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RELIABILITY ALLOCATION USING PROBABILISTIC ANALYTICAL TARGET
CASCADING WITH EFFICIENT UNCERTAINTY PROPAGATION

ALOKACJA NIEZAWODNOSCI ZWYKORZYSTANIEM PROBABILISTYCZNE)J
METODY ANALITYCZNEGO KASKADOWANIA CELOW
ZAPEWNIAJACA WYDAJNA PROPAGACJE NIEPEWNOSCI

Analytical target cascading (ATC) provides a systematic approach in solving reliability allocation problems for large
scale system consisting of a large number of subsystems, modules and components. However, variability and uncertainty
in design variables (e.g., component reliability) are usually inevitable, and when they are taken into consideration, the
multi-level optimization will be very complicated. The impacts of uncertainty on system reliability are considered in this
paper within the context of probabilistic ATC (PATC) formulation. The challenge is to reformulate constraints proba-
bilistically and estimate uncertainty propagation throughout the hierarchy since outputs of subsystems at lower levels
constitute inputs of subsystems at higher levels. The performance measure approach (PMA) and the performance mo-
ment integration (PMI) method are used to deal with the two objectives respectively. To accelerate the probabilistic opti-
mization in each subsystem, a unified framework for integrating reliability analysis and moment estimation is proposed
by incorporating PATC with single-loop method. It converts the probabilistic optimization problem into an equivalent
deterministic optimization problem. The computational efficiency is remarkably improved as the lack of iterative process
during uncertainty analysis. A nonlinear geometric programming example and a reliability allocation example are used
to demonstrate the efficiency and accuracy of the proposed method.

Keywords: optimal reliability allocation, hierarchical decomposition, probabilistic analytical target
cascading, uncertainty propagation.

Analityczne kaskadowanie celow (ATC) stanowi systematyczne podejscie do rozwigzywania zagadnien alokacji nieza-
wodnosci dotyczgcych systemow wielkoskalowych sktadajqcych sie z duzej liczby podsystemow, modulow i elementow
sktadowych. Jednakze zmiennos¢ i niepewnos¢ zmiennych projektowych (np. niezawodnosci elementow sktadowych) sq
zazwyczaj nieuniknione, a gdy wezmie si¢ je pod uwage, optymalizacja wielopoziomowa staje si¢ bardzo skomplikowana.
W prezentowanym artykule, wplyw niepewnosci na niezawodnosc¢ systemu rozwazano w kontekscie formuty probabili-
stycznego ATC (PATC). Wyzwanie polegato na probabilistycznym przeformutowaniu ograniczen oraz ocenie propagacji
niepewnosci w catej hierarchii, jako Ze wyjscia podsystemow na nizszych poziomach stanowiq wejscia podsystemow na
poziomach wyzszych. Cele te realizowano, odpowiednio, przy uzyciu metody minimum funkcji granicznej (performance
measure approach, PMA) oraz metody catkowania momentow statystycznych funkcji granicznej (performance moment
integration, PMI). W celu przyspieszenia probabilistycznej optymalizacji w kazdym podsystemie, zaproponowano ujed-
nolicone ramy pozwalajqce na integracje analizy niezawodnosci z oceng momentow statystycznych poprzez potqczenie
PATC z metodq jednopoziomowq (pojedynczej petli, single-loop method). Zaproponowana metoda polega na przeksztat-
ceniu probabilistycznego zagadnienia optymalizacyjnego na deterministyczne zagadnienie optymalizacyjne. Zwigksza to
znacznie wydajnos¢ obliczeniowq w zwigzku z brakiem procesu iteratywnego podczas analizy niepewnosci. Wydajnosc i
trafnos¢ proponowanej metody wykazano na podstawie przykladow dotyczgcych programowania nieliniowego geome-
trycznego oraz alokacji niezawodnosci.

Stowa kluczowe: optymalna alokacja niezawodnosci, dekompozycja hierarchiczna, probabilistyczna
metoda analitycznego kaskadowania celow, propagacja niepewnosci.

