. 8. The equivalent BN of TWCS

Table 6.	 Components’ test costs for TWCS

Components test costs

X1 High

X2 Moderate

X3 Very High

X4,X5 Very Low

X6,X7 Low

X8,X9 Low

X10,X11 Very Low

X12,X13 Low

X14,X15 Low

Table 7.	 The diagnostic decision table for TWCS

Components DIF SI HIV

X1 0.0048 0.0083 {0.0096,0.0069,0.0054}

X2 0.0637 0.1210 {0.2123,0.1274,0.0910}

X3 0.5050 1.0000 {0.7214,0.5611,0.5050}

X4 0.0906 0.1090 {0.9060,0.4530,0.3020}

X5 0.0906 0.1090 {0.9060,0.4530,0.3020}

X6 0.2390 0.3110 {2.3900,0.7967,0.4780}

X7 0.2390 0.3110 {2.3900,0.7967,0.4780}

X8 0.2170 0.2790 {2.1700,0.7233,0.4340}

X9 0.2170 0.2790 {2.1700,0.7233,0.4340}

X10 0.0727 0.0843 {0.7270,0.3635,0.2423}

X11 0.0727 0.0843 {0.7270,0.3635,0.2423}

X12 0.2070 0.2570 {2.0700,0.6900,0.4140}

X13 0.2070 0.2570 {2.0700,0.6900,0.4140}

X14 0.1850 0.2260 {1.8500,0.6167,0.3700}

X15 0.1850 0.2260 {1.8500,0.6167,0.3700}

Table 5.	 Evaluation standards of the test costs

Linguistic expression for test costs Fuzzy numbers

Very High (0.7, 0.9, 1)

High (0.5, 0.7, 0.9)

Moderate (0.3, 0.5, 0.7)

Low (0.1, 0.3, 0.5)

Very Low (0.1, 0.2, 0.3)
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where  a a a a b b b bij ij
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ij
m

ij
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r= { } = { }, , , , , ; ija  is the module of the 

triangular fuzzy number ija :
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We can obtain the normalized diagnostic decision table shown in 
Table 8 for TWCS using equation (16) ~ (18). Considering the same 
importance of each attribute, we can construct the weighted normal-
ized diagnostic decision table shown in Table 9.

5.3.	 Determining the optimal diagnosis sequence

Attributes can be divided into two groups: beneficial attributes 
where higher values are preferable and non-beneficial attributes where 
lower value is preferable. There are three attributes in diagnostic deci-
sion table and they belong to the beneficial attributes. When the at-

tributer ija  is a beneficial attribute, the positive and negative ideal 
solutions are calculated as:

	 

  X r r r r r rj k ij
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i
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where jr+
 
is the maximal value of the jth attribute and jr−  is the mini-

mal value of the jth attribute

When the attributer ija  is a non-beneficial attribute, the positive 
and negative ideal solutions are calculated as:

	 min ,min ,minl m r
j ij ij ij

i i i
X r r r+   =  

  
 	 (21)

	 max ,max ,maxl m r
j ij ij ij

i i i
X r r r−   =  

  
 	 (22)

The distance of each alternative from jX +
  and jX −

  can be cur-
rently calculated as:
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=
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A closeness coefficient is defined to determine the ranking order of 

all alternatives once the iD+
 and iD+

 of each alternative has been cal-
culated. The closeness coefficient of each alternative is calculated as:

	 C D D Di i i i= +( )− + − 	 (25)

Table 10 shows the distance of each alternative from the positive 
and negative ideal solutions together with the corresponding close-
ness coefficient. Obviously, an alternative comes closer to the PIS 
and farther from NIS as Ci approaches to 1. Therefore, we can deter-
mine the ranking order of all alternatives and choose the best one from 
among a set of feasible alternatives. According to Table 10, we can 
obtain the optimal diagnostic ranking order of TWCS: X3, X6(X7), 
X8(X9), X12(X13), X14(X15), X4(X5), X10(X11), X2, X1, which 
considers the DIF, SI and HIV comprehensively.

