ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein

JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies


 We verify submissions originality with the use of iThenticate plagiarism checker


 All accepted articles are published Open Access under the Creative Commons Licence: CC-BY 4.0

Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line


The average number of weeks from article submission to the final decision: 4 weeks




http://scientific.thomsonreuters.com/cgi-bin/jrnlst/jloptions.cgi?PC=D

http://www.thomsonreuters.com/products_services/scientific/Journal_Citation_Reports

http://doaj.org

http://infobaseindex.com

http://www.info.scopus.com/why-scopus/publishers/?url=detail/what/publishers/

http://www.ebsco.com


MOST CITED

Update: 2021-07-01

1. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 59
2. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 53
3. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 51
4. INNOVATIVE METHODS OF NEURAL RECONSTRUCTION FOR TOMOGRAPHIC IMAGES IN MAINTENANCE OF TANK INDUSTRIAL REACTORS
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 21 Issue: 2 Pages: 261-267 Published: 2019

Times Cited: 50
5. APPLICATION OF NEURAL RECONSTRUCTION OF TOMOGRAPHIC IMAGES IN THE PROBLEM OF RELIABILITY OF FLOOD PROTECTION FACILITIES
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 20 Issue: 3 Pages: 425-434 Published: 2018

Times Cited: 45
6. ASSESSMENT MODEL OF CUTTING TOOL CONDITION FOR REAL-TIME SUPERVISION SYSTEM
By: Kozlowski, Edward; Mazurkiewicz, Dariusz; Zabinski, Tomasz; Prucnal, Slawomir; Sep, Jaroslaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 21 Issue: 4 Pages: 679-685 Published: 2019

Times Cited: 40
7. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 39
8. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Volume 14, Issue: 2   Pages: 135-144   Published:2012

Times Cited: 38
9. TESTS OF EXTENDABILITY AND STRENGTH OF ADHESIVE-SEALED JOINTS IN THE CONTEXT OF DEVELOPING A COMPUTER SYSTEM FOR MONITORING THE CONDITION OF BELT JOINTS DURING CONVEYOR OPERATION
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 34-39 Published: 2010

Times Cited: 37
10. RELIABILITY ANALYSIS OF RECONFIGURABLE MANUFACTURING SYSTEM STRUCTURES USING COMPUTER SIMULATION METHODS
By: Gola, Arkadiusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 21, Issue: 1, Pages: 90-102, Published: 2019

Times Cited: 36

 

 



Task „Implementation of procedures ensuring  the originality of scientific papers published in the quarterly „Eksploatacja i Niezawodność – Maintenance and Reliability” financed under contract 532/P-DUN/2018 from the funds of the Minister of Science and Higher Education for science dissemination activities.


Incorporating product robustness level in field return rate predictions

Przewidywanie rzeczywistego wskaźnika zwrotów towaru z uwzględnieniem poziomu odporności produktu

 

Full text: 

Abstract: 

Reliability and return rate prediction of products are traditionally achieved by using stress based standards and/or applying accelerated life tests. But frequently, predicted reliability and return rate values by using these methods differ from the field values. The primary reason for this is that products do not only fail due to the stress factors mentioned in the standards and/or used in accelerated life tests. There are additional failure factors, such as ESD, thermal shocks, voltage dips, interruptions and variations, quality factors, etc. These factors should also be considered in some way when predictions are made during the R&D phase. Therefore, a method should be used which considers such factors, thus increasing the accuracy of the reliability and return rate prediction. In this paper, we developed a parameter, which we call Robustness Level Factor, to incorporate such factors, and then we combined this parameter with traditional reliability prediction methods. Specifically, the approach takes into account qualitative reliability tests performed during the R&D stage and combines them with life tests by using Artificial Neural Networks (ANN). As a result, the approach gives more accurate predictions compared with traditional prediction methods. With this prediction model, we believe that analysts can determine the reliability and return rate of their products more accurately.

Streszczenie: 

Niezawodność i wskaźniki zwrotów towaru przewiduje się tradycyjnie przy użyciu norm obciążeniowych i/lub stosując przyspieszone badania trwałości. Jednakże, często wartości niezawodności i wskaźnika zwrotów przewidywane za pomocą tych metod różnią się od ich wartości rzeczywistych. Główną tego przyczyną jest fakt, że produkty nie ulegają awarii wyłącznie pod wpływem czynników obciążeniowych wymienianych w normach i/lub wykorzystywanych w przyspieszonych badaniach trwałości. Istnieją dodatkowe czynniki wpływające na intensywność uszkodzeń, takie jak wyładowania elektrostatyczne, wstrząsy termiczne, spadki, przerwy w dostawie i zmiany napięcia, czynniki jakościowe, itp. Te czynniki także powinny być w jakiś sposób uwzględnione przy dokonywaniu predykcji na etapie badań i rozwoju (R&D). Dlatego też zwiększenie trafności predykcji niezawodności i wskaźników zwrotów towaru wymaga metody, która uwzględniałaby tego typu czynniki. W niniejszej pracy opracowaliśmy parametr, nazwany przez nas "czynnikiem poziomu odporności", który pozwala na uwzględnienie takich czynników, a następnie wykorzystaliśmy ów parametr w połączeniu z tradycyjnymi metodami przewidywania niezawodności. W szczególności, przedstawione podejście bierze pod uwagę jakościowe badania niezawodnościowe wykonywane na etapie R&D łącząc je z badaniami trwałościowymi przy użyciu sztucznych sieci neuronowych ANN. Dzięki temu, w podejściu tym uzyskuje się bardziej trafne predykcje niż w tradycyjnych metodach prognozowania. Jesteśmy przekonani, że użycie powyższego modelu predykcyjnego umożliwi analitykom bardziej trafne wyznaczanie niezawodności oraz wskaźników zwrotów wytwarzanych przez nich produktów.

Pages: 

327-332


SELECT PUBLICATION YEAR