1. Introduction improved computati.onal efficiency because the formulation
) o ) o ) ) of each element typically has fewer degrees of freedom and
Optimal reliability design (reliability allocation) aims to deter- fewer constraints than the all-in-once (AIO) formulation.
mine the reliability of constituent subsystems and components so as to Since the subsystems are coupled, their interactions need
obtain targeted overall system reliability. It should be performed early to be taken into consideration to achieve consistent designs.
in the design cycle to guide later tradeoff and improvement studies of Zhang [20] proposed the collaborative allocation (CA) to
more detailed designs. However, reliability allocation for designing deal with optimum allocation problem in aircraft concep-
Fomplex system, such as structural, acrospace or aqtf)motive systems, tual design, which is of similar solution procedure with col-
is a complicated large-scale problem. Decomposition can result in laborative optimization (CO). However, in CA the auxiliary
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constraints are equality constraints, and the convergence has not been
demonstrated yet. Recently, analytical target cascading (ATC) has
been applied successfully to a variety of reliability allocation prob-
lems [4, 11, 21]. ATC is a methodology for cascading upper level de-
sign targets to lower level while the element at the lower level tries to
provide responses as close to these targets as possible [8]. It has a few
features which are applicable to optimum allocation problem. Firstly,
upper level providing lower level with targets of variables is similar
to allocation of design requirements. Secondly, the hierarchic mul-
tilevel optimization of ATC is similar to system structure composed
of subsystems, components and parts. Finally, by forcing the consist-
ency between each subsystem, ATC has proven to be convergent to
the original undecomposed problem.

However, there exists uncertainty in design variables or param-
eters in the early development stage. For example, component reli-
ability estimates are often uncertain, particular for new products with
few failure data [2]. Thus, accurate estimates of system risk should
be sought and used in system design and trade studies. In response
to these new requirements, the ATC formulation has been extended
to solve probabilistic design optimization problems using random
variables to represent uncertainty [10], and generalized with general
probabilistic characteristics by Liu [14]. In the previously published
probabilistic ATC (PATC) formulations, the first few moments are
usually used as targets and responses since matching two random
variables is not practically doable in most cases. Even with the first
few moments, however, computing the solution is very expensive due
to computational difficulty in estimating propagated uncertainty. An
efficient and accurate mechanism is required for propagating probabi-
listic information throughout the hierarchy.
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The paper proceeds as follows. First, the general PATC formula-
tion is revisited in Section 2. Section 3 provides an introduction of
existing methods for uncertainty propagation. Section 4 develops an
efficient methodology integrating single loop method to deal with the
issue of modeling uncertainty in multilevel hierarchies. The efficiency
and accuracy of the proposed algorithm is demonstrated on two exam-
ples in Section 5. Finally, conclusions are presented in Section 6.

2. PATC formulation based on matching mean and va-
riance

The choice of probabilistic characteristic is an important issue in
decomposition based system design optimization under uncertainty
because it is not practical to match two distributions exactly. For dis-
tributions with negligible higher-order moments, matching only the
first two moments (mean value and variance) should be sufficient.
According to the general PATC formulation provided by Liu [14], the
design optimization problem for element j at level i (element 0Oy) is
shown in equation (1).

For a subsystem at certain level, its neighboring lower-level sub-
systems are called its children, while the neighboring upper-level sub-
system is called its parent. In equation (1), R, and Y, are vectors of
random responses and linking variables, respectively. R, are evaluat-

ed using analysis or simulation models R, =f; (R(i+1)1w“’R(i+1)ni/:Xz'j'on"

Targets for mean and standard deviation of R; and Y, are assigned by
U U U U :
the parent element as MR, > OR, and By, > OY, - Achievable mean
and standard deviation of R, and Y, are feed back to its parent ele-
ment as uLR_, N csIli,, and H%{.. R o-%{_, . Similarly, achievable values of
ij ij ij i

its children element responses and linking variables are passed to O;

L L L L : :
S MR 10 0 ORea and MY Vi The design consistency
is formulated as the first four constrains in equation (1). The optimiza-
tion problem for O; is to find the optimum values for local design
variables X, linking variables Y, and the target values for responses

MRy 0 ORgk and linking variables BY i Y of its chil-

dren. Generally, the optimization problem in equation (1) can be for-
mulated as

min / (i, (d,X.P),og, (d.X,P),d.X)
4X i 3

st Pr(Gy,(d,X,P)20)2 By, m=1....M )
R, =f;(d,X,P)

where d is the vector of deterministic design variables, X is the vector
of random design variables and P is the vector of random parameters.
The optimization problem contains probabilistic constraints and the
probability of success should be calculated. Besides, in a multilevel
hierarchy, outputs of subsystems at lower levels constitute inputs of
subsystems at higher levels. It is thus necessary to estimate the sta-
tistical moments of these outputs with adequate accuracy. This needs
to be done for all problems at all levels of the hierarchy, and the high
computational cost is a great challenge.

