ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein
Our IF is 1.806
JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies

 


Wydawca:
Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa)

Patronat Naukowy:
Polska Akademia Nauk Oddział w Lublinie

Członek:
Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych


UWAGA:

Poprawne cytowanie publikacji ukazujących się w naszym Kwartalniku ze względu na wymogi baz bibliograficznych powinno zawierać pełną dwujęzyczną nazwę bez polskich znaków diakrytycznych, tj.: Eksploatacja i Niezawodnosc – Maintenance and Reliability


 

Zgłoszenie On-LINE

 




 

Impact Factor

Impact Factor

SCImago Journal & Country Rank


Lista czasopism punktowanych MNiSzW 2019:

100 punktów w dyscyplinach:
- architektura i urbanistyka
- automatyka, elektronika i elektrotechnika
- inżynieria biomedyczna
- inżynieria lądowa i transport
- inżynieria materiałowa
- inżynieria mechaniczna
- inżynieria środowiska, górnictwo
i energetyka
- nauki o zarządzaniu i jakości


MOST CITED

Update: 2018-11-13

1. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 45
2. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 35
3. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 32
4. UTILIZATION OF DIFFUSION PROCESSES AND FUZZY LOGIC FOR VULNERABILITY ASSESSMENT
By: Valis, David; Pietrucha-Urbanik, Katarzyna

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 1   Pages: 48-55   Published: 2014

Times Cited: 30
5. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Issue: 2   Pages: 135-144   Published:2012

Times Cited: 28
6. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 28
7. SELECTED ASPECTS OF PHYSICAL STRUCTURES VULNERABILITY - STATE-OF-THE-ART
By: Valis, David; Vintr, Zdenek; Malach, Jindrich

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 189-194 Published: 2012

Times Cited: 26
8. RELIABILITY BASED OPTIMAL PREVENTIVE MAINTENANCE POLICY OF SERIES-PARALLEL SYSTEMS
By: Peng Wei; Huang Hong-Zhong; Zhang Xiaoling; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 2 Pages: 4-7 Published: 2009

Times Cited: 24
9. DIAGNOSTIC OF DIRECT CURRENT MACHINE BASED ON ANALYSIS OF ACOUSTIC SIGNALS WITH THE USE OF SYMLET WAVELET TRANSFORM AND MODIFIED CLASSIFIER BASED ON WORDS
By: Głowacz Adam

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 4   Pages: 554-558   Published: 2014

Times Cited: 23
10. MODELLING OF PASSIVE VIBRATION DAMPING USING PIEZOELECTRIC TRANSDUCERS - THE MATHEMATICAL MODEL
By: Buchacz, Andrzej; Placzek, Marek; Wrobel, Andrzej

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 2   Pages: 301-306   Published: 2014

Times Cited: 23

 

Licznik od 2016.06.29: darmowe liczniki


Zadanie „Wdrożenie procedur zabezpieczających oryginalność publikacji naukowych w kwartalniku „Eksploatacja i Niezawodność – Maintenance and Reliability” finansowane w ramach umowy 532/P-DUN/2018 ze środków Ministra Nauki i Szkolnictwa Wyższego przeznaczonych na działalność upowszechniającą naukę.


Modelowanie uszkodzeń elementów silnika samolotowego w oparciu o sztuczne sieci neuronowe o radialnych funkcjach bazowych

ANN-based failure modeling of classes of aircraft engine components using radial basis functions

 

Tekst artykułu: 

Streszczenie: 

Celem pracy jest przedstawienie modelu służącego do predykcji uszkodzeń dwóch kategorii krytycznych elementów silnika samolotowego: elementów nieobrotowych, takich jak zawory i skrzynie biegów oraz elementów obrotowych, takich jak turbiny silnika. W pracy wykorzystano regresję Weibulla i sztuczne sieci neuronowe oparte na propagacji wstecznej oraz radialnych funkcjach bazowych (RBF). Model wykorzystuje dane o błędach zebrane od operatorów samolotów turbośmigłowych pracujących w trudnych warunkach pustynnych, gdzie erozja powodowana przez piasek stanowi szkodliwy czynnik ograniczający żywotność turbin. Prezentowany model jest więc szczególnie przydatny do trafnego prognozowania żywotności krytycznych elementów takich silników. Algorytm, który wykorzystuje sieci neuronowe o radialnych funkcjach bazowych, używa specyfikatora najbliższego punktu. Aktywacja bazuje na odchyleniu wcześniejszego prototypu od wektora wejściowego. Dwa wcześniejsze modele oparte na regresji Weibulla (Weibull regression modeling) oraz sieciach typu Feed-Forward Backpropagation wykorzystano do badań porównawczych. Wyniki porównania pokazują, że czasy uszkodzeń odwzorowane przez RBF pozostają w większej zgodzie z rzeczywistymi danymi o uszkodzeniach niż w przypadku obu wcześniejszych metod modelowania. Co więcej, technika ta ma porównywalnie większą efektywność, ponieważ liczba neuronów w każdej warstwie sieci neuronowej została zredukowana tak aby zmniejszyć czas obliczeń, przy minimalnym wpływie na dokładność wyników.

Abstract: 

The objective of this research is to present a model to predict failure of two categories of critical aircraft engine components; nonrotating components such as valves and gearboxes, and rotating components such as engine turbines. The work utilizes Weibull regression and artificial neural networks employing Back Propagation (BP) as well as Radial Basis Functions (RBF). The model utilizes training failure data collected from operators of turboprop aircraft working in harsh desert conditions, where sand erosion is a detrimental factor in reducing turbine life. Accordingly, the model is more suited for accurate prediction of life of critical components of such engines. The algorithm, which uses Radial Basis Function (RBF) NN, uses a closest point specifier. The activation is based on the deviation of the earlier prototype from the input vector. Two earlier models are used for comparison purposes; namely Weibull regression modeling and Feed-Forward BP network. Comparison results show that the failure times represented by RBF are in better compromise with actual failure data than both earlier modeling methods. Moreover, the technique has comparatively higher efficiency as the neuron’s number in each layer of ANN is reduced, to decrease computation time, with minimum effect on the accuracy of results.

Strony: 

311–317

DOI: 10.17531/ein.2019.2.16.

Article citation info: 
Al-Garni A, Abdelrahman W, Abdallah A. ANN-based failure modeling of classes of aircraft engine components using radial basis functions. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2019; 21 (2): 311–317, http://dx.doi.org/10.17531/ein.2019.2.16.