6. Conclusion

In this paper, we have discussed the use of dynamic fault tree, 
fuzzy sets theory and MADM to diagnose the complex systems fault. 
Specifically, it has emphasized three important issues that arise in 
engineering diagnostic applications, namely the challenges of insuf-
ficient fault data, uncertainty and failure dependency of components. 
In terms of the challenge of insufficient fault data and uncertainty, we 

Table 8.	 The normalized diagnostic decision table

Components DIF SI HIV

X1 0.0060 0.0065 {0.0024,0.0017,0.0014}

X2 0.0791 0.0946 {0.0539,0.0323,0.0231}

X3 0.6270 0.7818 {0.1831,0.1424,0.1282}

X4 0.1125 0.0852 {0.2300,0.1150,0.0767}

X5 0.1125 0.0852 {0.2300,0.1150,0.0767}

X6 0.2967 0.2431 {0.6066,0.2022,0.1213}

X7 0.2967 0.2431 {0.6066,0.2022,0.1213}

X8 0.2694 0.2181 {0.5508,0.1836,0.1102}

X9 0.2694 0.2181 {0.5508,0.1836,0.1102}

X10 0.0903 0.0659 {0.1845,0.0923,0.0615}

X11 0.0903 0.0659 {0.1845,0.0923,0.0615}

X12 0.2570 0.2009 {0.5254,0.1751,0.1051}

X13 0.2570 0.2009 {0.5254,0.1751,0.1051}

X14 0.2297 0.1767 {0.4696,0.1565,0.0939}

X15 0.2297 0.1767 {0.4696,0.1565,0.0939}

Table 9.	 The weighted normalized diagnostic decision table

Components DIF SI HIV

X1 0.0020 0.0022 {0.0008,0.0006,0.0005}

X2 0.0264 0.0315 {0.0180,0.0108,0.0077}

X3 0.2090 0.2606 {0.0610,0.0475,0.0427}

X4 0.0375 0.0284 {0.0767,0.0383,0.0256}

X5 0.0375 0.0284 {0.0767,0.0383,0.0256}

X6 0.0989 0.0810 {0.2022,0.0674,0.0404}

X7 0.0989 0.0810 {0.2022,0.0674,0.0404}

X8 0.0898 0.0727 {0.1836,0.0612,0.0367}

X9 0.0898 0.0727 {0.1836,0.0612,0.0367}

X10 0.0301 0.0220 {0.0615,0.0308,0.0205}

X11 0.0301 0.0220 {0.0615,0.0308,0.0205}

X12 0.0857 0.0670 {0.1751,0.0584,0.0350}

X13 0.0857 0.0670 {0.1751,0.0584,0.0350}

X14 0.0766 0.0589 {0.1565,0.0522,0.0313}

X15 0.0766 0.0589 {0.1565,0.0522,0.0313}
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adopt expert elicitation and fuzzy sets theory to evaluate the failure 
rates of the basic events for TWCS; In terms of the challenge of fail-
ure dependency, we use a dynamic fault tree to model the dynamic 
behaviours of system failure mechanisms. Furthermore, we calculate 

some reliability parameters used for fault diagnosis using BN and al-
gebraic technique in order to avoid the aforementioned disadvantages. 
In addition, we treat the optimal diagnostic sequence problem as a 
MADM problem, propose an improved TOPSIS to solve the MADM 
problem and obtain the optimal diagnostic ranking order of TWCS. 
The proposed method makes full use of the dynamic fault tree for 
modelling, fuzzy sets theory for handling uncertainty and MADM for 
the best fault search scheme, which is especially suitable for fault di-
agnosis of the complex systems.

In the future work, we will focus on how to determine the at-
tributes weights and take full advantage of the previous fault diagno-
sis results to dynamically update the diagnostic decision table, thereby 
optimizing the diagnosis efficiency.
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Table 10.	 The corresponding closeness coefficient of components

Components D+ D- C

X1 0.3539 0.0000 0.0000 

X2 0.3140 0.0401 0.0032 

X3 0.0823 0.3349 0.8027 

X4 0.2983 0.0675 0.1845 

X5 0.2983 0.0675 0.1845 

X6 0.2106 0.1765 0.4559 

X7 0.2106 0.1765 0.4559 

X8 0.2228 0.1596 0.4174 

X9 0.2228 0.1596 0.4174 

X10 0.3101 0.0534 0.1468 

X11 0.3101 0.0534 0.1468 

X12 0.2302 0.1511 0.3963 

X13 0.2302 0.1511 0.3963 

X14 0.2430 0.1344 0.3561 

X15 0.2430 0.1344 0.3561 
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