In previous work, the Monte Carlo simulation (MCS) is used to
calculate all the probabilistic characteristics of the responses, and all
probabilistic constraints are simplified into the moment-matching for-
mulations [14]. However, computational time becomes a significant
challenge. MCS may not be a practical approach for design optimiza-
tion problems that require a significant number of iterations. An ef-
fective way to improve efficiency is based on the Taylor series expan-
sions, which may introduce large approximation errors of expected
values for the nonlinear responses [10]. Therefore, an appropriate
uncertainty propagation method needs to be selected to achieve an
appropriate balance between accuracy and efficiency.
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3. Uncertainty propagation methods

One of the key components of uncertainty analysis is the quantifi-
cation of uncertainties in the system output performances propagated
from uncertain inputs, named as uncertainty propagation (UP) [12].
For the optimization problem in equation (2), it should be point out
that the emphases of the two kinds of uncertainty calculation problems
are different. One emphasizes on assessing the performance reliabil-
ity. And the other focuses on evaluating the low-order moments (mean
and variance) of a performance. Thus, they are discussed separately.

3.1. Reliability analysis

Reliability analysis is a tool to compute the reliability index or the
probability of failure corresponding to a given failure mode or for the
entire system [5]. To deal with the reliability constraints in equation
(2), the reliability index is statistically defined by a cumulative distri-

bution function FG,-,- . (0) as
P (Gii,m

=l6. axppo ] Sxp(XP)dXdP=®(p,,)=F;,

ij,m

(d,X,P)> 0) =Fg, ,(0)
3)

where ® is the cumulative distribution function for standard normal

distribution and /3 is the target reliability index. fx p(X,P) is a
joint probability density function (PDF), which needs to be integrat-
ed. There are two different methods for the reliability assessment: the
reliability index approach (RIA) [16] and the performance measure
approach (PMA) [18]. RIA uses the reliability index (equation (4)) to

describe the probabilistic constraint in equation (3).
ﬂs,m = ((1)_] (FGl'j,m (0))) 2 ﬂt,m (4)

where f_  is the safety reliability index for the m™ probabilistic con-
straint. In RIA, the first-order safety reliability index is obtained using
first-order reliability method (FORM). It is formulated as an optimi-
zation problem, with an implicit equality constraint in a standard U
space defined as the limit state function.

min ||U||

st. Gy, (U)=0 ©)

where the vector U represents the random variables in the standard
normal space. However, RIA may yield singularity in many reliabil-
ity based design optimization (RBDO) applications. Moreover, it is
more efficient in evaluating the violated probabilistic constraint. If the
probabilistic constraint is inactive, RIA often yields a low rate of con-
vergence [18]. To overcome these difficulties, PMA was developed to
solve the RBDO problem. In this method, the reliability constraints
are stated by an R-percentile formulation as

Pr(Gyn (4.X.P)2 GfY\, )= R (6)

Equation (6) indicates that the probability of G. (d, X, P) greater

ij,m

than or equal to the R-percentile GR

ii,m 1s exactly equal to the desired

reliability R. Instead of calculating the probability of failure directly,
PMA judges whether or not a given design satisfies the probabilistic
constraint with a given target reliability index R. Therefore, the origi-
nal constraints that require the reliability assessment are now con-
verted to constraints that evaluate the R-percentile. The percentile

G,ﬁm can be evaluated by the inverse reliability analysis
min G;; ,,, (U)

,
st |U|=R @

3.2. Moment estimation

One purpose of statistical moment estimation stems from the ro-
bust design optimization, which attempts to minimize the quality loss,
which is a function of the statistical mean and standard deviation [3].
The first two statistical moments of linking variables are estimated
here to solve the higher-level problems and the overall multilevel de-
sign problem. Several methods are proposed to estimate the statistical
moments of the output response. Monte Carlo simulation could be
accurate for the moment estimation, however it requires a very large
number of function evaluations. The first order Taylor series expan-
sion has been widely used to estimate the first and second statistical
moments in robust design. Nevertheless, the first order Taylor series
expansion results in a large error especially when the input random
variables have large variations. To overcome the shortcomings ex-
plained above, numerical integrations method have been recently pro-
posed. The numerical integration methods rely on the principle that
the first few moments of a random variable will adequately describe
the complete PDF of the variable. The random variables are assumed
to be statistically independent. Analytically, the statistical moments
of the performance function H(X) can be expressed in an integration
form as

E[H] =7 [ HXO fx (X)dX = g

E[(HOO= )] = [ 7 (H(X) = )" 1 (X)X

where f,(X) is a joint PDF of the random parameters X. The nu-
merical integration can be used either on the input domain or on the
output domain. Since the computation of the moment could be very
expensive through numerical integration on the input domain, a new
formulation called performance moment integration (PMI) method is
proposed for statistical moment calculation, which using numerical
integration on the output domain [19]. The statistical moment calcula-
tion can be rewritten as

E[H] = [ Wiy (h)ah = iy
E[(H—pu)] =] (h=n )" f1g (h)alh

where f,(h) is a probability density function of H. To approximate
the statistical moments of H accurately, N-point numerical quadrature
technique can be used as

| N
E[H] =uy =Y wh
i=1

®)

)

LN (10)
E[H-puy] =3 wih—py)* for2<k <5

i=1
At minimum, the three-point integration is required to maintain a
good accuracy in estimating first two statistical moments. By solving
equation (10), three levels and weights on the output domain are ob-

tained as {hl,hz,h3}:{hﬁ:ﬂf,h(ux),hﬁ:ﬁ/g} and {w.wy.w}= {1411

respectively. Then, the mean and standard variation of the output re-
sponse are approximated to be

1 1 4 1
E[H] =y ;ghﬁ}ﬁ +gh(”X)+ghﬁz+J§

E[H=-py ) =oii =] (h=pu)’ fu (h)dh (1
1 21 2
Ll e

In equations (11), hﬂ? NG and hﬂ=+ J3 can be obtained through

inverse reliability analysis. The optimization problem used to approx-

imate h 53 can be denoted as
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min A (U)

st. JU|=v3 (12)

The term hﬁ:+ g in equations (11) can be approximated as the

optimal cost obtained by maximizing 4(U) in equation (12). The term
h(ny) is the performance function value at the design point.

4. Single-loop method based probabilistic analytical
target cascading

As mentioned above, since both the reliability analysis and the
moment estimation make use of inverse reliability analysis to get per-
centile performance, it is very natural for the two different methodolo-
gies to be treated in a unified manner. In addition, each inverse reli-
ability analysis is a separate optimization loop in the standard normal
space. Then each subsystem optimization will be a nested, double-
loop approach, which can drastically increase the computational cost.
To accelerate the subsystem optimization, we employ the single loop
method that has been developed for single-disciplinary systems [13].
It eliminates the need for inner reliability loops without increasing the
number of design variables by using a relation representing the Ka-
rush-Kuhn-Tucker (KKT) optimality conditions instead of solving a
nonlinear constrained optimization problem. The single loop method
is used to efficiently evaluate percentile performances for both mo-
ment estimation and reliability assessments in PATC. The proposed
strategy is named PATC-SL. For the optimization problem of equation
(7), letting R = B, the following KKT optimality condition is satis-
fied at the optimal point.

VG, (U)+AVH (U)=0

(13)

where H(U)=|[U||-B,,, is an equality constraint and X is the corre-

sponding Lagrange multiplier. According to the geometric explana-
tion in reference [13], equation (13) states that the gradients

VG ,,(U) and VH (U) are collinear and point in opposite direc-

tions. This condition yields
U=-p,*a

a=VGy(d.X,P)/|[VGy (d,X,P)| o

where a is the constraint normalized gradient in U-space. Under the
assumption for the PATC that the random variables are normally or
can be approximated to be normally distributed [6], Equations (14)
yield the following relationship between the most probable point

(MPP) X,,,,,. P,y

mep =Hx 70‘*ﬂt,m *Oj s Pmpp =Up 70‘*:Bt,m * Oy

(a.x o * VG, (0%

and the mean py ,pp.

15
:G*VGiﬂmX,P ‘( )

%ijm mpp>Ponpp ) mpp>Pmpp )‘

where ¢ is the standard deviation vector of random variables X and

random parameters P. Equations (15) hold for each constraint G,./.ym of

equation (2). Similarly, according to equation (12), hﬁ: L3 are ob-

tained through reliability analysis at f = +3 confidence levels. The
approximate MPP can be denoted by

Xp, poss =Hx —(230)rap

P, posis = e —(230)r0p 4
(16)

o*Vijxp (d’ XRi,,ﬂ:i\/g’PR”,ﬂ:i\/g)

G*Vfijx,l’ (d’XRij,ﬂd\/_’PR,j,ﬂ:i\/?)

Using equations (15) and equations (16), the double-loop optimi-
zation problem in equation (2) is transformed to the following single-
loop, equivalent deterministic optimization problem.
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Fig. 1. Numerical process of single-loop method based PATC
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The single-loop method does not search for the MPP at each itera-

tion. This dramatically improves the efficiency of the single-loop
method without compromising the accuracy. Since a;; ,,is a function

of X

ij.m

mpp » €quations (15) must be solved iteratively. That is, an itera-

tive solution is obtained, where the normalized gradient from the pre-
vious iteration is used for constraint evaluation in the current iteration.

The vectors a;; ,, and X,,,, are alternately updated until the compu-
tations converge to a final probabilistic design. The same strategy is

used for the calculation of HR; and OR, - Propagating uncertainty

information during the PATC process should start at the bottom level of
the hierarchy, where probability distribution on the input random vari-
ables and parameters are assumed as known. If such information is not
available at the bottom level, start at the lowest level possible where it
is available [10]. The process of PATC-SL is shown in Fig. 1.

To improve the convergence, formal methods for setting proper
weights for element responses and linking variables can be found
in Kim [9], Michalek [15], and Tosserams [17]. The augmented La-
grangian approach which shows stable convergence properties is used
in this paper.

5. Numerical Examples

In this section, two examples are solved by the single-loop meth-
od based PATC. Comparing to other approaches, Performance of the
proposed method is validated with respect to two criteria: accuracy of
the solution and efficiency of the coordination process. For the accu-
racy comparison, the method is compared with the probabilistic all-in-
one (PAIO) formulation using MCS technique (with 10000 samples),
denoted as PAIO-MCS [14]. For the efficiency comparison, the cur-
rent process is compared to probabilistic ATC employing linearization
techniques (FORM and Taylor expansion), denoted as PATC-L [1].

5.1. Geometric programming problem

Geometric programming problem with polynomials is usually
used to test the effectiveness of ATC formulations. The deterministic
AIO and ATC formulations are provided by Kim [8]. Then it is for-
mulated in a probabilistic form to demonstrate whether the PATC is
capale of reaching the same optimal solution[6, 14]. The PAIO prob-
lem is formulated as

. 2 2
min E[ f]= py, +py,
with respect to

(18)
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Design variables X, and X, are assumed to be independent and

normally distributed with constant standard deviations
Ox, =0yx, =0.1. The required reliability level is 99.865% for all

probabilistic constraints.
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Fig. 2. Hierarchical structure of example 1

Table. 1. Optimal solutions and number of function evaluations for example 1

PAIO-MCS PATC-L PATC-SL
X, 0.76 0.754 0.76
X 0.86 0.855 0.86
X7 0.91 0.905 0.906
.UXS 1.03 1.04 1.046
X, 0.76 0.7 0.69
X0 0.81 0.76 0.78
My, 1.68 1.645 1.651
X, 0.84 0.923 0.824
X, 231 224 23
s 215 217 213
E[f] 24.67 249 24.7
Relative error of
0.272% 1.05% 0.397%
GX3
Relative error of
0.0437% 0.177% 0.081%
GX6
Number of func- | 5,3, 10000 40599 3305
tion evaluations
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The structure of the decomposed problem is illustrated in Fig. 2.
The randomness in X, and X, results in uncertainties in all computed
response X, X, each described by its mean and standard deviation.
Note that since the standard deviation of the random design variable
X, is assumed constant, it is not included as a linking variable. The
initial point is set to the deterministic optimal point, {0.76, 0.87, 0.94,
0.97, 0.87, 0.80, 1.30, 0.84, 1.76, 1.55}.

Table 1 summarizes the results obtained from the three algo-
rithms. The optimization algorithm used is sequential quadratic pro-
gramming. The specified tolerance of consistency is 1.0x1074. oy,
and oy  are validated via MCS with 100000 samples, and the rela-
tive errors are also displayed in Table 1. It is found that PATC-SL
is more accuracy in estimating oy, and oy _, and achieves better
solutions than PATC-L. More importantly, with no nested optimiza-
tion loops, the number of function evaluations for PATC-SL is signifi-
cantly smaller than those for others. Furthermore, the average number
of iteration cycles of each system-level optimization using PATC-SL
method is about 25, and the PATC-L method is around 70. Higher
rate of convergence further improves the algorithmic efficiency. Com-
pared to PATC-L, the results show that the PATC-SL improves the
computational efficiency by more than 12 times.

5.2. Reliability optimum allocation problem

In this section, we demonstrate the methodology for reliability
allocation using a two-level example. The deterministic formulation
of decomposed optimization problem is presented in reference [20].
Through Fig. 3 it is apparent that the system is composed of five sub-
systems and each subsystem encompasses two components.

4{ Ry H R,

Fig. 3. The topology structure of system in the example 2

52

min Y > C,
i=1 j=1

s.t. R, >0.999
Ry =Rs+ Ry (1= Rs)(RyRs + Ry = RyR3Ry )
0.5<R;<098,i=12;=12
0.2<R;<0.99,i=3,4,5 j=1,2 (19)
R;=RyR»>05,i=1,2
0.5<R; <0.998,i=3,4,5
Cy=R3/3,Cy =R5/2,i=1,2

1

Cy :[ln(l—Ril)] /100,i=3,4,5

Ci2 = [11’1(1 -

where R is the reliability requirement and C is the cost. Subscript ‘s’
‘i> and ‘jj’ indicate corresponding value of main system, subsystem
i and component j in subsystem i, respectively. Treating component
reliability as uncertain parameters is necessary as they are usually
empirically determined [7]. Then all the reliability constraints should
be transformed into confidence-level formulation to ensure that sys-
tem reliability requirements are met with high probability. Here, the
component reliability R, follows a normal distribution. The standard
deviation is assumed to be 0.005. A 95% confidence level is used for

R /60,i=3,4,5

every system and subsystem reliability constraint. The corresponding
PATC decomposition is shown in Fig. 4.

find [;I;‘;l‘"[';a‘;:;« HRSOR\ORa OR OO - C;'-""'J

minC_\.+Zi:/".f' (;:,}"—yﬁ.‘f’] Z)v ( - O'erj) Z (““— “"")+
i=l

5

3 2
9 Mg s sk 55 m.’a = \u ~suh |~
oo -t} + (o o)+ ()
i=l
s.t. Pr(R, 20.999)>0.95
5
("\ = ZC‘I\:‘:‘
i=1
i i 'y i r'y
sy suh SV sih V5 suh SV suh 1 st
Hi Hry  Hpa Hpa Hpi Hps Mgy Hepa Hps He's
] suh S8 sub__sys sub ey sub sy sub
g Or1 Or2 Or2 OR3 Or3 Opy Ora ORs RS
~sieh SNE stif SVE ~sth b h
(. SVS ( S C C ( C 101 Sl Vs WL
il IR I q v latary, c

Fig. 4. The PATC-decomposed formulation of the reliability allocation prob-
lem

According to PATC, the mean and standard deviation of R, is de-
fined as linking variables, denoted as y,; and o, correspondmgly
Aucxiliary variables C; is also introduced to calculate the total cost.
Superscript ‘sys’ or sub’ indicates the value allocated by main system
or subsystem, respectively. Under the augmented Lagrangian ATC
formulation [9], the consistency constraints can be incorporated into

the objective function. /'ti” R AI-O-R and /”tic denote the Lagrange mul-
tipliers associated with the deviations of 1 , o, and C,. The subsys-
tem optimization can be formulated as

find pg, . g,

: sys sub sys sub C( sys subl
mlnxfﬂR( 2 #R,) (Ry URl)Jr/li (Ciy -G )+

2
‘A,HR ‘ ‘usys :ulseuzb) 4 (nys Cl_sub] ) (2())

oR sys sub
7ok o) +

stPr(0.5<R™' <1)>0.95
0.5< g, <0.980.5< up <0.98,i=1,2
find pp ,pp,

min 218 (g5 - g )+ 27 (o] Rl )+ A4S (¢ - )+
‘/IiHR‘(H;eyf ”;eulb) k (Cisys—cfubl)z @

s.t. Pr(o.s <R < 0.998) >0.95

OR sys sub
+|A; ‘( O'R’i) +

0.2< MR, <0.99;0.2< MR, <0.99,i=3,4,5

The means of component reliability Mg, and Ug, are treated as
design variables. ATC is implemented first to find the deterministic
optimal point, which is chosen as the initial design point of PAIO-
MCS to prevent unnecessary and expensive reliability analyses for
infeasible and otherwise undesirable design points.

The results are listed in Table 2 for comparison, where S[j (=1,2,...,
5,/=1,2) represents the component ; in subsystem i. It shows that, the
deterministic results have low confidence level once the uncertainty
of the input variables is considered. With confidence-level constraints,
both PAIO-MCS and PATC-SL improve the probability of meeting
the reliability requirements. The accuracy of PATC-SL is excellent
for this example as well. Fig. 5 shows the iteration histories for main
optimization of ATC and PATC-SL. The efficiency of PATC-SL is
comparable to the deterministic optimization.
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Table. 2. Reliability optimum allocation results for example 2

Subsystem(S,) Subsystem(S,) Subsystem(S,) Subsystem(S,) Subsystem(S,)
SH S12 521 522 SS'I 532 S41 S42 S51 S52
Rij 0.804 0.631 0.788 0.643 0.381 0.250 0.544 0.375 0.978 0.908
ATC G 0.215 0.199 0.207 0.207 0.0023 0.0014 0.006 0.003 0.146 0.095
Ri 0.507 0.51 0.535 0.715 0.998

Pr(Rs > 0.999)=0.249, Cs=1.083

PAIO-MCS Hr; 0947 0.774 0.789 0.644 0.366 0.276 0.726 0628 0961 0933
Cij 0.299 0.299 0.208 0.207 0.0021 0.0017 0.017 0.016 0.105 0.122
Hp, 0733 0.508 0.56 0928 0.997

Pr(Rs > 0.999)=0.95, Cs=1.280

PATC-SL HR;, 0929 0788 0741 0686 0341 0.274 0881 0385 0950 0948
G 0288 0310 0183 0235 00017 00017 0045 0004 009  0.146
Hr, 0.732 0516 0.521 0.927 0.997

Pr(Rs > 0.999)=0.952, Cs=1.304

26 . , . r : T - T - paper. A new PATC framework is developed by combining the single
243 —e— PATC-SL loop method with the uncertainty propagation techniques to solve the
2_2;'._1 " ATC | reliability allocation problem under uncertainty. Compared with the

1 i ! previous methods, the new approach requires no nested optimization
20+ loop. This makes it extremely efficient. Through the present study, it
18 ] is shown that:

164 1) Compared to the all-in-one (AIO) method with MCS, The ac-

_ curacy of the proposed PATC-SL formulation is demonstrated.
- o o o0 & o o o o 1 The single-loop method based PATC can be useful for many
B nonlinear engineering systems.

1 ™ .
T s e T . St S . S 2)  Compared to PATC-L and ATC, the efficiency of PATC-SL is
(Y- NLouf TN SN S N NS SN S N SN SN SN SN SN validated. Its efficiency is almost equivalent to deterministic
0 1 2 3 4 5 6 7 % 9 10 11 12 13 14 15 optimization.

Iteration Numbers 3) Evaluating system reliability in a probabilistic approach is
meant to aid system architects make informed risk-based deci-

Fig. 5. Optimization history for the reliability allocation problem . o
sions rather than the traditional safety factor approaches. The

6. Conclusions prop.osefi PATC—SL method is more practical for engineering
o ) o . application with an acceptable accuracy and better computa-
The estimation uncertainty of component reliability is considered tional. Higher efficiency can be achieved by improving the con-

in this paper. To deal with the issue of modeling uncertainty propaga- vergence speed, which needs to be further studied.

tion in multilevel hierarchies, PMA and PMI are investigated in the
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